SPACES OF TEMPERED ULTRADISTRIBUTIONS AND DIFFERENTIAL EQUATIONS

Zagorka Lozanov-Crvenković, Dušanka Perišić

Institute of Mathematics, University of Novi Sad Trg Dositeja Obradovića 4, 21000 Novi Sad, Yugoslavia email: zlc@unsim.im.ns.ac.yu, dusanka@unsim.im.ns.ac.yu

Abstract

In the paper we considere the Laplace equation and apply the heat kernel method to obtain some properties of solutions.

AMS Mathematics Subject Classification (1991): Primary 44A35, Secondary 46F10

Key words and phrases: ultradistributions, heat kernel, Laplace equation

1. Preliminaries

We use the multiindex notation $|\alpha| = \alpha_1 + \alpha_2 + \dots + \alpha_d$, $\alpha! = \alpha_1! \alpha_2! \cdots \alpha_d!$, $x^{\alpha} = x_1^{\alpha_1} x_2^{\alpha_2} \cdots x_d^{\alpha_d}$, $|x| = \sqrt{x_1^2 + x_2^2 + \dots + x_d^2}$ and

$$\varphi^{(\alpha)}(x) = (\partial/\partial x)^{\alpha} = (\partial/\partial x_1)^{\alpha_1} (\partial/\partial x_2)^{\alpha_2} \cdots (\partial/\partial x_d)^{\alpha_d} \varphi(x), \quad x \in \mathbb{R}^d,$$

where $d \in \mathbb{N}$, $\alpha = (\alpha_1, \alpha_2, ..., \alpha_d) \in \mathbb{N}_0^d$, $\varphi \in C^{\infty}(\mathbb{R}^d)$ and $x = (x_1, x_2, ..., x_d) \in \mathbb{R}^d$.

Let $\{M_p, p \in \mathbb{N}_0\}$ and $\{N_p, p \in \mathbb{N}_0\}$ be the sequences of positive numbers. In the paper, the following conditions will be used. For their detailed analysis see [3].

(M.1)

$$M_p^2 \le M_{p-1}M_{p+1}, \quad p = 1, 2, \dots$$

(M.2) There are constants A and H such that

$$M_p \leq AH^p \min_{0 \leq q \leq p} M_q M_{p-q}, \quad p = 0, 1, \dots$$

(M.3) There is a constants A such that

$$\sum_{q=n+1}^{\infty} \frac{M_{q-1}}{M_q} \le A \frac{pM_p}{M_{p+1}}, \quad p = 1, 2, \dots$$

The corresponding conditions for the sequence $\{N_p, p \in \mathbb{N}_0\}$ will be denoted by (N.1), (N.2) and (N.3).

Throughout the paper we assume that $M_0 = 1$ and $N_0 = 1$.

Note, the Gevrey sequence

$$p^{sp}$$
 or $(p!)^s$ or $\Gamma(1+sp)$, $p \in \mathbb{N}_0$,

s > 1 satisfies the above conditions.

The so-called associated functions for the sequence $\{M_p, p \in \mathbb{N}_0\}$ are

$$M(
ho) = \sup_{p \in \mathbb{N}_0} \ \log rac{
ho^p}{M_p}, \quad \overline{M}(
ho) = \sup_{p \in \mathbb{N}_0} \ \log rac{
ho^p p!}{M_p^2},$$

where $\rho > 0$.

The corresponding associated functions for the sequence $\{N_p, p \in \mathbb{N}_0\}$ will be denoted by $N(\cdot)$, and $\overline{N}(\cdot)$.

The spaces $\mathcal{S}_{(N_p)}^{(M_p)}$ and $\mathcal{S}_{\{N_p\}}^{\{M_p\}}$ are defined in [1] in the following way:

Definition 1. Let m, n > 0. The space of smooth functions φ on \mathbb{R}^d , such that

(1)
$$|x^{\beta}\varphi^{(\alpha)}(x)| \leq C_{\varphi} \frac{M_{|\alpha|}N_{|\beta|}}{m^{|\alpha|}n^{|\beta|}}, \text{ for every } \alpha, \beta \in \mathbb{N}_0^d,$$

where the constant C_{φ} depends only on φ , we denote $\mathcal{S}_{N,n}^{M,m}$, and equip with the norm

(2)
$$s_{m,n}(\varphi) = \sup_{\alpha,\beta \in \mathbb{N}_0^d} \frac{m^{|\alpha|} n^{|\beta|}}{M_{|\alpha|} N_{|\beta|}} ||x^{\beta} \varphi^{(\alpha)}(x)||_{\infty}.$$

The spaces $\mathcal{S}^{(M_p)}_{(N_p)}$ and $\mathcal{S}^{\{M_p\}}_{\{N_p\}}$ are

$$\mathcal{S}_{(N_p)}^{(M_p)} = \underset{\substack{m \to \infty \\ n \to \infty}}{\operatorname{proj}} \lim_{\substack{m \to \infty \\ n \to \infty}} \mathcal{S}_{N,n}^{M,m}, \qquad \mathcal{S}_{\{N_p\}}^{\{M_p\}} = \underset{\substack{m \to 0 \\ n \to 0}}{\operatorname{proj}} \lim_{\substack{m \to 0 \\ n \to 0}} \mathcal{S}_{N,n}^{M,m}.$$

We use the notation S_{\uparrow}^* to denote $S_{(N_p)}^{(M_p)}$ or $S_{\{N_p\}}^{\{M_p\}}$.

For the properties of the spaces $\mathcal{S}_{\dagger}^{*}$ see [1].

Denote by E(x,t) the heat kernel:

(3)
$$E(x,t) = \begin{cases} (4\pi t)^{-d/2} \exp[-|x|^2/4t], & t > 0, \\ 0, & t < 0. \end{cases}$$

We will use the following result

Theorem 1. [1] 1. Let the conditions (M.1), (M.2), (M.3), (N.1), (N.2) and (N.3) be satisfied and $f \in \mathcal{S}_{(N_n)}^{\prime(M_p)}$. The function

$$U(x,t) = \langle f(y), E(x-y,t) \rangle$$

is well defined on $\mathbb{R}^{d+1}_+ = \{(x,t)|x \in \mathbb{R}^d, t > 0\}$, belongs to $C^{\infty}(\mathbb{R}^{d+1}_+)$ and satisfies the heat equation

(4)
$$\left(\frac{d}{dt} - \Delta\right)U(x,t) = 0.$$

Furthermore, for some m, n > 0, and arbitrary T > 0, there exists a positive constant C such that

$$(5) \qquad |U(x,t)| \leq C \exp\left[N(n|x|) + \frac{1}{2}\overline{M}\left(\frac{m}{t}\right)\right], \quad x \in \mathbb{R}_+^d, \quad t \in (0,T).$$

Also, for any $\psi \in \mathcal{S}_{(N_p)}^{(M_p)}$, we have

(6)
$$\int_{\mathbb{R}^d} U(x,t)\psi(x)dx \to \langle f, \psi \rangle, \quad t \to 0.$$

2. If the conditions (M.1), (M.2), (M.3), (N.1), (N.2) and (N.3) are satisfied, the converse is also true: for every smooth function U(x,t) defined on \mathbb{R}^{d+1}_+ , satisfying the conditions 4 and 5, for some m, n > 0, there exists unique $f \in \mathcal{S}'^{(M_p)}_{(N_p)}$, such that

(7)
$$U(x,t) = \langle f(y), E(x-y,t) \rangle.$$

We call U(x,t)=< f(y), E(x-y,t)> the definding function for the function $f\in \mathcal{S}'^{(M_p)}_{(N_p)}.$

We note that the analogous result holds also for the Roumieu type spaces of tempered ultradistributions $S'^{\{M_p\}}_{\{N_n\}}$.

2. Main Result

In the following theorem we will consider only the Beurling type tempered ultradistributions, but analogous results hold also for the Roumieu type tempered ultradistributions.

Theorem 2. Let conditions (M.1), (M.2), (M.3), (N.1), (N.2) and (N.3) be satisfied. For any $f \in \mathcal{S}'^{(M_p)}_{(N_p)}$, there exists a solution u of the equation

(8)
$$\Delta u(x) = f(x), \qquad x \in \mathbb{R}^d.$$

Furthermore, if f is an analytic function which satisfies that for some n > 0 there exists a positive constant C such that

(9)
$$|f(x)| \le C \exp \left[N(n|x|) \right], \quad x \in \mathbb{R}^d$$

then any solution u of the equation 8 is in the space $S'^{(M_p)}_{(N_p)}$, and is an analytic function.

Proof. 1. First, we consider equation $\Delta u = \varphi$, where $\varphi \in \mathcal{S}_{(N_p)}^{(M_p)}$. Let $\omega_n = 1 - \varphi_n$, where $\varphi_n \in \mathcal{D}^{(M_p)}$ and $\varphi_n(x) = 1$, for |x| > 1/n, and $\varphi_n(x) = 0$ for |x| < 1/2n. It is easy to verify that $\theta_n(x) = |x|^{-2}\omega_n(x)$ belongs to the space of multipliers of the space $\mathcal{S}_{(N_p)}^{(M_p)}$, (i.e. $\theta_n \in \mathcal{E}^{(M_p)}$, and $\theta_n \cdot \psi \in \mathcal{S}_{(N_p)}^{(M_p)}$, for each $\psi \in \mathcal{S}_{(N_p)}^{(M_p)}$). Put $u_n(x) = \mathcal{F}^{-1}(\theta_n \cdot \hat{\varphi})$. Since $\theta_n \cdot \hat{\varphi} \in \mathcal{S}_{(N_p)}^{(M_p)}$, we

have that u_n is an element of $\mathcal{S}_{(N_p)}^{(M_p)}$. One can verify that the sequence u_n is a Cauchy sequence in the complete space $\mathcal{S}_{(N_p)}^{(M_p)}$ and therefore

$$u(x) = \lim_{n \to \infty} u_n(x)$$

is well defined element of $\mathcal{S}_{(N_n)}^{(M_p)}$. Note

$$u(x) = \lim_{n \to \infty} u_n(x) = \lim_{n \to \infty} \mathcal{F}^{-1}(\theta_n \cdot \hat{\varphi}) =$$
$$= -\lim_{n \to \infty} (2\pi)^{-d} \int e^{i\langle x, \xi \rangle} |\xi|^{-2} \omega_n(\xi) \hat{\varphi}(\xi) d\xi.$$

It follows from above that u is a solution of the equation $\Delta u = \varphi$.

2. Let us consider equation

$$\Delta u = f,$$

where $f \in \mathcal{S}'^{(M_p)}_{(N_p)}$. This equation can be solved by using the duality. Define $u \in \mathcal{S}'^{(M_p)}_{(N_p)}$, by

$$\langle u, \varphi \rangle = \langle f, \Delta^{-1} \varphi \rangle, \quad \varphi \in \mathcal{S}_{(N_p)}^{(M_p)}.$$

Then we have that

$$< u, \Delta \varphi > = < f, \varphi >, \quad \varphi \in \mathcal{S}_{(N_p)}^{(M_p)}.$$

and therefore u is a solution of the equation 10 and $u \in \mathcal{S}'^{(M_p)}_{(N_p)}$

3. Let f be an analytic function which satisfies estimate 9, and let U(x,t) and F(x,t) be the defining functions of u and f. Note that, since f is an analytic function, it follows that $F(\cdot,t)$ is an analytic function too. We have

$$\Delta U(x,t) = \frac{d}{dt}U(x,t) = F(x,t), \quad (x,t) \in \mathbb{R}^{d+1}_+.$$

It follows that $U(\cdot,t)$ is an analytic function.

$$U(x,t) = U(x,1) + \int_1^t F(x,\tau)d\tau.$$

Using Theorem 1 and passing $t \to 0$ we have the following equality in the space $\mathcal{S}'^{(M_p)}_{(N_p)}$:

$$u(x) = U(x,1) + \int_0^1 F(x,\tau)d\tau$$

It is easy to see that u is an analytic function. \Box

References

- [1] Budinčević, M., Lozanov-Crvenković, Z., Perišić, D., Representation theorems for tempered ultradistributions, Publication de l'Institute mathematique, to appear
- [2] Dong, C., Matsuzawa, T., S—spaces of Gel'fand Shilov and differential equations. Japanese Journal of Mathematics, Vol. 19, No. 2 (1993), 227-239,
- [3] Komatsu, H., Ultradistributions I, J. Fac. Sci. Univ. Tokyo Sect. IA Mat. 20 (1973), 25-105.
- [4] Lozanov-Crvenković, Z., Perišić, D., Heat kernel characterizations of spaces $\mathcal{S}_{N_p}^{(M_p)}$ and $\mathcal{S}_{N_p}^{\{M_p\}}$, Proceedings of the 13th Conference on Applied Mathematics, D. Herceg, K. Surla, eds., 103-113.
- [5] Matsuzawa, T., A calculus approach to hyperfunctions I, Nagoya Math. J. 108 (1987), 53-66.
- [6] Matsuzawa, T., A calculus approach to hyperfunctions II, Trans. Amer. Math. Soc. (2) 313 (1989), 619-654.
- [7] Matsuzawa, T., A calculus approach to hyperfunctions III, Nagoya Math. J. 118 (1990), 133-153.
- [8] Pilipović, S., Tempered Ultradistributions, Bollettino U.M.I. (7) 2-B (1988), 235-251.