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Abstract

In the paper we considere the Laplace equation and apply the heat
kernel method to obtain some properties of solutions.

AMS Mathematics Subject Classification (1991): Primafy 44A35, Sec-
ondary 46F10

Key words and phrases: ultradistributions, heat kernel, Laplace equa-
tion

1. Preliminaries

We use the multiindex notation |a| = a1 + a3 + ... + ag, ol = oqlay! - - ag!,
% =
=z{zd? .- z39, |:v|=\/z¥+z§+---+z§ and

o ¥ (z) = (8/8z)* = (8/0z1)* (8/0x3)* - - - (8/9zq)%p(z), T € R,

whered € N, a = (a1, a2,...,aq) € N‘é, ¢ € C°(R%) and z = (21, T2, ..., Tq) €
Re.
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Let {M,, p € Ny} and {N,, p € Ny} be the sequences of positive num-
bers. In the paper, the following conditions will be used. For their detailed
analysis see (3].

(M.1)
M2 < My 1Mpy, p=12,..

(M.2) There are constants A and H such that

M, < AHP Oranig MMy _q, p=0,1,...

(M.3) There is a constants A such that

oo
3 Mooy o gPMp gy
q=p+1 Mq MP+1

The corresponding conditions for the sequence {N,, p € Ny} will be
denoted by (N.1), (N.2) and (N.3).

Throughout the paper we assume that My =1 and Ny = 1.

Note, the Gevrey sequence
p or (p1)? or T(1+sp), p€N,

s>1 satisfies the above conditions.

The so-called associated functions for the sequence {M,,, p € Ny} are

7~ P°p!
M(p) = sup log —, M(p) = sup log—,
(p) sup log (p) sup log M2

where p > 0.

The corresponding associated functions for the sequence {N,, p € No}
will be denoted by N(-), and N(-).

/

The sPaces S((Il\\,i”)) and S{{IIZ"}} are defined in [1] in the following way:

Definition 1. Let m,n > 0. The space of smooth functions ¢ on R%, such
that

M, N,
(1) |590)(z)| < €, — L]

m, fO‘I‘ every a,ﬂ € Ng,
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where the constant C,, depends only on p, we denote S%;:", and equip with
the norm

m''n
(2) Sm’"((p) = Ssup

|28 (2)|| oo
a,pend MiajNjg) =

The spaces S((%p)) and S{{IJ\Z”}} are
S(%P)) = proj lim Sy, 5{{1@?}} = proj lim S ™.
oo e

We use the notation S,’f" to denote S((%”')) or S{{II\‘T?}}'

For the properties of the spaces Sy see [1].
Denote by E(z,t) the heat kernel:

T —d/2 x _wz
@3) E(m,t)z{ oy 2esp{-faP 4] ¢> 0

We will use the following result

Theorem 1. [I] 1. Let the conditions (M.1), (M.2), (M.3), (N.1), (N.2)

and (N.3) be satisfied and f € S"E?V/I:)). The function

Ulz,t) =< f(y), E(z — y,8) >
is well defined on RE™! = {(z,t)|z € R%, t > 0}, belongs to C>(RY!) and

satisfies the heat equation

(4) (dit — A)U(z,t) =0.

Furthermore, for some m,n > 0, and arbitrary T > 0, there exists a positive
constant C such that

(5)  [U(e,8)] < Cexp [N(nial) + %M(’-?—)] zeR, te(0.T).

Also, for any ¢ € S((JJ:,/;”)), we have

(6) Uz, t)p(z)dz =< f,op >, t 0.
Rd
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2. If the conditions (M.1), (M.2), (M.3), (N.1), (N.2) and (N.3) are sat-
isfied, the converse is also true: for every smooth function U(z,t) defined
n ]R‘i"'l, satisfying the conditions 4 and 5, for some m,n > 0, there exists

unique f € S'EII:,?)), such that

(7) U(l‘,t) =< f(y),E(.’L' - yat) >

We call U(z,t) =< f(y), E(zx — y,t) > the definding function for the
function f € S’EN ))

We note that the analogous result holds also for the Roumieu type spaces

of tempered ultradistributions 8’%%’”}}

2. Main Result

In the following theorem we will consider only the Beurling type tempered
ultradistributions, but analogous results hold also for the Roumieu type
tempered ultradistributions.

Theorem 2. Let conditions (M.1), (M.2), (M.3), (N.1), (N.2) and (N.3)
be satisfied. For any f € S 8\2’)), there exists a solution u of the equation

(8) Au(z) = f(z), zER.

Furthermore, if f is an analytic function which satisfies that for somen > 0
there exists a positive constant C such that

&) f(@) < Cexp [N(nla))], « €&
then any solution u of the equation 8 is in the space 8’&2’)), and is an analytic
function.

Proof. 1. First, we consider equation Au = ¢, where ¢ € 8((11:,1”)). Let

wn = 1—@n, where ¢n € D™2) and @, (z) = 1, for |z| > 1/n, and p,(z) =0

for |z| < 1/2n. Tt is easy to verify that 6,(z) = |z|"%wn(z) belongs to the
space of multipliers of the space S(%”’)), (ie. O, € EMp) and 6, -4 € 8((1]:,1”)),
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have that u, is an element of S((%”’)). One can verify that the sequence u,, is

a Cauchy sequence in the complete space S(ﬁ”)) and therefore

u(z) = lim un(z)
is well defined element of S((ﬁ”)). Note
u(z) = lim un(z) = lim F7}(6, - ¢) =

= — lim (27)~¢ / e <> |£] 2w (£) B(€)dE.

n—oo

It follows from above that u is a solution of the equation Au = ¢.

2. Let us consider equation

(10) Au=f,

where f € &' Ex!:)). This equation can be solved by using the duality. Define
(Mp)

v€E S ( N:) , by

_ -1 (Mp)
<u,p>=< f,A 9>, ‘PES(N:)'

Then we have that

<u,Ap >=<f, 0> @€ S((,’t,i")).

and therefore u is a solution of the equation 10 and u € S’ E?V?))

3. Let f be an analytic function which satisfies estimate 9, and let U(z, t)
and F(z,t) be the defining functions of u and f. Note that, since f is an
analytic funcyion, it follows that F(-,¢) ia an analytic function too. We have

AU(z,t) = d%U(:L',t) = F(z,t), (z,t) €RIL

It follows that U(-,t) is an analytic function.
t
U(z,t) =U(z,1) +/ F(z,1)dr.
e

Using Theorem 1 and passing ¢ — 0 we have the following equality in the

(Mp) |
space S’(N:) :

u(z) =U(z,1) + /(;1 F(z,7)dr

It is easy to see that u is an analytic function. O
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