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Abstract

A survey of results concerning the convergence of finite difference
schemes for boundary value problems with generalized solutions from
Sobolev space is presented.

AMS subject clasifications (1991): 65N15

Key words and phrases: Boundary Value Problem, Finite Difference
Scheme, Sobolev Space, Convergence Rate Estimate, Interpolation of
Function Spaces, Multipliers

1. Introduction

Finite difference schemes (FDSs) are often used for approximation of bound-
ary value problems (BVPs) with generalized solutions. In such cases it is
preferable to have the convergence result for the minimal smoothness of
input data. This leads to several problems as: the right-hand side of the
equation and the solution may be discontinuous functions; small smoothness
of the solution requires the convergence rate estimate in the weak norm; co-
efficients of equation do not belong to standard Sobolev spaces, etc.
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In this paper we give a survey of techniques for overcoming these prob-
lems. Special attention is paid to deriving convergence rate estimates con-
sistent with the smoothness of input data.

2. Model Problem

As a model problem we consider the Dirichlet BVD for the Poisson equation
in the square 2 = (0, 1)%

(1) —-Au=f(z), z=(x1,22) € Q; u(z) =0, zel =00.

We assume that the solution of BVP (1) is sufficiently smooth, that is, the
function f(z) satisfies all the necessery conditions for that.

Let @, be the uniform mesh in £ with the step size h, wy = @y N
2 and v, = wh NI. We define finite differences in the usual way [18]:
vz, = (v —v)/h, vz, = (v—v7%)/h, where v (z) = v(z £ hr;), and 7

denotes the unit vector of the z; axis. With ||v||%2(%).= WY e, v2(T) we
denote a discrete Ls-norm in wy. We also introduce discrete Sobolev norms

||v||W2k(wh) (k=1,2,..).
We approxsimate (1) with the standard five-point FDS:
(2) —Apv=f, z€uwp; v=0, ZTEY.
The error z = u — v satisfies the conditions:
(3) —Apz=17%, T€wh; z2=0, €y,
where Y= Au—Aju= (g—i‘? —ux,f,) + (% _u_z-252) =1 +1a.

From relation [19] [[Ap 2||,(,) = Co ||z||W22(Wh) immediatelly follows a
priori estimate

(4) ”z||W22(wh) <C ”'Qb”Lz(wh) .

In the following C' denotes a positive generic constant which may take
different values in different formulas. In such a way, to prove the con-
vergence of FDS (2) we must estimate 4. From Taylor’s formula follows:

2 ptu(z - . . .
Yi(z) = '1‘—2 6—6%9, where Z is some midpoint. From here one, immediately

obtains:
l2llwzny < C R ||lullagqy -
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More precise estimate may be obtained using integral representation of
the residual. We have

z1+h zo+h !
e [T (- il (),
z1—-h Jzx2 h .
zl 64 :E,l”, xz ”/d " Z3 64 xl’ x2 " " / /
+/ / aTon ool ) dafda

and an analogous formula for 1. It follows
|¥(z)] < Ch ||u||W24(e) where e=(zy—h,z1+h)x(xa—h,zo+h).

Summing over the mesh wy, oneobtains ||4]|z,(w,) < C h? ||u||w4(n) , where-
from follows

(5) I2lwz(wn) < C B lullwacay -

The estimate (5) can be obtained also by applying of the Bramble-Hilbert
lemma (see [1], [4]). Moreover, as the value of 1 at the node = € w is
a bounded linear functional of u € Wj(e), for s > 3, which vanishes on
polynomials of third degree, applying the Dupont-Scott lemma [4] we obtain

a more general result:

(6) ||z||w22(w,,) < C hs~2 IUIW;(Q) , I3<s<14.

Convergence rate estimates of the form
l2llwp @y < CHFllullws), 82k,
are called consistent with the smoothness of the solution of BVP (1) (see
[14]). Such estimates are obtained in [21], [13], [5], etc. An extensive bibli-
ography can be found in {10]. Note that similar estimates

lzllwg @) < CR**lullwy@), s 2k,

are characteristic for the finite element method (see [2]).
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3. Boundary Value Problems with Weak Solutions

For s < 3 the right-hand side of (1) and (2) may be a discontinuous function,
and consequently, FDS (2) is not well defined. To obtain a well-defined FDS
we average f(z) using the Steklov averaging operators:

Tif(x) =T f(x+05hr;) = Tff(:c —05hr;) = /11//22f($+ hyr;)dy.

These operators commute and satisfy the following relations

- -9f af 0*f
.+ . = 2 - = 2. + = . 2 = e
Th =T iy =tu, Tigy =Jas Tigg =Jo

For s < 2, the convergence of FDS (2) does not follow from (6). Con-
sequently, the weaker norms must be used to prove the convergence. The
following assertion is valid [19], [5].

Lemma 1. Ifin (8) ¢ =mn1,z + 12,5, then
(7) l2lws ) < C (ImllLswn) + Im2llLagwn)) -
If v=C 0020 +C2,002, and (=0 for z; =0 then

(8) 120 Loqun) < C Nl Laqwn) + 1S2llLa(n)) -

Let us consider FDS with averaged right-hand side [5]:
(9) —Bpv =TT5f, T€w; v=0, TEY.

The error z = u—uv satisfies the conditions (3), where: ¥ =1 +¢2, ¥ =
Gz, G = T? ,u—u, i=1,2. By lemma 1 one obtains a priori esti-
mates (4), (8) and

”z”W,}(wh) < C (”Cl,l‘l “Lz(wh) + IIC?,ZZ”Lz(wh)) -

Using the Dupont-Scott lemma, analogously as in the previous case, one
obtains the following convergence rate estimates: (6) for 2 < s <4,

Izllwp ey € Ch° 7 lullwgy, 1<s5<3, and
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(10) 2l Ly (wn) < CH° lullwg@y, 1<s<2.

In the case 0 < s < 1 the solution of (1) may be a non-continuous
function. Let us consider FDS

—Ahu=T13T23f, T € wp; v=0, €

and define the error in the following manner: z = T3T5u — v. Similarly as
in the previous cases one obtains estimate (10) for 0 < s <2 [5].

For the problems with solutions from W;(Q2), (1 < p < 00, p # 2)
analogous results hold (see [20], [3]). Analogs of a priori estimates (7) and
(8) in discrete Wp1 and L, norms may be obtained using theory of discrete
Fourier multipliers [17]. Convergence rate estimates have the form

Izllwk wn) < Ch*lullwyy, s>k,

and may be obtained using the Dupont—Scott lemma.

4. Alternative Technique

As we have been seen, for integer values of s convergence rate estimates
can be constructed in an "elementary” way, without the Bramble-Hilbert
lemma. Using such estimates and the interpolation theory of Hilbert spaces
[15] one easily obtains the corresponding estimates for non—integer s.

Let X and Y be two Hilbert spaces and let X be continuously imbeded in
Y. Let 0 <8 <1 and let [X, Y]y denotes the intermediate space obtained
by interpolation [15]. Then X C [X,Y]s C Y and for every u € X the
inequality [[ull(x,v), < Co llull® llull$ holds.

In particular, Sobolev spaces are interpolation spaces and

(W51 (Q), Wi2(Q))y = Wi ™D 14052(q),

Lemma 2. [15] Let A be a bounded linear operator from X; into Y; (i =
0, 1). Then A is also a bounded linear operator from [Xg, X1]g into [Yo, Yi]s
and the following relation holds

/]
ANl xo, X110 [v6, vilo < Co 1A, x, NAIG, Sy, -
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Let us consider again FDS (9). Similarly as in Section 2, one easily shows
that

I2llwzwn < CP lullwsey  and  llzllwzs) < Cllullwze)

wherefrom, using Lemma 2, one immediately obtains estimate (6) for 2 <
s < 4. In an analogous manner one obtains convergence rate estimates in
other discrete norms (see [11], [12]).

5. Equations with Variable Coeflicients

Let us now consider elliptic equation with variable coefficients:

(11) EuE—Zz:—Q—(a,-jgli)::f(:c), z e
ij=1 B:z:i Ba:j

with homogeneous Dirichlet boundary condition. We assume that u €
W35(Q) and f € Wi 2(Q).

Let V and W be two function spaces in the same domain. The space
of multipliers M (V, W) is defined by [16}: M(V, W) = {a(z) : a(z)v(z) €
W, Vu(z) € V}, M(V) = M(V, V). It is easy to see that coeficients a;;
of equation (11) belong to the space of multipliers M (W, ~!(Q)).

The following relations are valid [10]:
witlQ) = Mws @),  Is-1]>1,

Wil Q) c MWETHQ), £>0,  0<|s—1|<1,

Loo(®) = M(L2(Q)) = M(W5™H(Q)),  s=1.

Let us consider FDS

1
(12) Lpv= -3 Z [ aij vx + (a;; Ufi‘j)mi] = T12T22f, T Ewy

i, 7=1
with the previous boundary condition. The error z = u — v satisfies condi-

tions

Lhz= Y Mz, TEwr; 2=0, TEM
‘1]:1
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where n;; 2, = Ti+T§_i(a,~j %‘J—) —% " Ug; +a$-i u%’j) . The following a priori
estimates hold

2
(13) Izl w2 < C D lImizllia@,) — and
1,5=1
2
(14) Izl wa) < C D Imijll )

1,j=1

Using bilinear version of the Bramble-Hilbert lemma or interpolatory
properties of bounded bilinear operators from (13) and (14) one obtains
convergence rate estimates in the form (see [10], [12])

2l w2,y < C A2 max laijllwe-1 oy lullws@,  2<s<4,
”Z”w;(wh) < C hs1 r.[ilajx “aij”w;—l(g) ”U”W;(Q) ) 2<s5<3, and
I2llwg () < CR? max llaijllw;/—(;j;)(g) Nullwsy, 1<s<2.

In a multidimensional case (n > 2) there arise additional problems
caused by the discontinuity of right-hand side of equation (f € Wi %(Q) ¢
C(Q) for s < 2+ n/2) or its solution (u € W§(Q) ¢ C(Q) for s < n/2).
These problems may be resolved by convenient averaging. Note also that
MW Q) # Wi™HR) for s <14n/2.

6. Parabolic Problems

In parabolic case analogous results hold as in the elliptic case. Let us con-
sider the following initial-boundary value problem (IBVP)

(15) %%+£u=f(a:, t) in Q=0x%x(0,T),

u(z, 0) = up(z), u(z,t)=0 on TI'x (0,7).

Let us introduce the mesh Qp, = wp X wy, where w, is a uniform
mesh with the step size 7 in (0, 7). We also define the discrete Ly-norm
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||v||%2(QhT) = hsz(x,t)EQhr v(z, t)2, and the discrete Sobolev norms

lellyg-sr2(q,.):
We consider implicit FDS

ve+ Lo =TPTT] f,
with the corresponding boundary and initial conditions, where T} is the
Steklov averaging operator on t. The error z = u — v satisfies the equation

2

Z+Loz=pr+ Y i
t,j=1
and homogeneous boundary and initial conditions. Here
Ou 1 .
el W SO +i,+
agj amj) (aij ua; + 0 uz)) .

o =u—TiT2u, Tij, 2 = Ti+T32—z'Tt~( 2

The following a priori estimates are valid

2
etz guey < € (Iellza@u + 3 Wisslia@un) — and
t,5=1

T2
||2”W21,1/2(Qhr) < C([‘PJI/Z + > H%‘”Lz(qh,)> ;
i,5=1

2 _ p2 2 oz, )—p(z,t)]? .
where [pl{), = h*Yieu, T° Livem, tar — Joop] . From here, in a
similar manner as in the elliptic case, for 7 =< h2, one obtains convergence
rate estimates [6], [7]

-2 .
”Z”Wf’l(Qh,) <Ch (nllgx "azynwg*l(n) +1) “U”W;-S/Z(Q) )

for 2<s<4, and

s—1 N
I2lly1172q,,) < CHT (max a1 o)+

+4/In(1/h)) ||u||Wzs,a/z(Q), for 2<s<3

For 1 < s < 2 the solution of IBVP (15) may be discontinuous. In that
case the error may be defined as: z = T1Thu — v.
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7. Hyperbolic Problems

Convergence rate estimates for hyperbolic IBVPs, contrary to the case of
elliptic and parabolic problems, usually are nonconsistent with the smooth-
ness of data. Let us consider the following IBVP

(16) %—kﬁu:f(z, t) in Q = x (0, T),
u(z, 0) = uo(zx), 8—11(5%’—9—2 =ui{z); u(z,t)=0o0n I'x(0,7).

We introduce the mesh in the same manner as in the previous case and
define the norm

2 + 1/2
. 2 z"t+z 2
Ivllc, wiws)) = pax (”zt||L2(uh) + ; I( 3 )zi L2(wh))
Consider FDS
1
17 v + Z/.’,h (vt +2v+v7) =TTy f,

with the corresponding initial and boundary conditions, where v* = v(z, t+
7). For 7 < h the following convergence rate estimate is valid [8]

(18) ||z“C,-(W21(wh)) < Ch5-2(n;.’laf( ”a’ij“W;‘l(Q) + 1) ”u“W;(Q)

for 2<s<4.

In some cases by interpolation technique one can obtain estimates which
garantee a faster convergence on weaker solutions (see [22]). Let us consider
the following model problem

8%u  B%u )
=5 in  Q=(0,1)x(0,T);
Ou(z, 0)

u(z, 0) = up(z), =0; wu(z,t)=00n {0, 1} x (0, T)

ot

and approximate it by FDS of the form (17). Using integral representation
of the residual, one easily obtains the estimates

Izllc, (Wi (way < C (R + 7)? lluollwis(o, 1) and
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H2lle, (W} < Clluollwgo,1)
From these estimates one obtains by interpolation [9]:
2, .
(19) e, wpquny S C(h+1)3 (s Nuollwzo,y, 1<s<4

Contrary to (18), estimate (19) guarantees convergence even for 1 < s < 2.

In the following diagram the relation between smoothness s and order
of convergence (O.C.) is presented for the case of estimates (18) and (19).

ocC
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