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Abstract

We report on some generalizations of the square root functions.
We correspond the classical results for recurrence of vector chain with
results obtained from the ergodic theory, to prove the main results of
this paper. We will prove that the series §(§;y) converges in the region

2 - /z\?
< .
0<z<d, 0<y_( ﬁ)
Also we prove that the following holds
-2+t + P -+ -6+ 25+ =t, O<t<l
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1. Introduction and main results
1. If for a > 0,b > 0, we denote:

00 n—1
@ S(es)=ab+ Y -oa" > CET} O o,
k=1

n=2
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then, using the identity

cn- n n 3
ch 2n 12__??"(—4) ' (;)7

for b = 1 we obtain

(L.L1) 1-28(a;1) = 1-2 -(a+z—— a”ZC" )

n=2

= 1+Z() = V1 —4a, 0<a<;11—.

Thus, the series 1 — 25(%;y), z,¥ > 0, can be considered as a general-
ization of the function /1 — z, being equal to this function for y = 1, and
0 < z < 1. In the following theorem we present some properties of this
series.

Theorem 1. The series S($;y) converges in the region

2—\/5)2
Nz

(1.2) 0<z<4, 0<y<(

such that (Fig. 1)

1—25—1 =vI=z, for 0<z<l,

(1.2) 1—25(2;(2——\L§>2>=\/§—1, for 0<z <4,
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Y

Fig. 1: The shaded region is the region (1.2) The bold curves denote the
series, whose elementary functions +/1 — z and /z — 1 are its sum

Using some elementary transformations, from (1.3) we obtain:

Corollary. If we denote

1 n—1 . _ .
Cn,on—k = E ciioick, k=0,1,..,2n -2,
=[5
then
x
> (on2t? — anst® +onatt — -+ apmt®™) =t —t?, 0<t<1,
n=2

i.e. it holds that
-2+t + P-4+t -65+25)+...=¢t, O0<t<l

It is clear that if the parentheses in the last equation are dropped, the
obtained series diverges for every t € (0,1).

2. If for a > 0,b > 0, we denote

o0 n
(1 Qlaib) = 3 a3 CrmiCy - B,
k=1

=1
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we conclude that

(1.5) 1+2Q(1—”;1)= L o<z<l

1-=z

Thus, the series 1 + 2Q(%;y) for £ > 0,y > 0, can be considered as a
generalization of the function Tll—_m’ being equal to this function for y = 1,
and 0 < z < 1. In the following theorem we treat the problem of convergence
of this series.

Theorem 2. The series Q(5;y) converges for

2 - VZ\?
1.
(1.6) 0<z<l, 0<y<< 7z ),
and diverges for

2—7\?
1.7 0 4 = .
(17) <z<4, y (ﬁ)

2
It is clear that the series Q(§;y) also diverges for y > (2%/5@) .

3. Using (1.1) and (1.5), it follows that
[1 + 2Q(§; 1)]-[1- 25(%; 1)] =1, for 0<z<l.

The following theorem extends this result in the region (1.6).

Theorem 3.

(a) For every point (z,y) in the open region (1.6) it holds that:

s GG ) s )
(b) If for a > 0,b > 0, we use the denotation
(L9) Clasb) = i ): oh-1)?

then the series C(%;y) also converges in the region (1.6), so that for every
point (z,y) in this region, the following equality holds:

(L)  [1+ 2Q(£;y)] - 25(%;;,)] =1+ Q(-};y) - 20(%;11).
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From (1.9) it follows that:

T x
Cl—l)=———=, 0 <1
() Wiz o °
Thus, the series C(%;y) can be considered as a generalization of the
function ﬁﬁ being equal to this function for y = 1, and 0 < z < 1.
Note that this generalization is different from the generalization that can be

obtained from (1.5): %[1 + 2Q(§;y)].

4. As far as we know, the method we used to prove the results pre-
sented in Theorems 1-3 and Corollary are not used before. Namely, first
we calculate the basic probabilities of a simple vector chain, and utilize the
correspondence between the vector chain and the random walk of a second
order on a line. Then, we correspond the classical results for recurrence of
vector chain [1] with results obtained from ergodic theory [2], to prove the
main results of this paper.

2. A two dimensional vector chain

1. Let the sequence of random vectors {Zs, s > 0}, with possible values
(2.1) i=(,i4+1) or i=(,i—1), i=0,%1,%2 ..,

be a two dimensional Markov chain (Fig. 2), with one-step transition prob-
abilities:

- L , j=i+l
riviig = P{Zs = (1,5)|Zs-1 = (i - 1,4)} = { le’ ; =i—1
- L , j=i+1
(2.2)  rirrgig = P{Z = (4,)|Ze-1 = i+ 1,0)} = { Zz’ j=i—1

Ti-}-l,i;; =0 ’Lf ] 7é (’L,’L - 1)7 (117' + 1)

where

(2.3) 0<pnLp2<l, pr+qr=1 p2t+qg=1
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Fig. 2: The graph of vector-chain {Z,,s > 0}

We denote r( ") for the n-th step transition probabilities (where iand

have the form (2.1)). It is clear that the chain {Z;,s > 0} forms a class of
essential states, with the period two, and

(2n-1) _ (2n) -
"7 =0, 7yt =0 n21l

Lemma 1. For every state i of the chain {Zs,s > 0} it holds that:

2.4 riam = ch-lck (P
(2.4) i = ()" ?:1 (p1q2)
(2n=1) 1 = D2q1\k
- n
(2'5) Tiitla+1,i = Do (pIQ2) kZ::l(Cn 1) (p1q2) ’
r2n) D1 n k—1 vk (P21
(2.6) b = - (P102) ZC e (m) ,
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3

(2n) B k(P2q1
(2.7) ri+1,i;i—1,i_ plq? Z S (p1q2)'

2. If we denote

(2 8) (m) P{Z3+m=.;azs+k #;a k:1,2,...,m—1|ZS='7}, m 2 1,

where 7 and j are arbitrary states of the chain {Z,, s > 0}, then

) 00
(2.9) fzz=P{Zs4n =j for some N>1|Z,= Z
2 2
(2.10) fi(,iTI);i+1,i = f+T31 it1=0, m=12,..

and it is easy to check that

(2.11) fiartiiir1 = firrginrg = foirnivni - fivrgiian
Lemma 2.
(2.12)
on—1 2 1 k(D241
P2 fz(zil -Ll,l i = a1 +7; i; 1)‘L+1 = _(p1q2 Z Cn (p1q2) ’ " Z 2’
1 1
(2.13) fiit1it1: = —o(p1,p2),  fitliiitl = —ao(p1,p2),
D2 q1
where
n-l k p2q1\k
(2.14) o(p1,p2) = paq1 + Z (me2)” YON35O (C2)
k=1 P
1
(2.15) fiz= P ?(p1,p2)-

Proof. 1t is sufficient to prove that the product p; - fﬁi};ilyi is equal to the
sum of the right-hand side of (2.12). Therefore, using symmetry properties,
it follows that the product g; - fz(i’f::,)z +1 18 given by the same sum. Further



76 P. Lazov, A. Buchkovska

on, the equalities (2.13) directly follow from (2.9), (2.10) and (2.12), i.e. the
equality (2.15) from (2.13) and (2.11). For n = 2, we immediately conclude
that

(2.16) fi(,::l];i+1,i =p1q192 = 1)%(1’1‘12)(1’2(11)-

The probability fﬁi{;ll,i is the sum of probabilities of every two disjoint
events, corresponding to the certain path of the graph in Fig. 2. Each path,
that according to (2.11) in the first 2n — 2 steps does not pass through
(i + 1,%), contains 2n — 1 branches, whose beginning is in (3,7 + 1), and
end in (i + 1,7). The branches of the type (7,5 + 1) — (j + 1,7) are called
g1-branches. We can also define py, g2 and p;-branches. Let us consider
those possible paths with 2n — 1 branches from (¢,i + 1) into (¢ + 1,%) (of
the mentioned type) which contain k, g;-branches. It is clear that £ > 1.
It is obvious that these paths contain (k — 1), pa-branches. Consequently,
we obtain that £ < n — 1. Let us assume that n > 3 and k& > 2, then the
probability of a such possible path has the following form:

7o—1 re—1

— — —1—1 ~1—1
(Pl a1gd 'p2) (P q1gd* pe) - (01T qugst T p2) (P T quagst) =

1 —(k— (k-
(2.17) = p_2(p2q1)kpgrl+ +ri)—(k 1)q§31+ +55)—(k 1),
where
(2.18) Ty Si > 1, 1= 1,2,
and
rr+1> sy,
@ 19) (r1 + 1) + 79 > 51 + S92,
(ri+1)+ro+-+rg1>s1+s2+ -+ Sp-1,
and
k k
z'ri = Si.
i=1 i=1
Since
x ' k
(Zr,-—(k—l)) Lk (Zsi—(k—l)) +(k=1)=2n—1,
i=1 =1
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it follows that

k k
(2.20) Yo=Y si=n-—1.
i=1 i=1

Thus, for the probability in (2.17) we obtain:

(2.21) l(101¢12)n_k(Pzth)k
p2

which does not depend on the numbers r; and s;. Considering the number
- sequences (11 +1,r1 +1+7r9,...,71+1+712+ -+ +7,_1) and (s1,81 +
82,...,81+82+---+8k_1), it is not difficult to notice that the total number
of ways one can choose 2k numbers r1,79,...,7k, 81,82, . . ., Sk, satisfying the
conditions (2.18), (2.19) and (2.20), is Q(" 2 ), where the number @;CN;M)
can be easily computed. Therefore, a.nd a.ccordmg to (2.21), the set of all
possible paths of that type, which contains k, g;-branches for & > 2, has the
following probability

TL'— n n— 1 —_ n—
(222) @{n2mn ] (1) % (Do) =n—p20,’;_é0,’:<p1qz) *(paq1)k.

For k =1 (then r; = s; = n — 1), there is a unique possible path with the
probability (p1¢2)" 'q1, and so (2.22) holds for k£ = 1, too. Thus, summing
along all the possible values for k, for n > 3, we conclude that

(2.23) fz(fi11)+1: = (P1‘12 ZCS %Ck(pqu) .
=1 P1g2

Using (2.16), (2.23) holds for n = 2 as well. This, completes the proof.

Remark. The proof of Lemma 1 is simpler than the proof of Lemma 2.,
since we do not have to use the combinatory result given in the appendix.
Thus, for example, in a similar way as done in Lemma 2 one can find that

the probability rﬁ?i;i_l,i is a sum of the probabilities:

i

s51—1 s2—1 Te—1—~1 Sk—

» :
(07 q165 " pa) (P71 q1g52  pa) -+ (P} 919, p2) (P q165*p2)p]
= (p1g2)" ¥ (p2q1)*.

Since the number n can be represented as a sum of x4 numbers, 1 < p <
m, in a C" _, ways, we easily obtain the expression (2.4) for the considered
probablhtles

k417
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3. Let us consider the discrete second-order random walk along a straight
line, that is an integer valued sequence {X;, s > 0} of a random variable for
which:

P{Xs+1 = les =14, Xs-1 =1F1, } =

P1, (pZ)a .7 =1+1
=P{Xs41 =4 Xs=4,Xs 1 =iF 1} =4 q1,(q2), j=i-1
0, J#Fixl,

P{X;=1,Xs41 =k} =0, for k£I+1.
This walk is a special homogeneous chain of the second order. It is
easy to see that the considered vector chain {Z;,s > 0} is corresponding to
this second order walk. Therefore, from [2], Theorem 3 it follows that the

condition for recurrence of the vector chain {Z;,s > 0} can be expressed as
in the following lemma.

Lemma 3. The vector chain {Zs,s > 0} is recurrent iff
(2.24) p1+p2 =1
3. The proof of the main results

1. First of all, we will prove the Theorem 2.. Using the well known theorems
[1,pgs.262-267], the vector chain is recurrent iff the series

= ) = = k k{ P2q1 k
v -1
(31) Z 7'{;;:' = Z(pIQ2)n Z Cn-lcn (—_>
v=1 n=1 k=1 p192
diverges ((2.4) is used). If we interchange the variables
P2qa
3.2 a= , b=—"—,
(3:2) iz YSLp;
the open square
(3.3) 0<p1 <1, 0<p<l,
is mapped on the region
1-a\?
. <|l—=1.
(3.4) 0<a<l, 0<b_( 7a )
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such that the segment (2.24) and only it, is mapped on the curve
1-+a\?

3.5 0<ax<l1, b= .

(3.5) a<1, b=(—%)

In this case, the series (3.1) is transformed in the form (II). Now from
Lemma 3 it follows that the series (I7) converges in the region

(3.6) 0<a<1, O<b<<1:/a\/a)2,

while on the curve (3.5), the series (I7) diverges.

2. To prove Theorem 1, let us note first that for each point (a,b) of the
region (3.4) there exist two pairs (p},p,) and (py, p3) for each of them (3.3)
and (3.2) are true:

a
p1 = 1, P’2=1—;—1-=1—$2,

a
pi=m, pj=l-—=l-mz
T2

where z; is the smaller, and the z5 is the greater root of the equation
(3.7) 2 —[l—ab-1Djz+a=0

(z1 = 9 iff (a,b) is on the curve (3.5)). In that case, according to (I) and
(2.14) we get
S(a,b) = o(py, py) = o(py,p3)-
On the other hand, since fit1,i;:i+1 < 1, using the second relation in (2.13),
it follows that
o(py,p3) < gy =1-pi,
so that

(3.8) S(a,b) <1-—

R

(since p, = 1 — py, using the first relation in (2.13), we obtain the same
estimation (3.8)). If the point (a,b) is on the curve (3.5), then z; = =2,
p} + p5 = 1 and using Lemma 3, it follows that:

S(a;(l—\/ay):l—\/&, 0<a<l.

Ja
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To finish the proof, we use (1.1) and, according to (3.7), we obtain the
following relation:

223 — 1= ~a(b— 1) +1/(1 — ab + a)? — 4a.

3. Finally, we prove Theorem 3. We have already seen that if the point
(a,b) belongs to (3.6), then there exist two numbers p; and ps in the open
square (3.3), such that (3.2) is satisfied; in that case

(3.9) p1+p2 # 1.

Lemma 3 implies that the chain {Z;,s > 0} is transient. Since the rela-
tionship between the generic functions for the probabilities r( ) and f“
known, using the general recurrent theorem, it follows that for every state

' o D) 0
ZT?,{ 1+f~~-Z’r
1=0

that is, according to (2.4), (2.15) and (3.2),

(

1+ Q(a;b) =1+ F(a;b)(1 + Q(a; b))

or
(3.10) Q(a; b) = F(a;b) - Q(a; b) + F(a;b),
where

(3.11) F(a;b) = ;15.5'2((1;6).

From (3.10), we easily obtain that
[1 = F(a;b)] - [1 +2Q(a;b)] =1+ F(a;b).
Considering (3.11) and the latest equality, it follows that:
[ab — §%(a;b)] - [1 + 2Q(a;b)] = ab+ 5%(a; b).

Further on, using (2.5), (3.2) and (1.9), we have:

oo 00
0) _ . )
(3.12) > riteriers = fiidraenc Y T
= =1
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Using this relation, and considering (3.12), (2.13), (2.4) and (3.2) we obtain
C(a;b) = S(a;0)(1 + Q(a; b)),

that is
[1+Q(a; )] - [1 —25(a;8)] = 1 + Q(a;b) — 2C(a; b).

Thus, the proof of the theorem is complete.
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APPENDIX
Let @ECN;M), k< N < Mand M > 2, be the number of pairs (v, ),
where v = (1,...,14) and g = (p1,..., k) are k - dimensional integer -

valued vectors, such that:
1<y <--- <y <N,
1< <. <px <M,
vy < Py, Vo < p2,..., Vg < k.

Then

(i) _ 1 k. ok-l DM — k(N +1
In particular,

NiN+1 1 1 s
(A.2) (Vi = mcﬁ Clra1 = mclﬁf -Cxfa

Proof. For k = 1, (A.1) holds directly. The induction method will be applied
using recurrent relation

(43) @V = 3 {a{n W gl oy gD
<y <N



82 P. Lazov, A. Buchkovska

which can be easily verified.

Since

Ge=u (Ch2 +  + O+ (CE2 120k 2+ + (M —1-w)C

= v (Crl — CEL) + k(M —1-u)ChY - O+ Ch ) =
= (k= 1) (M —v) Ciy,

(where we use that VkC,’fk__ = kCf , kCk,_, = (M — k)CL)), then, as-

suming that (A.1) holds for k¥ — 1, from (A.3) we have:

N;M
4)I(c ) Z yk 1{ Vi — 1[kyk~(k_lyk]+
k<u <N

ck2, [k(M—l)—(k~1)uk]}=Ug—jm Y chhe=

k<viy<N
ECIACJ 11 (M Z u,, 1 ~k Z )
k<vp<N k<ve<N
1 - —
= 1O (MK — kO = g O OR MGk + 1) — KNV + 1)

This completes the proof.

k-2 \ _
M-2] —



