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Abstract

A manufacturing system consists of operating units converting ma-
terials of different properties into further materials. In a design prob-
lem, we are to find a suitable network of operating units which produces
the desired products from the given raw materials. If we consider this
network design from structural point of view, then we obtain a com-
binatorial optimization problem called Process Network Synthesis or
(PNS) problem. It is known that the PNS problem is NP-complete.
In this work, we present such a subclass of PNS problems which is
well-solvable.
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1. Introduction

In a manufacturing system, materials of different properties are consumed
through various mechanical, physical and chemical transformations to result
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in desired products. Devices in which these transformations are carried out
are called operating units, e.g., a lathe or a chemical reactor. Hence, a man-
ufacturing system can be considered as a network of operating units which
is called process network. A process design problem in general, and flow-
sheeting in particular, mean to construct a manufacturing system. A design
problem is defined from a structural point of view by the raw materials, the
desired products, and the available operating units, which determine the
structure of the problem as a process graph containing the corresponding
interconnections among the operating units. Thus, the appropriate process
networks can be described by some subgraphs of the process graph belonging
to the design problem under consideration. Naturally, the cost minimization
of a process network is indeed essential.

The importance of process network synthesis (PNS) arises from the fact
that such networks are ubiquitous in the chemical and allied industries. The
foundations of PNS and the background of the combinatorial model studied
here can be found in (3], [4], [6], [7], and [8]. Therefore, here we shall confine
ourselves only to the recall of the necessary definitions.

It has recently been proven (see [1], [5], [9]) that the PNS problem is
NP-complete. When a problem is NP-hard or NP-complete, then the stud-
ies of some special classes can result in effective procedures for solving the
instances of these special classes. A well-known example is the integer linear
programming problem which is NP-complete, while such particular cases as
the assignment problem or transportation problem can be solved in polyno-
mial time. Another example, the TSP which is NP-complete, but there are
some well-solvable subclasses of TSP, a nice overview on them can be found
in [2] and [11]. The first well-solvable special classes of PNS problems were
studied in [10]. In this work, we present a new subclass of PNS problems
which can be solved in polynomial time.

2. Preliminaries

In a combinatorial approach, the structure of a process can be described by
the process graph (see [6] and [7]) defined as follows.

Let M be a finite nonempty set, the set of the materials. Furthermore,
let @ £ O C ' (M) x p' (M) with MNO = ) where p'(M) denotes the set of
all nonempty subsets of M. The elements of O are called operating units and
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for an operating unit (o, 3) € O, a and 3 are called the input-set and output-
set of the operating unit, respectively. The elements of @ and 3 are called
the input and output materials of (o, 3), respectively. Furthermore, for every
subset S of materials, let us denote by A(S) the set of the operating units
having output materials in S. We shall also use the following notations: for
any finite set of operating unit o, let

mat™(0) = U{a: (o,8) €0} and mat®™(0) = U{B: (a, B) € 0}.

The pair (M,O) is defined to be a process graph or shortly P-graph.
The set of vertices of this directed graph is M U O, and the set of arcs
is A = Aj U Ay where 4; = {(X,Y) : Y = (,8) € Oand X € a}
and A3 = {(Y,X) : Y = (o,8) € O and X € B}. If there exist vertices
X1, X2, ..., Xp, such that (X1, X2), (X2, X3),...,(Xn-1,X,) are arcs of the
process graph (M, O), then the path determined by these arcs is denoted by
[XlaX’n]-

Let the process graphs (m,0) and (M, O) be given. (m, o) is defined to
be a subgraph of (M,0), if m C M and o C O.

Now, we can define the structural model of PNS for studying the problem
from structural point of view. For this reason, let M™* be an arbitrarily fixed
possibly infinite set, the set of the available materials. By structural model
of PNS, we mean a triplet M = (P, R,0) where P, R, O are finite sets,
0 # P C M* is the set of the desired products, R C M* is the set of the
raw materials, and O # O C p'(M*) x ©'(M*) is the set of the available
operating units. It is assumed that PN R = § and M* N O = 0; moreover,
« and ( are finite sets for every (o, ) =u € O.

Then, the process graph (M, 0), where M = U{a U S : (o, () € O},
represents the interconnections between the operating units of O. Further-
more, every feasible process network, which produces the given set P of
products from the given set R of raw materials using operating units from
O, corresponds to a subgraph of (M, O). Examining the corresponding sub-
graphs of (M, O), therefore, we can determine the feasible process networks.
If we do not consider further constraints such as material balance, then the
subgraphs of (M, O) which can be assigned to the feasible process networks
have common combinatorial properties. They are studied in {?], and their
description is given by the following definition.

The subgraph (m, o) of (M, O) is called a solution-structure of (P, R, Q)
if the following properties are satisfied: :
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(A1) P Cm,
(A2) VX € m, X € R & no (Y, X) arc in the process graph (m, o),
(A3) VY, € o, 3 path [Y,Y,] with Y, € P,
(A4) VX € m, 3(a, B) € o such that X € a|JB.
Let us denote the set of solution-structures of (P, R, O) by S(P, R, O).
PNS problem with weigths

Let us consider the PNS problems in which each operating unit has a
weight. We are to find a feasible process network with a minimal weight
where by weight of a process network we mean the sum of the weights of
the operating units belonging to the process network under consideration.
Each feasible process network in such a class of PNS problems is determined
uniquely from the corresponding solution-structure and vice versa. Thus,
the problem can be formalized as follows:

Let a structural model of the PNS problem (P, R, O) be given. Moreover,
let w be a positive real-valued function defined on O, the weight function.
The basic model is then the following minimization problemi:

(1) min{>_w(u) : (m,0) € S(P,R,0)}.

u€o

For the sake of simpicity, in what follows, we call the elements of S(P, R, O)
feasible solutions, and by a PNS problem we always mean a PNS problem
with weights.

3. Hierarchycal PNS problems

A PNS problem is called hierarchycal if there exists the partition My =
R,..., M; = P of M and the partition Oy,..., O, of O such that O; contains
only operating units having input materials from M;_; and output materials
from M;, for all 4, « = 1,...,l. The hierarchycal PNS problems, which are
thin in the sense that the size of O;, 1 = 1,...,[, and the size of M;, ¢ =
1,...,1, are bounded by a fixed constant, are well-solvable. To formulate this
statement more precisely, we use the following definition. A PNS problem is
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called k-wide hierarchycal if it is a hierarchycal problem; moreover, |M;| < k
and |0;| < k are valid, foralls =0,...,I, j=1,...,1.

Theorem 1. If a PNS problem is k-wide hierarchycal, then the following
procedure either provides an optimal solution of the problem or it gives that
the problem has no feasible solution. The time complezity of this algorithm
s C -l where C is a constant depending on k.

Procedure

Subprocedure 1. (Computing functions F; and G;.)

e Initialization. Let N be a number which is greater than [O| - ¢ where
g denotes the maximum of the weights of the operating units.

e Part 0. Let Go(S) =0 and Fy(S) =0, for all S C M.
e Parti (i=1,...,l).

— Step 1. If there exists a set S C M; for which the functions F; and
G; have not yet determined, then choose one of them and perform
the following steps for it. Otherwise, proceed to the i 4 1-th part
if i < I, and terminate if i = [.

— Step 2. Consider the subset A(S) of O; and for every set Q@ C
A(S) examine the validity of S C mat®®*(Q). If this relation
is false for every @, then proceed to Step 4. Otherwise, let the
sets satisfying the relation above be denoted by @1,...,Q: and
proceed to Step 3.

— Step 3. For every Q;, j = 1,...,1t, calculate the following value:

cj = Gi-1(mat™(Q;)) + Z w(u)

u€Q;

Let us denote a set with a minimal value by Q;. If there are more
sets with the same minimal value, then choose the set having the
smallest index. Furthermore, let F;(S) = Q;, Gi(S) = ¢;, and
proceed to Step 1.

— Step 4. Let Fi(S) =0, Gi(S) = N, and proceed to Step 1.
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Subprocedure 2. (For finding an optimal solution)

o Initialization. If Gi(P) > N, then terminate; the problem has no
feasible solution. Otherwise, let Ay = P, Og =, and r = 1.

o [teration (r-th ).

- Step 1. Let ér = Or_1UF[+1_r(Ar_1), Ar = matin(ﬂ+1_r(Ar_1)).
If r = [, then proceed to Step 2, otherwise let r := r + 1 and pro-
ceed to the next iteration.

— Step 2. Terminate; the optimal solution is the P-graph (m, o),
where 0 = O}, and m = mat*™(0) U mat®*(o).

Proof. First, we prove that if the algorithm gives a solution, then the pro-
duced sets m, o yield a P-graph which is a feasible solution. By the definition
of m, it is obvious that for the sets m, o, the P-graph (m, o) exists and satis-
fies property (A4). Let us observe that if i < [, then for each element of A4;,
there exists an operating unit in o producing it. This observation follows
from the definition of the functions Fj, j = 1,...,I. Thus, by 4y = P,
we have that (m,o) satisfies property (Al). Since in a hierarchycal PNS
problem there is no operating unit producing raw material, we get that in
(m, o) there is no edge leading into a raw material. To prove the second
part of property (A2), let X € m be a material with X ¢ R. Since X € m,
thus X is an output or input material of some operating unit from o. In
the first case, we get by the definition of the P-graph, that there exists an
edge leading into X. In the second case, let © € o be an operating unit
having X as an input material. Since u € o, there exists an index r for
which v € F;1_(Ar—1). This gives that X € A,. On the other hand, by
induction on the number of iterations it is easy to see that A; C M;_; for
all ¢, 7 = 0,...,l. This observation results in r 7 I. Thus, X € A; for some
¢ < | which yields that there exists an edge in (m, o) leading into it. Con-
sequently, property (A2) is also valid for (m,0). To prove property (A3), it
is enough to show that for each operating unit from O;, i = 1,...,1l, there
exists a path in (m, o) leading from it into a desired product. We prove this
statement by induction on i. For the case ¢ = 1, we have Ay = P, thus,
by the definition of the function Fj, the validity of the statement follows.
Now, let 1 < 7 < I, and let us suppose that the statement is valid for :.
We show that it is also valid for i + 1. Since O;41 = O; U Fii—y1)(4d),
thus, by the induction hypothesis, it is enough to prove the statement for
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the operating units contained in Fjy_(i+1)(4;). Let u € Fyyq_(iy1)(A;) be
arbitrary. By the definition of the function Fi11-(i+1), We can obtain that
u has an output material from the set A;. (Otherwise, during Step 2 of the
construction of the functions, Fi,i_¢;+1)(A:) € A(4;) is not valid, which is
a contradiction.) Let such a material be denoted by Z. By the definition
of A;, it follows that Z is an input material of some operating unit v € O;.
Then, by the induction hypothesis, there exists a path [v,Y] in (m, 0) where
Y is a desired product. Completing the beginning of this path with v and
Z, we get a path in (m, 0) leading from w into the desired product Y. Thus,
we have proved our statement for ¢ + 1 which yields that property (A3) is
valid for the P-graph (m, 0). Consequently, the P-graph determined by the
algorithm is a feasible solution.

Now, we prove the correctness of the procedure. To do this, we show
first the following statement concerning Gj.

Lemma 1. For every feasible solution, the weight of the feasible solution is
at least G{(P).

Proof. Let (m,o0) be an arbitrary feasible solution of the problem. Let o; =
O;No, fori =1,...,I. Since (m, o) is a feasible solution and the materials
of P can be only produced by operating units from O;, by properties (A1)
and (A2), we have that P C mat®(o;) . The definition of the function G,
and this observation yield the following inequality:

Gi(P) < Gi_i(mat™(ar)) + Y w(u).

uko;

On the other hand, (m, o) is a feasible solution, thus mat®(o;) C m. The
input materials of the operating units from o; are in the set M;_;, thus, if{ #
1, then they are not contained in R. This yields that for each of them, there
exists an operating unit in o having it as an output material. Furthermore,
the problem is hierarchical, and hence, the materials from the set M;_, are
produced only by operating units from O;_;. These observations yield that
mat**(0;) C mat®*(o;—,). This relation and the definition of function G;_,
imply the following inequality:

Gi1(mat™(0)) < Gig(mat™oi) + 3 w(u).

u€o;-1
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In the same way as above, we obtain that the followmg inequality is
valid, forall 7 ,i=1,...,] - 1:

Gi(mat™(0i41)) < Gi—1(mat™(0:)) + Y w(u).

UE€o;

Summarizing the obtained inequalities, by G(S) = 0, we get the following
inequality:

!
GZ(P) < Z Z w(u),

i=1 uco;

which gives the required result.
By Lemma 1, we can prove the correctness of the procedure.

First, we prove that there is no feasible solution of the problem if G;(P) >
N. Contrary, let us suppose that there is a feasible solution of the problem.
Let us denote the weight of this solution by K. By the definition of N, we
have that ¥ > K. On the other hand, Lemma 1 states that G;(P) < K
which results in the contradiction N > N.

Now, we show that the feasible solution produced by the algorithm is
optimal if G;(P) < N. First, let us observe that the weight of the produced
solution is G;(P). This observation follows immediately from the construc-
tion of the algorithm. Thus, by Lemma 1, we obtain that the weight of any
feasible solution is at least so large as the weight of the produced solution
which means that we get an optimal solution.

Finally, let us examine the time complexity of the procedure. In Subpro-
cedure 1, we perform ! parts. During a part, we examine every subsets of
A(S), for each subset S of M;. Since the problem is k-wide hierarchical, M;
has at most 2¥ subsets, and since for each such subset S, A(S) C O;, thus,
A(S) can have only 2F subsets. Consequently, we obtain that the number
of operations performed in each iteration is independent on the size of the
problem (it depends only on k). In Subprocedure 2, which is based on the
functions F; and (;, we perform [ iterations and the number of operations
in each iteration is a constant. This implies that the number of operations
performed by the procedure is bounded by C - L.
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Thus, for every fixed k, the above algorithm solves any k-wide hierarchi-
cal problem in linear time. However, we have to note that the constant C
in the complexity of the algorithm is exponential in k. This shows that our
procedure can be really effective only for small &.

On examining the presented algorithm one can arrive at an interesting
observation on the solvability of hierarchical PNS problems.

Corollary 1. For a hierachical PNS problem, if every material, distinct
Jrom the raw materilas, is produced by some operating units, then the problem
has a feasible solution.

Proof. Let us perform the algorithm for the problem. By the above as-
sumption, we obtain that § C mat°**(A(S)) for each subset S of materials,
which gives that Step 4 is not performed in Subprocedure 1. This yields
Gi(P) < N, and then the problem has a feasible solution.
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