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ON A FINITE DIFFERENCE ANALOGUE OF A
SINGULAR BOUNDARY VALUE PROBLEM

Dragoslav Herceg!, Natasa Kreji¢!, Helena Malié&ié!

Abstract. We consider a finite difference analogue for singularly per-
turbed boundary value problem obtained by the central difference scheme
and the Hermite scheme on a special nonuniform mesh. The obtained
systems of linear algebraic equations are solved using a method which is
approximately three times faster than the usual method based on LU de-
composition.

AMS Mathematics Subject Classification (1991): 65L10, 65F05

Key words and phrases: singular perturbation, finite differences, LU de-
composition

1. Introduction

In this paper we shall consider numerical methods for solving a discrete
analogue of nonlinear singularly perturbed boundary value problem

—e2u" +¢(z,u) =0, z € (0,1},

(1)
u(0) =u(l) =0,

where € € (0,60), €0 € 1, is a small perturbation parameter. Since under
appropriate smoothness assumptions on ¢ and the standard condition

(2) 0 < v? <eylz,u), rel, u€R,

the solution u, to (1) has boundary layers at z = 0 and = = 1, it is necessary to
use a special mesh discretization function which gives considerable amount of
mesh points in these boundary layers. As a suitable mesh generating function
we use the one from [6], and for approximation of «” (z) at the mesh points we
apply the standard central difference scheme and the Hermite scheme from [3].

In both cases, the corresponding discrete analogue can be written in the
form

wg = 0,
a; (Z) w;i—1+ ag (Z) w; + as (Z) wiy1 = b (Z) ci—1+ bo (Z) ¢ + by (1) Citl,
w, = 0,
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where i=1,2,...,n— 1 and ¢; = ¢ (z;,w;), i =1,2,...,n — 1. If we write this
system of noulinear equations as

Aw=H(w), AR\l H:R"!' R

its solution w* = [wy, wy,...,w,_,]' represents a numerical approximation to
the solution u. of the problem (1). Using iterative method

Awk“:H(wk), k=0,1,...,

with arbitrarily chosen w®, the vectors w*
will be the approximations to the vector w*.
Obviously, the next approximation w**! is obtained as a solution of the
system of linear equations of the form Az = d. Sufficient conditions for the
convergence of the sequence {wk} to the vector w* can be found in [1]. In this
paper we shall consider only calculation of the members of the sequence {wk} ,

for a given w®.

— Tk ok kT g
= [wf,wy, ... wi_ (] k=0,1,...,
*

2. Mesh generating function and difference schemes

As a mesh generating function we shall use is the one from [6] given with

plt) = 2, te[0,al,
@ MITY r@=p@ @) -a),  1€[0,08),
1—A1—1), tef05,1],

where a and g are independent of €, ¢ € (0, 0.5), ae < g. The value « represents
the unique point from (0, ¢), obtained from the condition 7 (0.5) = 0.5 :

_q—+/aqe (1 — 2 + 2ae)

o 1+ 2as

Now, the discretization mesh is
, . 1
Ih:{:vi:/\(lh),Z:O,l,...,n}, h:;.

As mentioned above, for approximation of —e?u’(z;) we shall nse the Her-
mite scheme with the coeflicients

2¢2 . 2e2

al (Z) = h/‘(hl + hi+1), ao (L) - _hihi+1,
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. N hE = bl 4 higah . N hE+ 2+ 3higah
b (1) = —a () 2 R g ) B R b

bg(l) = 1—b0(t) —bl (l),
where h; = ¢; — z;_1,7=1,2,...,n. For the central difference scheme it holds
b (¢) =ba (1) = 0, by () =1,

and the coefficinets a; (¢), ag (7), a; (¢) are the same as in the Hermite scheme.

3. Discrete analogue
For the vector w*, let d; = H(w¥), i =1,2,...,n— 1, and
d=[dy,dy,...,dn_q]".

The vector w*t1 can be obtained as a solution z of the system Az = d with the
tridiagonal matrix

ao (1) a3 (1)
a1(2) ao(2) az(2)
A=
ar(n—2) ag(n—2) az(n—2)
aj(n—1) ao(n—1)

This system can be solved using the well known LU decomposition

a; = ag(l),
_ ai(k) _ _
ﬂk = —, ak—ao(k)——ﬂkaz(k—l), k_2,3,...,n—1,
dk—1
fl = dla
fk - dk_ﬂkfk—la k:2131~'-7n—11
_ fn—l
Zn—1 = 3
Un—1
e = f"__M, k=n—-2n—3,...,1
(67

The coefficients of the matrix A are very complex since they depend on the
parameters n, g, a and . This results in great use of the CPU time, where the
total time for finding the vector z is a sumn of the time needed for calculating the
coefficients and the time for solving the corresponding linear system. The aim of
our paper is to transform the system Az = d into an equivalent system which can
be solved much faster. Analyzing its structure, the matrix A can be represented
as a product of two diagonal matrices and one matrix with constant coefficients.
For this transformation we shall use very much the package Mathematica 3.0.
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4. Block LU decomposition

For fixed n, ¢, a and &, where n is an even number, first we calculate the
parameter «, and then define m = |na — 1| and k = n — 2m — 5. We split the
matrix A and the vector d into blocks in the following way:

- - -

[ A Ch Dy
B-g Az Cz D2
By A; Cgy D3
B, Ay Cy , Dy

Bs As Cs Dy

Bs As Cs D¢

Br A Dy

with the dimensions of the blocks

) my A,‘ Bi CZ‘ D,‘

1 m mxm — mx1l mxl
2 1 1x1 1xm 1x1 1x1
3 1 Ix1 Ix1 1Ixk 1x1
4 k kxk kx1l kx1 kxl1
5 1 1x1 I1xk 1x1 1x1
6 1 1x1 1x1 1Ixm 1x1
7 m mxm mxl - mx 1

For solving the system Az = d we can also use the block LU decomposition
which has the form

a1 = Ay,
Oy = Bka;_ll, ag = Ag — Bk Cr -1, k=2,3,...,7,
fi = Dy,
fe = Dip—PBrfi-1, k=2,3,...,7,
Z7 = Q’;lf7,
Zi = o' (fi — CkZikt1), k=6,5,...,1.
The solution z is a vector with the block components Z1, Zs, ..., Z7. Matrices

a1, a4 and a7 have the same dimensions as the matrices Ay, A4 and A7 respec-
tively. This means that for calculating Z1, Z4 and Z7 we have to find the inverses
of a1, a4 and a7, and of course, spend much more CPU time than when using
LU decomposition described in the previous section.
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5. Our method

Using Mathematica, after arranging very complex expressions for the ele-
ments of the matrix A, we obtain the following factorization

A=PWQ,
where g = P~1d =[Gy, Gy, ..., G7]T ,
R T -
Sy, Re 1
S3 Rz T3
W = Sy Ry T, y
S5 Ra Ss3
T, Ry T
L 57 R7 .

and R, R4 and H7 are the matrices with the dimensions m x m, k x k, m x m
respectively, of the form

2 -1
-1 2 -1
-1 2 -1
-1 2
The rest of the blocks are given with
Sy o= [0,0,...0,~1ixm,  Ts=[-1,0,...,0ixk
S5 = [anv---oa_l]lxk; Tg:[—l,ﬂ,-..,ﬂ]l)(m,
T, = 57, Sa=Ty, Ty=5], Sy =T, .
The elements of 1 x 1 matrices Rg, R3, S3 and Ty, can be calculated explicitly
o = hqg—h?m? —3h%m 4 2ahm — 2h% + 2ah — o2,
2hg — h*m? — 2h%m + 2ahm — o?
R2 = P ’
R — 2hg — h¥m? — 4h?m 4 2ahm — 3h% 4 20h — o
3 — pe H
—h(qg — a)? —h
T, = (q—a)_, [
o o

The matrices P and @) are diagonal matrices with the elements p; and ¢; re-
spectively, given with
g—th, 1=12,....m+1,
8 =

1, i=m+2,m+3,...,n/2,
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( 8i—15iSi41, 1=1,2,...,m,
—h(m‘z-l(—t::Zi)s":i:l—*‘-Zl(q—a)’ i=m+l,
1 4
" (aghy? e =Mt
(a —q)*, i=m4+3,...,m+24k,
Pn—i, i=m+3+k...,n—1,

s7h, i=1,2,...,m+1,

-

qi = 1, t=m+2,....,m+3+k,

Gn—i, it=m+44+k . ...,n~1

Using the described factorization, the new system which is equivalent to
Az =dis Wy = g, where y = Qz and g = P~d. It can be solved using block
LU decomposition and the vector z is obtained from z = Q~!y. The special
structure of the matrix W makes it possible to avoid inverting of the matrices

R], R4 and R7.
According to the formulae for block LU decomposition, we have

X = Rl.

;B'Z = S‘ZRl_l :_‘[O’mlaam,‘b“-samm]y
where «;; are elemnents of the matrix Ry, (see [5]), given with

T TT jm+1-4),  j<i.

Further we have

ay = Ryp— BTy =Ry —amm,
S

Bs = 2 as=Rs— T,
[25)
1 _ T

Bs = —8i=[-a3"0,...,0]
a3

2—az! -1
-1 2 -1
C¥4:R4-—ﬂ4[—1,0,...,0]1xk: ,
-1 2 -1
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Bs =1[0,...0,=1] o ap ' = — [Ye1: Vo2, - - -, VkE) -

The elements +;; of the matrix azl can be calculated from the Sherman—
Morrison-Woodbury formula, [4],

Ty - 1 -1, T -1
(A—i—u,u) =A —mA uv' A7,
where u and v are vectors with dimensions equal to the order of the matrix ay4.
In our case, u = (4 and v = [-1,0,...,0];, , hence
1 @li-1) -9 (k+1-3),  i<i
VT T —ke | (G -D =) (k+1-9), j<i
with & = a3 . Finally
0
a5 = Ry — f35 0 = R — Yk,
-1 kx1
T. 't
Bs = =, ag = Re — 3593,
as
-1 —016“1
1 0 0
ﬂ7 = - . = )
g :
0 mx1 0 mx1
2—ag! -1
-1 2 -1
017:R7—ﬂ7[—1,0,...,0]1xm:
-1 2 -1
-1 2
mXim
Using the auxiliary vectors
fl = Gla
fe = Gk_/gkfk—lg k=2,3,...,7,
the components y1, ¥s, - . -, y7 of the block vector y can be easily obtained. First

of all, applying LU decomposition to the m x m system ary; = f7, we obtain
the vector y7. Let y[71] be the first component of y7. Then

fe + y[71] fs — Saus
Y6 = — Y = ————,

[0 4 ! s
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and the vector y4 is the solution of the & x &k system

0
oqys = Fy= fa+
s
Further o
_f3+y4] _f2—Tays
y3 —_— y2 - =
3 2

where y‘[:] represents the first component of the vector y4. Finally, solving the

m X m system

]
aypm=F=H+]| |,
0
Y2
we obtain the vector y;. The dimension of the vector y = [y, 2, .. .,y7]T is
n — 1, and putting 2 = @~ 'y we obtain the solution of the system Az = d.

6. Comparison of the methods

Let LUtime represents the CPU time needed for forming and solving the
system Az = d using the LU decomposition, and let T Rtime be the CPU time
needed for forming and solving the system Wy = ¢ and calculating the vector
z=Q ly.

In the figure below is shown the ratio LUtirne/T Rtime as a function of
dimension of the system Az = d. We can see that for solving the system Az = d
using direct LU decomposition requires approximately three times more CPU
time than our method. The results were approximately equal when using the
central difference scheme and the Hermite scheme, since the CPU time needed
for forming the vector d in Mathematica alters only slightly.

LUtime / TRtime

3.5
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