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IDENTIFICATION OF THE SUPPORT FOR THE
GENERALIZED FUNCTIONS !

Soon-Yeong Chung? Eun-Joung Kim?3

Abstract. Let T be a distribution with compact support and T be.
a regularizing sequence of T. If we define for each A > 0, Mx(n) =
sup |T5(€ + in)l,n € R™ then H(n) = lima—o lim,—, o EMA(m)log Ma(0)
is the supporting function of the smallest compact convex set supporting

T.

Moreover, an analog for ultradistributions with compact support is
also given.
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1. Introduction

In the Schwartz distribution theory it is well known that if F({) is the
Fourier-Laplace transform of a distribution with support in K, then F({) is an
entire function satisfying

IF(OI < C(L+ YN, (=¢+ineC

for some constants N > 0 and C > 0. Here Hx(n) is the supporting function
of a compact convex subset K of R, which gives information about the location
of a convex hull of the support.

The supporting function Hg(n) is defined on R™ for a compact subset K
and is a convex function which is positively homogeneous on R™. Conversely, a
function H(n) on R™ which is convex and positively homogeneous is given by
H(n) = Hg(n) for some compact convex set K. Thus, if we can describe a sup-
porting function using F(z) we can identify a support of generalized functions
whose Fourier-Laplace transform is given by F(z).

For example, a problem in this direction was studied in [3] as for a (Radon)
measure with a compact support as follows:
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Theorem 1. LetT be a (Radon) measure with a compact support whose Fourier-
Laplace transform is F(z) and M(n) = sup, [F (€ + in)|. Then

H(n) = lim log M (tn) — log M(0)

t— oo t

is the supporting function of the smallest compact convezx set supporting T'.

In this paper we will generalize this theoremn to the case of distributions and
ultradistributions. The function M (7) above can be defined only for measures
with compact support, since its Fourier-Laplace transform F(() satisfies an
inequality |F(¢)] < Ce4l for all ¢ = € + i € C*. But M(y) does not work,
in general, for the distributions or the ultradistributions. Hence a point of this
paper is to develope a new function which substitutes M (5) and H(n) above. To
overcome this difficulty we use the regularizations of the generalized functions
via some sequence of cut off functions.

2. The supporting function for the distributions

Throughout this paper we refer the reader to [1] and [4] for the notations
and details of distributions.

We use the multi-index notations such as [a| = a1+ - +a,, % = 971957 ---
dg™ and 0; = a—% for a = (a1, a9, - - -, an) € NG, where Ny is the set of all non-
negative integers.

For a compact: set E in R™, a supporting function Hg of £ on R" is defined
by .
Hp(n) = sgg(@*, n,  nER™

Since it is the supremum of linear functions, we have

() He(€+n) < He(€) + He(n), &n€R" (ie subadditive)

(¢y Hg(té) =tHg(£), €€R", t>0 (i.e positively homogeneous)

Also, we have Hg (§) = H.ap(€) for any compact E in R™ where chE denotes
the smallest closed convex set containing E. The following theorem will be very
useful later.

Theorem 2.1. ([4,Theorem 4.3.2]) For every convez positively homogeneous
function H in R™ there is precisely one convex compact set K such that H =
Hg, in fact, K = {z : (z,&) < H({),§ e R}

We now introduce a regularization of distributions. For an infinitely differ-
entiable function ¢ with support in the closed unit ball B centered at the origiu,
satisfying [ ¢(z)dz = 1 we set ¢(z) = 74(%) for any positive number A > 0.
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Then it is easy to see that ¢y € C(R2), suppéy = By = {z € R? | |z]| < A}
and [ ¢ () dz = 1. For any distribution T, the function T'* ¢ converges weakly
to T as A = 0. In view of this fact a sequence of functions Ty = T * ¢ Is called
a regularizing sequence or a regularization of T.

Now we introduce a result which identifies the support of Radon measures
as follows:

Theorem 2.2. ([3]) Let a distribution T be a measure in R" with compact
support and M (1) = sup, |T(£4in)| where T' is the Fourier (-Laplace) transform
of T. Then

. logM(tn) —log M (0
Hn) = Jim 2B M{07) o (0

is the supporting function of the smallest closed convez set supporting T.

As done in the case of the measure with compact support we give here a
supporting function for distributions with compact support by use of but a
regularizing sequence as follows:

Theorem 2.3. Let T be a nonzero distribution with compact support and T
be a regularizing sequence of T. If we define for each A > 0

Mx(n) = sup T\ (€ +in)], neR,

then log M log M (0
H(n) = lim lim 252(in) ~ log M (0)
A=0t—>00 t

is the supporting function of the smallest compact convex set supporting T'.

Proof. Considering Ty as a distribution of order 0 with compact support the
Paley-Wiener theorem implies that there are constants C > 0 and Ay > 0 such
that )
A ()] < Ch exp Ax|Im(], e,

Therefore, M) (n) satisfies the same inequality and, in particular, is always finite.
Moreover, My (n) is never 0 since the vanishing of T (€ + ¢5) for some 7 and all
real £ implies that T3 (¢) is identically 0.

~ Here we notice that M, (n) is a logarithmically convex function of . To
show this, we consider three real vectors &, 7/, n”" and one-dimensional complex
variable z = ¢ + is; the point £ 4+ i{zn’ + (1 — 2)"} depends analytically on z
and may be written as £ — s(n’ — 1) + i{tn/ + (1 —t)n”}. Then the function

fa(z) = T({€ = s(n' = n")} + i{tn’ + (1 - t)n"})

is an entire function of z. By Three Line Theorem (see [2]) the supremum

() = sup, |fa(t +is)]
= sup, [TA({€ = s(n' —n")} + i{tn’ + (1 = t)1"})]
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is a logarithmically convex function of t. Taking the supremum again over
& we find that sup, sup, IT5({€ — s(n' — 0")} + i{ty’ + (1 — t)y"'})| is also a
logarithmically convex function in ¢. This implies that M) (tn' + (1 — t)n”) is
logarithmically convex in ¢. Since the vectors ' and 1"’ were arbitrary, it follows
that M) (n) is logarithmically convex.

In view of this fact, the difference quotient

log M) (tn) — log M (0)
4

is convex in 7 for a fixed positive ¢, and being the difference quotient of a convex
function, it increases with ¢.
Since M) (tn) < Cxexp Ax[tnl,

log M) (tn) —log Mx(0)  _ legCatAylin|-tog Ma(0)
t — t
— logC;—l;)gMA!()!_l_AAlnl

for all ¢t > 0.
It follows that there exists a limit as ¢ approaches infinity. Thus

Hi(n) = lim;_,q, EMr(tn)-losMa(0)

W log M (tn)—log M»{0)
= SUP¢so T

is convex in 7 and finite everywhere. Then it follows that for s > 0

log My (tsn)—logM
Hy(sn) =sup,;yo—2 alt ”1 g M) (0)
log M (rn)—log M, (0)

= 8SUP,yq -

= SHA(’II).

Thus H,(n) is positively homogeneous. It follows from Theorem 2.1 that
H)(n) is a supporting function of a compact convex set K()) in R".

Evidently, Hx(n) is at least as large as the quotient for ¢ = 1, whence
Hj(n) > log Mx(n) — log M, (0), that is Mx(n) < Mx(0)exp Hx(n). From the
Paley-Wiener theorem, it is clear that K(\) is a support for the measure T},
and it suffices to show that it is exactly the smallest convex set supporting T}.

If K(A)" is a compact, convex support for 7 with the supporting function
Hy*(n), then |T3(¢)| < Crexp Hy*(n) and therefore M (n) < C exp Ha*(n),
whence, for t > 0

log M (tn) <log Cx + Hy\"(tn)
log M, (tn) — log My (0) < logCi + tHy™(n) — log M»(0)



Supporting functions 37

then
log M (tn) — log M (0) 4 log Cx — log M (0)

4 {
and therefore Hx(n) < Hx*(n). It follows that K()\) is contained in K()\)".

Hence, for each A > 0, H\(n) = tlirr(l) log M» (tn) — log M (0)
—

function of the smallest closed convex set supporting 7).

Now we show that H,(n) approaches the supporting function of the smallest
closed convex set supporting 7" as A — 0.

Since T = T * ¢, and ¢, has a support B, we can see that

< Hx)*(n)

is the supporting

chsuppT) = chK + By = K,

where Ky = {z € R™ | dist(z, K) < A} and chA denotes a convex hull of a set
A.

Thus Hp, is also the supporting function of the smallest closed convex set
supporting Ty, that is, we have Hg, () = Hx(n). Irom this fact and Theorem
2.1 we can see that K()) = K.

For A < X, we have

K CK,CK,.

Then it follows that
(2.1) Hg(n) < Ha(n) < Hx(n).

In view of (2.1} the supporting function H,(n) is a monotone function of A and
bounded from below.

Hence we obtain the limit of Hx(n) as A approaches zero, say H(n). Since
H ) (n) is convex in 7 and positively homogeneous of degree 1 for all A, H(n) is
also convex in 7 and positively homogeneous of degree 1. Thus, by Theorem 2.1
there is precisely one convex compact set E in R™ such that

(2.2) H(n) = Hp(n)
On the other hand, it is clear from (2.1) that
(2-3) Hg(n) < H(n).

By the definition of the supporting function, we have

Hj(n) = sup¢ek, (€M)
< supg, e (€1, ) + supg, e, (€2, M)
= Hk(n) + [0l

It follows that

(2.4) H(n) < Hk(n),
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as A — 0.
Thus we obtain from (2.2), (2.3) and (2.4) that

Hg(n) = H(n) = Hk(n)-

Now we show that the above supporting function is independent of the choice
of a regularizing sequence. To show this we take any C*®-function ¢ and v
with support in the unit ball B and [ ¢(z)dz = [ ¢(z)dz = 1. For any positive

number A we set
x

@)= 363) ) = 39(3).

Then T x ¢, and T * ), are regularizing sequences of T. Let
Ma(n) = sup (T » 95 (€ + im)] = sup [T+ ima + )

and
Nx(n) = sup (T % ) (£ + in)| = sup |T(€ + in)¥a (€ + in)|.

It follows from Theorem 2.2 that
lim 08 Ma(tn) —log MA(0) . . logNa(tn) —log Na(0)

t— 00 t t— 00 t

are the supporting functions of the smallest closed convex set supporting T *
¢, and T * ¢ respectively.
Since ch(T * é5) = chT + By = ch(T * ¢,), we have

lim log M (tn) — log Mx(0) - lim log Ni(1n) — logN,\(O)'

t— oo 1 t— o0 t

Hence we have

lim lim et 108 Ma(O) _ i, Log Naltn) — log Na(0)

A30t—=00 i A=0t—00 1

This fact implies that the supporting function H(n) can be obtained indepen-
dently of the choice of the regularizing sequence. This completes the proof.
(]

Remark. In fact, we can see that H(n) in Theorem 2.3 is reduced to H(%) in
Theorem 2.2 when T is a measure. To see this let us consider a measure T' with
compact support whose regularizing sequence is 7. Let

M(n) = sup |T'(& + in)|

and A
Mx(n) = sn;p [T\ (€ + in)]
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for each A > 0. Then we have
lim log M (tn) — log M(0)

log M, (tn)—log M, (0)
t—o00 1 t

—limy50limi o0

= Hg(n) — limy,0 Hk, (n).

It follows from the definition of the supporting function that

Hg, (n) = SuPge g, (€M)
< supg, e (€1, M) + SUPg, e, (€2, M)
= Hg(n) + [nlA,

and
)l‘l_i% HK,\ (77) < HK(")'

On the other hand, since Hg(n) < Hg,(n) for all A > 0, we have Hg(n) <
limy0 Hg, (7). Thus we can easily see that

i 8 M(tn) ~log M(0) _ . . log My(in) — log My (0)

t—o0 4 A—0t—00 4

3. The supporting functions for the ultradistributions

First, we introduce an ultradistribution. Let M,, p = 0,1,2, .-, be a se-
quence of positive numbers and let {2 be an open subset of R*. An infinitely
differentiable function ¢ on  is called an ultradifferentiable function of class
(M) if for any compact set K of 2 and for each h > 0

10 ¢(=)|

= sup ————-—
16126y, cer hlel Mjo

n
QENO

is finite.
We impose the following conditions on M, :

(M.1) Mp2 SMp_1Mpyr, p=1,2,--.
(M.2)" There are constants A > 0 and H > 0 such that

MP+1 S AHPMP p:ﬂ,l,"'.
’ o M,
(M.3) T2, M=t < oo

For example. the sequence M, = p!* (s > 1) satisfies all above conditions.
We denote by £(ar,)(Q) the space of all ultradifferentiable functions of class
(M) on Q £31,)(R2). The topology of such space is defined as follows:
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A sequence ¢; — 0 in Ey,) () if for any compact set K of  and for
every h > 0 we have

Lo 1076 (2)] Lo

;g}g hl""Mla] —0 as j— oco.

In addition, we denote by D(as,)(f2) the space of all ultradifferentiable func-
tions of class (M,) on Q with compact support.

We denote by £'(sr,)(2) the strong dual space of £y,)(€2) and we call its
elements ultradistributions of type (M,) with compact support in Q. The space
D’ (p,) () is also defined similarly as in the distributions D’(Q2). For more details
on the ultradistributions &£’ (57,)(Q2) and D?M,,)(Q) we refer the reader to [5]. If

u is a ultradistribution of type (M,) with compact support and ¢ € £(7,)(€),
then we define the convolution u * ¢ by

fxd(z) = fy(d(z - y)).

Moreover, a convolution u * v of two ultradistributions u and v with compact
support is defined by

(ux 0)(8) = us(vy (¢(z + v)))

for every ¢ € Du1,,)-

We introduce the regularizing sequences of ultradistributions.

It follows from (M.3)’ that there is y(x) € D(ar,) with support in the unit ball
B such that y(z) > 0 and f~y(z)dz =1. Let va(z) = 3=v(¥) for any positive
number A > 0. Then v5 € D(p,) with support in By and [ v\ (z)de = 1. As
done in the case of C* functions we can easily show that for each ¢ € D(yy,),
Yx * ¢ converges to ¢ in D(yy,) as A goes to 0. Thus for each 7' € 'D;MP)(Q) one
can see that Ty = T 4, belongs to £7,)(€2) and T) converges to 7" as A — 0
in the dual space of D(ar,)(£2). We call Ty a regularization of T.

We need the following Lemma which is just a variation of Theorem 4.3.3 in
[4], and can be proved similarly.
Lemma 3.3. Let uy and uy be ultradistributions of type (M,) with compact
support. Then we have

chsupp(uy * uy) = chsuppuy + chsuppus.

As in the case of the distributions we give here the supporting functions for
the ultradistributions:

Theorem 3.4. Let T be an ultradistribution of type (M),) with compact support
and Ty be its regularization. If M) (n) = sup; |T5 (€ +in)|, n€R", then

Hi(n) = lim lim 28 (tn) — log M (0)

A—=0t—o00 14
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is the supporting function of the smallest closed convez set supporting T'.

Proof. Since T} is the measure with compact support, we can see that Hj (7) =

lim log M (n) — log M, (0)

t—o00

t
convex set supporting T5. It follows from Lemma 3.3 that Hx(n) is the sup-
porting function of K, where K) = chsuppT + B,. For A < X’ we have

is the supporting function of the smallest closed

K CK) CKy.
Then it follows that

(3.1) Hy(n) < Hx(n) < Ha(n).

In view of (3.1) the supporting function H,(n) is a monotone function of A and
bounded from below.

Hence we obtain the limit of Hy(n) as A approaches zero, say H(n). Since
H)(n) is convex in 5 and positively homogeneous of degree 1 for all A, H(n) is
also convex in 7 and positively homogeneous of degree 1. Therefore, there is
precisely one convex compact set F in R™ such that

H(n) = Hg(n).
On the other hand, it is clear from (3.1) that
(3.2) Hic(n) < H().
By the definition of the supporting function, we have

Hy(n) < supg, e {€r,n) +supg,ep, (2. 1)
= Hk(n) + [nlA.

Then it follows that

(3.3) ' H(n) < Hk(n),

as A = 0. It follows from (3.2) and (3.3) that
Hg(n) = Hi(n) = H(n).

Since such a compact convex set F is unique the set E is the convex hull of
supp 7. ]

Remark. It will be quite interesting if one consider a hyperfunctional analog of
this result. But, in general, since the hyperfunctions do not have cutoff functions
as test functions, the method used in this paper does not work any longer for
the hyperfunctions.
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