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1. Preliminaries

It is known that Craig Interpolation Theorem fails in all logics Ly (u) for
£ > w;. In his Ph. D. thesis Jean-Pierre Keller proved Weak Interpolation
Theorem for first-order infinitary logics {(semantical |= is replaced by syntactical
) applying the forcing method. However, in our opinion the relation he used
is not {in cases of real interest) a forcing relation, while on the other hand
some of the main properties of forcing relations were employed. We offered an
amendment to this proof in [4].

Here we prove the Theorem in a ”classical” way, using the proof pattern
from finitary logic.

2. Basic axiomatic system for infinitary logics

Let Lcy{p) be an infinitary first-order logic with equality of the similarity
type p, where & is an arbitrary regular cardinal and A (an infinite) cardinal less
than or equal to x. Our metatheory will be ZFC + GCH. As the basic logical
symbols we will treat connectives — and A — conjunction of a set of formulae
of cardinality less than «, a quantifier V, which enables us to "quantify” any
set of variables of cardinality less than A, and the equality relation =. Other
logical symbols are defined in the usual way; for instance, \/, s ¢ is standing
for = A <5 "Pa- As for non-logical symbols we allow the possibility of having
symbols of all sorts (relations, functions, constants). The axiomatic system
we will use is the so-called basic system. For the reader’s convenience we will
present it using the notation from [2].
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Propositional axiom-schemes:

(a) ¢=> (¥ =9)

®) (6= =0)=>((¢=>v)=>(s=0)

() (—é = —¥) = (¥ = 9¢)

(d) Aacs(¥ = 6a) = (¥ = Aycs $a) for 0 <<k
(€) AacsPa = ¢p for 0<S< ki p<$;

Quantificational axiom-schemes

(f) VX (¢ =9¢) = (¢ = VX¢) for X C Var (where Var is the set of
variables - {vy | o < k}), |X| < A, provided that no variable from X occurs
free in ¢

(9) VX¢ = Suby(] ¢, where X C Var, |X| < A, F : X — Term, where
Term is the set of terms of the language L(y), and Sub}.e(u)‘; ¢ is the formula
obtained from ¢ by substituting each free occurrence of a variable » (€ X) in
¢ by the term F(v), on condition that ¢ contains no free occurrences of the
variable v (€ X) within the scope of a quantifier binding some variable of the
term F(v);

Equality axiom-schemes
(h) t =1 for any term ¢
() Agcslta = th) = (Subl=l?S0¢ o subl'e!*<N4) for 0 < § < x and
aLd\ta a (tala<d) {t! la<d)
(va | @ < 8) C Fuv(d#) (- the set of free variables of the formula ¢) provided
that no variable in (J,5(Fv(ta) U Fo(t,)) is bound in 4;

Proposition rules of inference
(7)) Modus ponens il—‘;baﬂ
(k) Conjunction $2<8) for 0 < § < k;

ags T
Quantificational rule of inference

(1) Generalization \T,% for any X C Var, |X| < A

We will denote the given axiomatic system by Aj; thus, F5 ¢ will mean that
there is a proof (of the length less than «) of the formula ¢ which uses (only)
axiom-schemes and rules of inference from A. This system certainly provides
that any formula is equivalent to some negation normal formula, i.e. to a for-
mula involving only the symbols =, A, \/, ¥ and 3 in which every negation
symbol preceeds an atomic formula; for instance, we have at disposal the the-
orem A,cs %o © Agcs a- We will also use the next form of Deduction
Theorem: if ® U W I, 8, where ® is a set of formulae and ¥ a set of sentences
of cardinality less than «, then &k, /\‘/,E,I, P =0.

Later, we will sometimes write A® instead of A, 4 ¢, when the set of
formulae @ is specified. Naturally, ¢ A ¢; will stand for A, do-
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3. Weak Interpolation Theorem

Theorem 3.1. (Weak Interpolation Theorem). If ¢ and i are sentences of
the logic L.y (u) (k regular cardinal, A < k) such that o ¢ => 9, then there
exists a sentence 6 of the same logic satsfying the following: Fp ¢ = 0, Fp
8 = 7 and all non-logical symbols appearing in 6 appear in both ¢ and ¢.

Proof. Naturally, in order to avo’d trivial cases we assume that neither ¢ is a
contradiction nor 1 is a theorem as well as that that in each of the forrnulae ¢,
¥ occurs a nonlogical symbols not appearing in the other one. We add firstly
to the initial language a set of new constants, C, of cardinality £ and continue
to work in the logic Ley (U C), shortly denoted by Ly (g'). The basic terms
of this logic will be all constants and all terms of the form f(c),...,c,), where
€1,...,¢n are constants from C. In order to make the proof more eligible we
will introduce a few lemmas (whose proofs will be ended by O).

Let S, be the set of all negation normal sentences x of the logic Ly (') such
that each non-logical symbol of the type g occurring in x occurs in ¢ too and
such that x contains less than A constants from C. In the same way we define
the set Sy. Furthemore, let P be the set of all sets p of cardinality less than
« of negation normal sentences of the logic L, (¢') which can be decomposed
into (not necessarily disjoint) union p; U p; for which the following holds:

(i) P1C Sy, P2 C Sy
and

(#7) there does not exist a sentence 6 € S, NSy such that p; k5 # and
p2 Fa 0.

Any decomposition of p (€ P) satisfying the above two conditions will be called
the correct decomposition (of p). We are starting with examination of the prop-
erties of elements of P.

Lemma 3.2. If p; Up, is a correct decomposition of p (€ P) and if s C
Sy NSy is a subset of p1, then (p1\s)U(p2Us) is also a correct decomposition
of p.

The same assertion holds in the othe "direction” too — if s is a subset of pa,
then (p1Us)U (p2 \ s) is a correct decomposition of p.

Proof. Let us suppose that (on the given assumptions) (p; \ s) U(pz U s) is
not a correct decomposition of p. Then for some 8 € S, NSy p1\s ka0
and p; Us k5 —0. Hence, pz Fao =(As A 8), while py \ s Fao As = 0; thus
also p1 kAo A s A8, contradictory to the condition that py Up; is a correct
decomposition. a

Lemma 3.3. Every element p from P satisfies the following:

(1) there exists no atomic sentence ¢ such that both ¢ and —¢ belong to p;

(2) if p1Ups is a correct decompostion of p and py Fo x (p2 Fa Xx), where
X €Sy, (X € Sy), then pU{x} isin P.
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Specially, if x € S, U Sy is a theorem, then pU {x} € P;
(3) i Nacs®a €EP (6 < k), then pU{¢a} € P for each a (< 4);
(4) f VacsPa € p, then pU{¢,} € P for some v < J;
(5) if VX(X) € p, then pU{Suby) ¢} € P for all functions F: X — C;
(6)

6) if IXS(X) € p (X C Var), then pU{Sub"EX ¢} € P for some function
F: X —C;

(7) if for a constant ¢ € C, a basic term t and an atomic formula ¢(v) of the
logic Lea(p') holds t = ¢, (t) € p, then pU{é(c)} € P;

(8) for any closed termt appearing in some sentence of p, there exists a constant
¢ € C such that pU{c=1t} € P.

Proof. (1) Let p;Ups be a correct decomposition of p and let us suppose that for
some atomic sentence ¢ both ¢ and —¢ belong to p. We distinguish the cases:
(1) 6,79 € p1, (%) ¢ € p1, ¢ € pa2, (i) ~¢ € p1, ¢ € p2 and (iv) ¢, € p,.
The first case implies p; bFa Yv—{v = v), while clearly p; k5 —V-u(v = ¢), a
contradiction. In the second case we have ¢ € S, NS, and p; Fa ¢, pa Fa ¢,
contradiction again. By the symmetry the cases (iif) and (iv) fail too.

(2) Clear; under the (first) conditions (p; U{x})Up: is a correct decomposition
of pU{x}.

(3) A direct consequence of the previous item.

(4) Let p; Upz be a correct decomposition of p and \/, 56« € p1. Let us
assume that for no e (< d) (p1U{¢«})Up: is a correct decomnposition of pU{¢.}.
Hence, for each a there exists a sentence 8, € S,N Sy such that py, ¢a Fa 0o
and pg b —8,. By Deduction Theorem and the theorem 4 8, = \/ﬂ(’s 8 for
any o <4 (it is an axiom Ay ; 705 = —8,) we obtain p1 A ¢a = V565,
that is p; Fa —|Vﬂ<5 6p = —do. Therefore, p1 FA Aycs(m V5508 = —9a),
whence by (d) and modus ponens p1 Fa =V 505 = Aacs %0, 6. p1Fa
_'/\a<6_'¢a = Vﬁ<6 05. Thus p; k4 Vﬁ<6 03, but py Fa /\ﬁ<5 —|0ﬁ, that is
P2 A = V5405, a contradiction.

(5) Let VX &(X) € p1, whith pyUp; as a correct decomposition of p. Obviously
(due to (g) nad (2)), (plu{Sub}e(f #})Ups € P for any mapping F: X — C.

(6) Let 3X¢(X) € p1, where (as usual) p1 Up; is a correct decomposition
of p. Since p is of cardinality less than « and since each sentence from p con-
tains less than A constants from C there is an injection F : X — C such
that no constant from F(X) (= D) appears in the sentences from p. Then
(p1 U {Sub‘li,.e(u) #}) Upz is in P — in order to simplify notation we will write

(temporarily) ¢(D) instead of Sub"e()g ¢. For in the opposite case there would

be some sentence 8 € S, NSy such that py,¢(D) k4 0 (thus py Fx (D) = 6)
and p; kA —#; we can and we will assume that no appearance of any constant
from D in @ is under the scope of the quantifiers 3z, Yz for some ¢ € X. By
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the choice of D it follows p; Fx VX (¢(X) = 6(X)) and p; b VX—6(X). But
Fa YX(¢(X) = 8(X)) = (AX¢(X) = 3X0(X)) gives p1 Fa IXO(X), while
still pa Fa -3X6(X).
(7) If py Upsy is a correct decomposition of p and t = ¢, ¢(t) are the elements of
p, then by Lemma 3.2 we can immediately suppose that both sentences belong
to the same part of the decomposition. The rest follows from (2}).

Let us just note that the roles of (a constant) ¢ and (a term) ¢ cannot be
reversed, for it could happen, for instance, that both ¢ = ¢ and ¢(c) are the
elements of p, while ¢(¢) is not in S, U Sy at all.

(8) Let t appears in some sentence of p. By (2), pU{3v(t =v)} isin P, and by
(6), pU{Jv(t = v)}U{t = c} is in P for some constant ¢ from Cj in particular,
pU{t=c} isin P. 0
In the proof of the last item we used the following (rather obvious) fact:
if p is an element of P and s C p, then s € P; for, if p; Ups is a correct
decomposition of p, then (sNp;) U (sNps) is a correct decomposition of s.

We are now going to show that any element p of P can be extended to a
set of sentences with the properties that provide the existence of its ”canonical”
model. This set will be the union of a nondecreasing sequence of elements from
P (starting with p). Let {¢o | @ < k} be an enumeration of the set of all
sentences ¢ from S, U Sy such that every non-logical symbol of L(u) occurring
in ¢ has an occurrence in some sentence of p. We define recursively the elements
of the sequence py, @ < K, in the following way:

po=p. .

Let a be a successor. If py—1 U{¢s—1} is not in P, then py = po_1. If
Pa—1 U {$a—1} € P we distinguish the cases depending on the form of the
sentence ¢o—1. If ¢o_1 is either a basic sentence or of the form /\ﬁ<5 Xp or
of the form VXx(X), then py = pa-1 U {¢a-1}. I ¢a-1 = Vp5Xs, then
Pa = Pa—-1U {Pa=1,X~}, where x4 (¥ < J) is a sentence such that (po—1 U
{#a-1}) U {x~} is in P (we can agree that in the case when there are more
such sentences we choose the one with the smallest index). Finally, if ¢o_1 =
AXx(X), we put pe = Poa—1U {da-1,x(D)}, where D is a subset of C such
that (pe—1U {#a-1}) U{x(D)} is in P (again we can take the sentence with
the smallest index).

If @ is a limit, we define po = | Jg o Ps-

Surely, the above definition makes sense because of the properties of the

elements of P proved in the previous lemma.
def

If px = Ugcr Pay We have
Lemma 3.4. p, has the following properties:
I there is no atomic sentence x sush that both x and —x belong to pg;
I1 ¢ Aﬂ<6 Xg 15 in pe, then any "conjuct” xp belongs to py;
I if \V g 5xp 15 in px, then (at least) one of "disjuncts” belongs to py;
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IV if VX x(X) € ps, then Sub‘ﬁf) X € px for every mapping F: X — C;

V if 3Xx(X) € px, then Sub”F’:}ﬁ X € px for some mapping F: X — C;

VI c=c €p, forany ce C;

VII if t1 =ty € ps (where, of course, t1 and ty are some closed terms), then
also to =t € p.;

VIII if t4, ty and t3 are closed terms with non-logical symbols of the language
L(p) appearing either in @ or v, then from t; = t3,t3 = t3 € pe follows
ty =13 € px;

IX if R is an n-ary relation symbol of the language L(p) and c1,...,¢y,dy, ..., dy
are constants from C such that ¢; = d; € p, for i=1,...,n, then R(c1,...,c,)
€ Px lﬁ R(dly"'adn) epm'

X if f is an n-ary function symbol of the language L{y) appearing in some

sentence of p and ¢1,...,¢n,dy,...,d, are constants from C such that ¢; =
di €ps for i=1,...,n, then f(e1,...,¢n) = f(d1,-..,dn) € ps.

Proof. More or less everything is obvious.

I is guaranteed by the property (1) of the elements of P.

II Let ¢y = Aqes Xp € Pry bap = xp and @ =sup{ap | B <} f(>a,y is
such that A;_;xs € p¢, then by the property (3) (from the previous lemma)
for each 3 < 4 holds that p; U {xs} is in P, whence p., U{xs} € P (for each
B) and, by the construction of the chain, xs € pas1-

II Let ¢o = Vge5xs € po- Let ¥ > @ be such that \/;_sxs € py. Then
P U{Vpus xo} € P and therefore puss = poU{Vips Xp) U {xv} for some
v (< 9).

IV Let ¢o = VXx(X) €px andlet F: X — C. If ¢5 = Sublf)) x and
¥ > a, B is such that VXx(X) € p, then p, U {Sub’ﬁf) x} is in P (property
(5)) and so pg U {Sub}e(f) x} is in P; hence Sub”FE(;Y) X € Pp+1-

V Let ¢, = IXx(X) and let v > & be such that IXx(X) € p,. Again,
because of p,U{3Xx(X)} € P weobtain pst1 = an{aXx(X)}U{Sub}E(f] x}
for some F: X — C.

VI and VII are (very) trivial. As for VIII let us just note that if ¢, =1, =13
and 3 > « is such that t; =5, t = t3 € pg, we can immediately assume that
ty =ty and ¢3 = t3 belong to the same part of one of the correct decompositions
of ps (Lemma 3.2); trivially, pp U {t; = t3} € P, thus po U {t; =t3} € P and
t1 =13 € pat1. IX and X are proved stmilarly.0

Let ~,,  be a binary relation on the set C defined by: ¢ ~,, d iff ¢ =
d € px. By VI, VII and VIII ~,_ is an equivalence relation. Let M be the

set of the classes of equivalence of the relation ~, - {[c] | ¢ € C}, where

] def {de C| ¢c~p, d},and let C, F and R be the sets of all the constant,
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function and relation symbols of the language L(y') appearing in the sentences
of p, respectively (clearly, as for function and relation symbols we have just
those which appear in the sentences of p, but the set of constants appearing in
sentences of p is supplemented by the set C). For a constant a € C let a¥ = [c],
where ¢ € C is such that a = ¢ € py; for an n-ary function symbol f € F
we define: fM([c1],...,[en]) = [c], where ¢ € C is such that f(e1,...,¢n) =
¢ € pg; for an n-ary relation symbol R € R we put: RM([c)],...,[c,]) iff
R(c1,-..,¢n) € pc. The existence of the constant ¢ (€ C) in cases of constants
and function symbols is guaranteed by IV (see also (8)). The correctness of the
definition (of interpretation of symbols) is obvious as well.

Lemma 3.5. For any closed term t appearing in some sentence of p. and any
constant ¢ from C holds: t =c €p, iff MEt=c.

Proof. Naturally, the interpretation of such terms (for a term ¢ it will be denoted
by tM) is defined recursively by their complexity (where the complexity of a
term is determined by the number of function symbols appearing in it). The
proof of the lemma is again by induction on the complexity of terms.

If ¢ is a constant, the assertion follows from the very definition. If ¢ =
flt1,...\tn) and t = ¢, t; =¢; € ps, 1 =1,...,n, for some ¢, cy,...,c, from
C, then by inductive hypothesis holds M | ¢; = ¢; (for each ¢ = 1,...,n),
whence M | f(t1,...,t.) = fle1,-..,¢n). Butif f(cr,...,cn) =d € p, for
(some) d € C, then clearly c=d € p, and M = f(c1,...,¢cn) =d, M Ed=c,
andso M Et=c

Let us suppose now that M [= f(t1,...,tn) = ¢, ie. fM@EY M) =
[ I tM = [e]), i = 1,...,n, then from fM([c1],...,[cn]) = [c] follows
fle1,-..,cn) = ¢ € pi, which together with t; = ¢; € py (1 = 1,...,n), im-
plied by the inductive assumption, gives f(¢1,-..,tn) = f{(c1,-..,¢n) € px and
t=cE pk. 0

Now we have

Lemma 3.6. M = (M, (fM);er, (RM)rer, (aM)aec) is a model of p,;.

Proof. In the considerations bellow ¢ will be a sentence from S, U Sy such
that each non-logical symbol of L(g) occurring in ¢ has an occurrence in some
sentence of p.

If ¢ is atomic, then it holds: ¢ € p. iff M |= ¢. Let us prove it. Suppose
first that ¢ is in p,.

If § =1t, =t2,let ¢1, ¢y beconstants from C such that t; = ¢q,t2 = ¢c2 € px.
Then, of course, ¢c; = ¢z € p, and by the previous lemma M | ¢; = ¢; as well
as MEt;=ci,1=1,2. Hence M Et; =t,.

Let now ¢ = R(t1,...,t,). f M E ¢ = ¢, i = 1,...,n, again by the
previous lemma holds #; = ¢; € p. and, certainly, R(cy,...,cn) € px. By the
definition, RM([c1], ..., [cn)), i-e. M | R{t1,...,tn).

In the same way we could prove: M |= ¢ implies ¢ € py.
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If ¢ =-xisin S, U Sy, then x has to be an atomic sentence and by the
previous result it folllows: ¢ € p, iff x € p. iff M [ x iff M = ¢. Here we
have in mind: for each atomic sentence x (satisfying the above condition) either
X € px OF —X € px; for if ¢4 = x V —x, then obviously ¢4 € pay1 and by Il
either x or —x (but not both) belongs to py.

The other cases are trivial as well. For instance, if ¢ = VX x(X) € py, then
Sub‘l’;.e(ff) X € px for all functions F : X — C. Thus, by inductive assumption,
x(X) is satisfied in M for any valuation, whence M = VX x(X). |

In the end, let us suppose that there is no interpolating sentence for (in-
terpolants) ¢ and 4. If * and (—4)* are negative normal sentences logically
equivalent to ¢ and —1, respectively, then {¢*, (—1)*} is an element of P (oth-
erwise sentences ¢ and ¥ would have an interpolating sentence). But this means
that there is a model satisfying ¢* nad (—¢)*, contradictory to k5 ¢ = 1. O

Weak Interpolation Theorem and the already mentioned fact that Craig In-
terpolation Theorem fails in all infinitary logics but L, {[2], [7]} imply directly

Corollary 3.7. The basic system is an incomplete aziomatization for all infini-
tary logics L.y, where k is a regular cardinal greater than w, (incomplete in the
sense that the set of its theorems is a proper subset of the set of valid sentences).

Proof. Clearly, any counterexample which proves that Craig Interpolation The-
orem fails in some infinitary logic L), x a regular cardinal greater than w;, is
at the same time an example of a valid sentence which is not provable in the
basic system. 0

Note. As it is known Karp’s completeness theorem states that the basic sys-
tem is a complete axiomatization for L, . C. Karp proved as well that the
basic system is incomplete for all other infinitary logics and gave a significant
contribution to the research of complete axiomatizations of infinitary logics ([6],

[7]).
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