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Abstract

It is known that a class of fractal functions f : I(C R) - R
can be defined using an IFS (Iterated Function System) code. More-
over, these functions can be constructed to interpolate the data set
Y = {(z;,4:)}, C R%. Here, affine transformations (in R?) of such
functions (defined as affine mappings of their graphs) are examined.
Particularly, it is shown that fractal interpolating functions are affine
invariant only upon the class of affine mappings whose linear part is
given by a lower-triangular matrix. Also, it is proved that the fractal
interpolation scheme is a linear operator and can be written in the
Lagrange form.
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1. Introduction

Interpolation of the R2-data by means of smooth functions (polynomials,
splines) is a widely studied and well settled topic. On the other hand,
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some applications require nonsmooth and irregular interpolants. Fractal
functions, namely the functions whose graphs are fractal sets {4], offer an
adequate tool in such cases. Furthermore, they can be easily constructed
using Iterated Function Systems [1], although their properties cannot be
estabilished as easily. Some shape preserving properties of fractal interpo-
lating schemes are investigated in [2]. The aim of this paper is to estabilish
further properties, such as linearity and affine invariance, the latter being
especially important for graphical applications and CAGD [3].

A fractal interpolatory scheme can be introduced in the following way.

Let Y = {(zi,y:)}g, n > 2, To # Tn, be a set of points in R?, and let
Az; = ziy1 — T4

Definition 1. We call Y a proper set of interpolating data if the sequence
{Az;}) does not change the sign in the strong sense and has at least two
nonzero elements.

With the proper set of data Y and the vector d = [d; ... d,]T, |di| < 1,
one can associate the hyperbolic IFS (Y, d) = {R?;wy, ..., w,}, where each
w; is the affine transformation R2 — R2 given by

o w3 e i) 13

with

Ag;_, Ay Yn — Yo
) G = - di ’
In — X In — X ITp — Tg

a; =

€ =Ti—iTn,  fi=Yi— CiTn — diln.
The vector d is called vertical scaling vector.

If § is chosen such that 0 < 6 < min;((1 — |a:})/(1 + |e;]), w; is a con-
traction in the norm ||x||s = |x| + 8]y]| since, obviously, 0 < a; < 1, and
therefore o (Y, d) is hyperbolic.

Let #(R?) be the set of nonempty compact subsets of R? and hg the
Hausdorff metric on #(R2) generated by || - llo. Let W : H(R?) —» H(R?)
(so called Hutchinson operator) be defined by

(2) W()=Utw().
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Then W is a contraction of the complete metric space (H(R?), hg). Its fixed
point Fy C R?, called the attractor of the IFS o(Y,d), is the graph of a
continuous function f : [zg,z,] — R that interpolates the data set Y ([1],
[4]), so we can refer to o(Y,d) as an interpolatory scheme.

2. Affine invariance of the scheme

Let w be a nonsingular affine mapping R? - R? given by

g

X+ h], parsgheRr, | P T x0.

T 8

3) wx) = [p- 1

Recall that a regular linear transformation (g = h = 0) or a translation
(g=r=0,p=3s5=1,]|g| +|h] > 0) are special cases of (3), and, in
turn, any affine transformation can be seen as a composition of a linear
transformation and a translation.

Definition 2. The mapping w given by (3) is feasible for a given proper
data set Y, if w(Y') = {(}, ¥i) Y=o is also a proper data set.

Consider the sequence {L;} % of polygonal lines such that L is the
polygonal interpolation of Y, L; = W(Ly),..., Ly = W(Lg-1),... , where W
is given by (2). By definition of attractor ([4]), Fy = limy_,oo Lt and, by
continuity of w, w(Fy) = limg_, w(Lg), where the limiting process is taken
in the Hausdorff metric.

Since a feasible mapping w transforms the given dataset Y = {(z;,yi)} =g
into the new data set w(Y) = {w([z; %:]7)}2o = {(pzi + qyi + 9, r@i + syi +
h)}™q, a new IFS, corresponding to the transformed data set w(Y) and the

same scaling vector, is given by & = o(w(Y),d) = {R?;4,...,1W,} where
. a; 0 é;
4 (x)=| . x+| ; ,
@ () [qdi [f,-]
with
. PAT;_1 +qAyi1
a; =

p(zn — 20) + q(yn — v0) ’
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T‘A.’Ei_l + .sAyi_l _ dT‘(.’L‘n — .’Eo) + S(yn — yo)
p(Tn — 70) + ¢(yn —%0)  P(Tn — T0) + q(yn — o)’
é = px;i + qy; + g — &;(pTn + qyn + g),
fi =rz; + sy; + h — & (pxn + qyn + h) — di(rzn + syn + h) .

(5) & =

Note that & is also a hyperbolic IFS since the d vector is unchanged and
the denominators in (5) cannot vanish because of the regularity of w.

If Ly = w(Lo) and Ly = W'(L;_,) = Uiy wi(Li_,), k = 1,2,..., then
Foyy = limg o0 L}, is the attractor of 5. The relationship between F,y,
and Fy is highlighted by the next theorem.

Consider the following diagram

Ly -5 w(li) = L)
Wy LW
Liv1 - w(Liy1) = Ly,

If, for all k, it is commutative, namely if w;ow = wow; ,Vi, then L] =
w(L1), and at every next step Lj = w(Lg), so that F,yy = limg_o0 Ly =
limk_,oo w(Lk) = w(Fy).

The commutativity condition is given by the following theorem.
Theorem 1. If w(Y) denotes the image of the data set Y under a feasible
transformation w given by (3), then
(6) w(FY) = Fw(Y)
if and only if g = 0.

Proof. First consider the regular linear case of (3).

Since w; maps Ly into the i-th piece of Liy;, then w o w; maps Ly into
the i-th piece of w(Lg4+1). By (1), this mapping is given by

a; +qci qdi || p “
(wow;)(x) = w(wi(x)) = fai+gci sd; ] [ r Z ] [ fi ]

which yields

(pai + gci)(x — zn) + qdi(y — yn) + pTi + qus
(ra; + sci)(@ — zp) + sdi(y — yn) + rz; + 5Y;

(wowi)(x) = [
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and by (4)
(w; o w)(x) =

aifp(z — zn) + q(y — yn)] 4rpwi + qu;
Gilp(z — zn) + q(y — yn)] + di[r(z — zp) + s(y — yn)] + 72; + s

Now, @; maps w(Lg) into w(Lg41) if and only if wow; and w; ow are identical
mappings.

For any ¢ = 1,...,n, denote by §; the difference
(7)

6; = (wow;—iow)(x) = [plai — &) + qei] (z — zn) + q(di — i) (y — yn) } ’

[r(ai — di) + sci — pé&] (z — zn) — q&i(y — yn)

and note that (6) is equivalent to &; = [0 0]7, Vi, which holds if and only if

(8) pla; —a;) +qe; =0, ¢(di—a;))=0, Vi
and
(9) r(a; —di) + s¢; —péi =0, q& =0, Vi

It is evident from (7) that ¢ = 0 implies &; = [0 0]7, Vi, since ;|4=0 = a;
and ¢é;|q=0 = r(a; — d;)/p + sci/p. Suppose now ¢ # 0. Then, by the second
equation in (8) and (9), é& = 0, a; = d; so that (8) and (9) reduce to

pla; —di) +qe; =0, r(a; —di)+ s =0.

The above system has nontrivial solution if and only if

which, by supposition, never occurs. So, it must be ¢ = 0.

Consider now the translation case, i.e.

+[Z] . lgl + |h] > 0.
In this case @; = a; and &; = ¢;, while

é=ei+(1-a)g, fi=fi+(1-d)h—ag,
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which yields

A

W;(x) = w;(x) +

(1 - a;)g J

[ ai(z — g)
(1 - d,')h — ;9

ci(z — g) + di(y — h)

g
' [ g
Therefore

(%) = (wi 0w ™) (x) +

] = o wio,

which again leads to ; ow = wo w; and therefore to w(Fy) = F,yy. O

Remark. It should be noted that if w is nonsingular, then ¢ = 0 implies
p # 0, which, in turn, guarantees feasibility of w.

An important consequence of Theorem 1 is the symmetry property of the
scheme o(Y,d).

Corollary 1. (Symmetry). Let S be any subset of R%. Define its sym-
metric image with respect to the fized line {(c,y)|y € R} as S* = {(2¢c ~
z,y) | (z,y) € S}. LetY be a proper set of data. Then,

Fye = (Fy)* .

Proof. From Theorem 1, for p=—-1,r=0,s=1,g=2cand h=0. O

3. Linearity property

In #(R?), define scalar multiplication by

(10) AS = {(z,My) | (z,y) € S, SeHR?, AeR},

and addition by

(11) 81 + Sy = {(z,y1 + 1) | (z,11) € S1, (z,%2) € S2, 51,52 € H(R?)}.

Note that the affine transformation w given by (3), that satisfies condi-
tions from Theorem 1, can be put in the form

(12) (z, y) = (u(2), v(z,y)),

where u(z) = pz+g and v(z,y) = rz+sy+h. Takingp=1,r=g=h =0
and s # 0, the affine transformation (12) turns to be a scalar multiplication
Y — sY, s € R which is a feasible transformation, so one has
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Corollary 2. (Homogeneity).If Y is a proper set of data, then
Fhy =AMy MAeR,

where the scalar multiplication is given by (10). In other words, the inter-
polating scheme given by o(Y,d) is homogeneous.

Now it will be shown that the same scheme has also additivity property.

Theorem 2. (Additivity). Let Y7 and Y2 be two proper data sets defined
on the same mesh {z;}},. Suppose that the corresponding IFS’s, o(Y1,d)
and o(Y;,d) have the same vertical scaling vector d. Then,

Fy, +v, = Fy, + Fy,,

where addition is taken in the sense of relation (11).

Proof. Let o(Y;,d) = {Rz;ng), ... ,wslj)} be the IFS associated with the
data sets Y; = { (:z:i,ygj)) %o for j =1,2. In the componentwise notation,

the mappings wEJ) have the form (z,y) — (ugj)(:z:),v?)(a:,y)).

It follows from Theorem 1 that the interpolation scheme o(Y, d) defined
for any set of proper data Y is affine invariant with respect to z-axis mapping
by any affine map z — pz + g, p,g € R. In fact, this is a special case of
Theorem 1, for » = 0, s = 1 and A = 0. Accordingly, we can consider
only the y-data on the normalized mesh |2y — z,| = 1. Also, we can restrict
ourselves to the nondecreasing meshes (by the symmetry property, Corollary
1, the consideration can be extended to nonincreasing meshes). In this
case, ugl)(z) = ugz)(x) = (z; — z;-1)(z — zn) + z;. Suppose Y =Y; + Y5,
and let o(Y,d) be the associated IFS, containing affine mappings w; having
decomposition (u;,v;). Then, u; = uz(-l) = ugz). Also, it is easy to see that
v = vfl) + vz-m. So, by the same arguments as in the proof of Theorem 1,
we can claim that the sum of attractors produced by o(Y1,d) and o(Y2,d)
is the attractor generated by o(Y,d). O

Corollary 3. (Linearity). For any pair of proper data sets Y1 and Yz and
any real constants A and p

F(AY1 + pYz) = AF(11) + puF(Y2) .-
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The important consequence of linearity property is that the interpolation
scheme o(Y,d) for any set of proper data can be written in the Lagrange
form.

Corollary 4. (Lagrange form). Let Y = {(z:,y:)}} be a proper set of
interpolating data. Let F; be the attractor of the IFS o(Y;,d), associated
with the sequence of data sets Y; = {(xi,0i5)}ig, 7 = 0,...,n where §;; is
Kronecker’s delta. Then,

n
Fy =) y;F;.
~ |

The set Fy defines a fractal function £ — F(z). In the same manner,
F; defines, say, ¢;(z). So, we can also write

F(l‘) = iyfp_](m) y TE [on,fDn] .
3=0

In this sense, the set of functions {¢;} is a basis in the space of fractal
functions interpolating the nodes (z;,y;), ¢ = 0,...,n and with a prescribed
vertical scaling vector.

4. Examples

The following examples illustrate the theory.

Example 1. Consider the data Y = {(0,0), (3,4), (5,5), (7,1), (10,0)} and
choose d = [0.3 —0.2 0.3 0.2]7 as the vertical scaling vector. The graph of
the corresponding fractal interpolating function Fy is shown in Figure 1-a.
Also consider a linear transformation w defined by

w(x) = 0.9192 0.2257 x
T 1 0.7713 1.2803 y |-
Since this is a linear contraction, the first interpolation node (0,0) is its
fixed point. The graphs w(Fy) and F,y) are also shown (note that they
are translated a little bit up for the sake of clarity). It is evident that these

graphs differ from each other, which is to be expected because w does not
fulfil the conditions of Theorem 1.
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Example 2. For the data Y = {(0,0), (3,4), (7,1), (10,0)} and d = [0.5 —
0.28 0.3]7 and for the same transformation as above, the graphs of w(Fy)
and F,,(y) are displayed together in Figure 1-b. The difference between them
is also evident.

Figure 1.

Example 3. For the same data and the same vector d as in Ex. 1, but for

1 -02257 ][ =
“’(x)“[O' 1.2803 ] [y] ’

the graphs of w(Fy) and F,(v) again differ, as shown in Figure 2-a.

Example 4 (Invariant case). Consider the same data and the same vector
d as in Ex. 1, and the linear mapping

i) = | 0866 0 z
| 05 12803 ||y |

which satisfies conditions of Theorem 1. As expected, w maps Fy to the
graph of the fractal function interpolating the transformed data w(Y). This
is shown in Figure 2-b.
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(k)= By

a) b)

Figure 2.
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