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Abstract

We shall consider the boundary layer problems described by second
order differential equation with small perturbation parameter multiply-
ing the highest derivative and the appropriate boundary conditions of
nonlocal type. This kind of problems represent mathematical models
of a large number of phenomena in catalytic processes in chemistry
and biology, as well as in the theory of semiconductors in electronics.

The solution inside the boundary layer will be constructed using
truncated orthogonal series, and the solution out of the layer will be
approximated by the solution of the reduced problem. The layer will
be determined in terms of the perturbation parameter and the degree
of the chosen truncated orthogonal series.
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1. Introduction

We shall consider the singularly perturbed problem described by the differ-
ential equation

(1) Ly = —e%"(z) + g(z)y(z) = h(z) 0<z<1,
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where
(2) g(z) > K?*>0, K€R,

and nonlocal boundary conditions
y(0) =0

and one of the following cases:

Case 1. Samarski-Bicadze simple condition y(1) =cy(s) +d, 0<s<1,

Case 2. Samarski-Bicadze general condition (1) = § ciy(s))+d, s;€(0,1),
~

1

1
Case 3. Integral condition [ y(z)dz = d.
0

In his paper [3] Chegis has proved the following theorem

Theorem 1. If we denote by u(z) the solution of the corresponding local
boundary value problem ' ‘

(3) Lu = —¢%u"(z) + g(z)u(z) =0, u(0)=0, u(l)=1

then the problem (1) with nonlocal boundary conditions has the unique solu-
tion tf and only if

Case 1. cu(s) #1
Case 2. f ciu(s;) #1
i=1
1

Case 3. [u(z)dz # 0.
0

This result gives a sufficient condition for the existence of a unique so-
lution of the considered problem. If we denote by

shiz
4 = £
@ wl@) = Sk

and if we assume (2), then in
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Case 1. —oo<c<;ﬁ;5,

m
Case 2. —oo < Y ciup(s;) < 1,
i=1

Case 3. the unique solution always exists.

The problem (1)-(2) with nonlocal conditions of Samarski-Bicadze type
has already been treated by a number of authors (see i.e. [1], [2], and [3]).
In this paper we shall state some results obtained earlier by the author, and
give some new results concernig Case 3.

In the first part we shall perform the transformation of the given problem,
adapting it to the idea of approximating only the layer solutions by the
truncated orthogonal series.

In the second part we shall perform the domain decomposition by deter-
mining the appropriate division points through the special procedure, based
on the introduction of the resemblance function.

In the third part we shall construct the spectral approximation for the
layer solutions, using an arbitrary orthogonal polynomial basis. We shall
give the system that determines the coefficients of the truncated orthogonal
series for each case of nonlocal boundary conditions separately.

In the fourth part we shall ilustrate theoretical results by a numerical
example.

2. Transformation of the problem

The solution of the reduced problem (for € = 0) is

) (o) =+

It is well known that if y(0) # 0 the exact solution has boundary layers at
both endpoints £ = 0 and z = 1. The size of the layers is O(g).

We shall represent the exact solution in the form

(6) y(2) = yr(z) +y(x),
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and we shall approximate yr(z) by

u(z) 0<z<zo
(7) ur(z) =9 00 zo<z<l-=z ,
ur(z) 1-zp<z<1

where u(z) is the left layer solution and it is determined by
(8) Luy = —euf (z) + g(a)u(z) = e’yp(z), 0<z <=z

9 w(0) = —yr(0), w(zo) =0
and u,(z) is the right layer solution and it is determined by the differential
equation

(10)  Lu, = —%u(z) + g(z)ur(z) = eXyfy(z), 1-xz0<z<1,

left boundary condition
(11) 'U,,-(]. - fL‘()) =0,

and nonlocal boundary condition of one of the following types:
Case 1.
a) If s € (0, z0)
(12) ur(1) = cyr(s) + cui(s) + d —yr(1) .
b) If 5 € [zo,1 — zo)
(13) ur(1) = cyr(s) + d— yr(1) .
c) If s € (1~ zo,1)
(14) ur(1) - cur(s) = cyr(s) +d — yr(1) .

Case 2.

(15) ur(1) — Z citie ( 3:) = Zczul i) + zyﬁ(sz) +d —yr(1)

i=l+1
where s; € (0,z) for i < 7, 8; € (z9,1 — =) for j < ¢ <land s; € (1 —zg,1)
for i > L.
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Case 3.

(16) /11 ur(z)dr =d - /01 yr(z)dz — /0IO w(r)dr .

—z0

3. The division point

As the size of the boundary layer is O(e), the idea is to perform the domain
decomposition, using the division point zy = ce, in such a way that ¢ depends
on the degree n of the spectral approximation for the layer functions.

The spectral solution v, (z), which approximates u;(z), is represented in
the form of the truncated orthogonal series

(17) (@) = 3 Ty @)
k=0

Ty (z) denote arbitrary orthogonal polynomials upon [0, zo].

We shall determine the value ¢ in zp = ce by a special procedure, based
on introduction of the resemblance function for the layer solution w;(z).

Definition 1. The resemblance function is the polynomial pa(z) of degree
n > 2, such that

a) pn(0) = —yr(0) and pp(ce) = 0, i.e. pp(x) satisfies the boundary
conditions in (9), and

b) zo is the only stationary point for p,(z).

Lemma 1. The resemblance function is given by

__ MOz
(18) pa(z) = mm(l w), > 2.

Proof. We verify the conditions in Definition 1.

a)

h(0) 0\" _
pol =~ (1-2) " = ~a(0)
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and

b) From

Pl (z) = MO (1 . i)n_l =0

ceg(0) ce

we conclude that zg is the only stationary point for p,(z).

In order to determine the division point zo we shall ask that the resem-
blance function satisfies the differential equation at the layer point z = 0.

This will give us
n(n — 1)h(0)

c?g(0)

If we solve this equation for ¢, ¢ > 0, assuming that ¢ is very small, we
shall obtain

(19) c=

— h(0) = e2yx(0).

nin—1)
9(0)

Once the division point % is determined we find the spectral approx-
imation vn(z) for the problem (8),(9) using the standard procedure (see

[1])-

4. Approximation to the right layer solution

We shall approximate the solution u,(x) of the problem (10)-(16) by the
solution of the problem described by the differential equation

(20)  Lw(z) = —e*w(z) + g(2)w(z) = e%Yx(z), @ €[l - 20,1,

left boundary condition
(21) w(l —x0) = 0,

and nonlocal boundary condition of one of the following types:

Case 1.

a) If se (O,ZL‘())
(22) w(l) = cyr(s) +evon(s)+ D, D=d-yg(1).
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b) If s € [:170,1 —:E()]
(23) w(l) = cyr(s) + D, D =d—yr(1).

c) Ifse (1—z,1)

(24) w(1) - cw(s) = cyr(s) + D, D =d—yr(1).
Case 2.
m ] m
(25) w(l) — Z ciw(s;)) =D, D= Zcivn(si) +ZyR(si) +d-ygr(1),
i=l+1 i=1 i=1

where s; € (0,z9) for + < j, s; € (:1:6,1 —xq) for j < i <[ and
s; € (1 —zo,1) fori > L.

Case 3.

(26) /11 w(z)dt=D, D=d- /01 yr(z)dz — /Ozo vn(z)dz .

—To

The spectral solution wy(z), which approximates w(z), is represented in
the form of truncated orthogonal series

(27) wn(z) = 3" b Th(2),
k=0 '

where Ty (z) denote orthogonal polinomials upon [1 — xg, 1].

The coefficients by are determined by the collocation method using the
Gauss-Lobatto nodes ¢;, j=1,..,n -1,

Theorem 2. The coefficients by are obtained as the solution of the system

) .
> (€T (t5) + g(t)T(t5)) b = e*yp(t;), =1,...,n— 1

k=0
n
> Ti(1 — zo)bx =0
k=0

and one of the following equations: In
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Case 1.

a) If s € (0, 0) éo bkTi(1) = cyr(s) + cvn(s) + D, D =d—yg(l).
b) If s € [z0,1 — 2] éobk:rk(n =cyr(s)+D, D=d-yg(l).

o) If s € (1-g0,1) % b(Tk(1) ~ <Tk(s)) = cn(s) + D, D =
d—yr(1) . -

Case 2.

n m j m
> (Te(l)= ¥ Ti(s))) =D, D=3 civn(si)+ Y yr(si)+d—yr(l),
k=0 i={+1 i=1 i=1

where s; € (0,z9) fori < j, s; € (xo,1—x¢) for j <i <!l ands; € (1-x,1)
fori>1.

Case 3.

n
Eo b fll_zo Ti(z)dz =D, D=d- [ yr(z)ds — [J°va(z)dz .

Proof. The theorem is proved by introducing (27) into (20)-(26) and asking
that the first equation is satisfied at Gauss—Lobatto nodes.

5. Numerical examples

As the numerical example we shall consider the problem
—Ezy(x) + y(.’L‘) =1, 0<z<1,

y(0) =0, y(1)=0.2y(0.1) + 0.5y(0.2) + 0.3y(0.999).

The reduced solution is yr(z) = 1, so that we have two boundary layers.
We shall use Chebyshev polynomials as the orthogonal basis. A

Table 1 gives the values of Chebyshev coefficients b, & = 0,...,n for
€2 = 1075 and €2 = 1077 when truncated orthogonal series of the tenth
degree is used.
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b1o

n=10
0.37753456
0.33495654
0.23632823
0.13563357
0.064792661
0.026339254
0.0092739598
0.0028738026
0.0007933457
0.0001968836
0.0000445245

Table 1.

We can see that the coefficients decay very quickly, which indicates good
convergence of the Chebyshev series to the exact solution.

Table 2 gives the difference between the exact and the approximate solu-
tion d(z) at several points from the layer subinterval [1—zg, 1] for 2 = 10~7.
The size of the layer subinterval is evaluated depending on the chosen degree
of the spectral approximation.

n =10, zo = 0.003 n = 15, zo = 0.0047

z
0.999
0.9993
0.9996
0.9998
0.9999
0.99999

y(z)

0.958
0.891
0.718
0.469
0.272
0.031

0.999999 0.003
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