ON THE NON-COMMUTATIVE NEUTRIX PRODUCT **OF** x_{\perp}^{λ} **AND** $x_{\perp}^{-\lambda-1}$

Brian Fisher¹, Fatma Al-Sirehy²

Abstract. The non-commutative neutrix product of the distributions x_{+}^{λ} and $x_{\perp}^{-\lambda-1}$ is evaluated for $\lambda \neq 0, \pm 1, \pm 2, \ldots$

AMS Mathematics Subject Classification (1991): 46F10

Key words and phrases: distribution, delta-function, neutrix, neutrix limit, neutrix product.

In the following, we let $\rho(x)$ be an infinitely differentiable function having the following properties:

- (i) $\rho(x) = 0 \text{ for } |x| > 1$,
- (ii) $\rho(x) \ge 0$, (iii) $\rho(x) = \rho(-x)$,

(iv)
$$\int_{-1}^{1} \rho(x) dx = 1.$$

Putting $\delta_n(x) = n\rho(nx)$ for $n = 1, 2, \dots$, it follows that $\{\delta_n(x)\}$ is a regular sequence of infinitely differentiable functions converging to the Dirac deltafunction $\delta(x)$.

Now let \mathcal{D} be the space of infinitely differentiable functions with compact support and let \mathcal{D}' be the space of distributions defined on \mathcal{D} . Then if f is an arbitrary distribution in \mathcal{D}' , we define

$$f_n(x) = (f * \delta_n)(x) = \langle f(t), \delta_n(x-t) \rangle$$

for $n = 1, 2, \ldots$ It follows that $\{f_n(x)\}\$ is a regular sequence of infinitely differentiable functions converging to the distribution f(x).

A first extension of the product of a distribution and an infinitely differentiable function is the following, see for example [2].

Definition 1. Let f and g be distributions in \mathcal{D}' for which on the interval (a,b), f is the k-th derivative of a locally summable function F in $L^p(a,b)$ and $a^{(k)}$ is

¹Institute of Simulation Sciences, SERC, Hawthorn Building, De Montfort University, Leicester, LE1 9BH, England

and Department of Mathematics and Computer Science, Leicester University, Leicester, LE1 7RH, England. e-mail: fbr@le.ac.uk

²P.O. Box 32477, Jeddah, Saudi Arabia, e-mail: gcp3128@kaau.edu.sa

a locally summable function in $L^q(a,b)$ with 1/p + 1/q = 1. Then the product fg = gf of f and g is defined on the interval (a,b) by

$$fg = \sum_{i=0}^{k} {k \choose i} (-1)^{i} [Fg^{(i)}]^{(k-i)}.$$

The following definition for the neutrix product of two distributions, given in [4], generalizes Definition 1.

Definition 2. Let f and g be distributions in \mathcal{D}' and let $g_n(x) = (g * \delta_n)(x)$. We say that the neutrix product $f \circ g$ of f and g exists and is equal to the distribution h on the interval (a,b) if

$$N-\lim_{n\to\infty}\langle f(x)g_n(x),\varphi(x)\rangle=\langle h(x),\varphi(x)\rangle$$

for all functions φ in \mathcal{D} with support contained in the interval (a,b), where N is the neutrix, see van der Corput [1], having domain $N' = \{1, 2, \ldots, n, \ldots\}$ and range the real numbers, with negligible functions finite linear sums of the functions

$$n^{\lambda} \ln^{r-1} n$$
, $\ln^r n$: $\lambda > 0$, $r = 1, 2, \dots$

and all functions which converge to zero in the normal sense as n tends to infinity.

Note that if

$$\lim_{n \to \infty} \langle f(x)g_n(x), \varphi(x) \rangle = \langle h(x), \varphi(x) \rangle,$$

we simply say that the product f.g exists and equals h, see [3].

It is obvious that if the product f.g exists, then the neutrix product $f \circ g$ exists and the two are equal. Further, it was proved in [3] that if the product fg exists by Definition 1, then the product f.g exists by Definition 2 and the two are equal.

The following theorem was proved in [6].

Theorem 1. Let f and g be distributions in \mathcal{D}' and suppose that the neutrix products $f \circ g^{(i)}$ (or $f^{(i)} \circ g$) exist on the interval (a,b) for $i=0,1,2,\ldots,r$. Then the neutrix product $f^{(r)} \circ g$ (or $f \circ g^{(r)}$) exists on the interval (a,b) and

$$f^{(r)} \circ g = \sum_{i=0}^{r} {r \choose i} (-1)^{i} [f \circ g^{(i)}]^{(r-i)}$$

or

$$f \circ g^{(r)} = \sum_{i=0}^{r} {r \choose i} (-1)^{i} [f^{(i)} \circ g]^{(r-i)}$$

on the interval (a, b).

The next theorem was proved in [4].

Theorem 2. The neutrix product $x_{+}^{r-1/2} \circ x_{+}^{-r-1/2}$ exists and

(1)
$$x_{+}^{r-1/2} \circ x_{+}^{-r-1/2} = x_{+}^{-1} + a_{r} \delta(x)$$

for $r = 0, \pm 1, \pm 2, ..., where$

$$a_0 = 2[\ln 2 - c(\rho)],$$

 $a_r = a_{-r} = 2\left[\ln 2 - c(\rho) - \sum_{i=1}^r \frac{1}{2i-1}\right]$

for $r = 1, 2, \ldots$ and

$$c(\rho) = \int_0^1 \ln t \rho(t) dt.$$

Before proving our main result we need the following definition of the Beta function given in [5].

Definition 3. The Beta function $B(\lambda, \mu)$ is defined for all λ, μ by

$$B(\lambda, \mu) = N - \lim_{n \to \infty} \int_{1/n}^{1 - 1/n} t^{\lambda - 1} (1 - t)^{\mu - 1} dt.$$

It was proved that if $\lambda, \mu \neq 0, \pm 1, \pm 2, \ldots$, then the above definition is in agreement with the standard definition of the Beta function.

In particular, it was proved in [5] that

$$B(0,\mu) = -\gamma - \psi(\mu)$$

for $\mu \neq 0, \pm 1, \pm 2, \ldots$, where γ denotes Euler's constant and

$$\psi(\mu) = \frac{\Gamma'(\mu)}{\Gamma(\mu)}.$$

We now generalize Theorem 2.

Theorem 3. The neutrix product $x_+^{\lambda} \circ x_+^{-\lambda-1}$ exists and

(2)
$$x_+^{\lambda} \circ x_+^{-\lambda - 1} = x_+^{-1} - \left[\gamma + \frac{1}{2}\psi(-\lambda) + \frac{1}{2}\psi(\lambda + 1) + 2c(\rho)\right]\delta(x)$$

for $\lambda \neq 0, \pm 1, \pm 2, \ldots$

Proof. We first of all suppose that $-1 < \lambda < 0$ and put

$$(x_{+}^{-\lambda-1})_{n} = x_{+}^{-\lambda-1} * \delta_{n}(x)$$

$$= \begin{cases} \int_{-1/n}^{1/n} (x-t)^{-\lambda-1} \delta_{n}(t) dt, & x > 1/n, \\ \int_{-1/n}^{x} (x-t)^{-\lambda-1} \delta_{n}(t) dt, & -1/n \le x \le 1/n, \\ 0, & x < -1/n. \end{cases}$$

Then

$$\int_{-1}^{1} x_{+}^{\lambda} (x_{+}^{-\lambda - 1})_{n} dx = \int_{0}^{1/n} x^{\lambda} \int_{-1/n}^{x} (x - t)^{-\lambda - 1} \delta_{n}(t) dt dx + \\
+ \int_{1/n}^{1} x^{\lambda} \int_{-1/n}^{1/n} (x - t)^{-\lambda - 1} \delta_{n}(t) dt dx \\
= \int_{0}^{1/n} \delta_{n}(t) \int_{t}^{1} x^{\lambda} (x - t)^{-\lambda - 1} dx dt + \\
+ \int_{-1/n}^{0} \delta_{n}(t) \int_{0}^{1} x^{\lambda} (x - t)^{-\lambda - 1} dx dt \\
= \int_{0}^{1} \rho(v) \int_{v}^{n} u^{\lambda} (u - v)^{-\lambda - 1} du dv + \\
+ \int_{0}^{1} \rho(v) \int_{0}^{n} u^{\lambda} (u + v)^{-\lambda - 1} du dv,$$
(3)

where the substitutions nt = v and nx = u have been made in the first integral and nt = -v and nx = u in the second integral.

Making the substitution u = v/y, we have

$$\int_{v}^{n} u^{\lambda} (u-v)^{-\lambda-1} du = \int_{v/n}^{1} y^{-1} (1-y)^{-\lambda-1} dy$$
$$= \int_{v/n}^{1} y^{-1} [(1-y)^{-\lambda-1} - 1] dy - \ln v + \ln n$$

and it follows that

(4)

$$N-\lim_{n\to\infty} \int_{v}^{n} u^{\lambda} (u-v)^{-\lambda-1} du = \int_{0}^{1} y^{-1} [(1-y)^{-\lambda-1} - 1] dy - \ln v
= B(0, -\lambda) - \ln v
= -\gamma - \psi(-\lambda) - \ln v.$$

Further, making the substitution $u = v(y^{-1} - 1)$, we have

$$\int_0^n u^{\lambda} (u+v)^{-\lambda-1} du = \int_{v/(n+v)}^1 y^{-1} (1-y)^{\lambda} dy$$

$$= \int_{v/(n+v)}^{1} y^{-1} [(1-y)^{\lambda} - 1] dy - \ln v + \ln n$$

and it follows that

$$N-\lim_{n\to\infty} \int_0^n u^{\lambda} (u+v)^{-\lambda-1} du = \int_0^1 y^{-1} [(1-y)^{\lambda} - 1] dy - \ln v$$

$$= B(0, \lambda + 1) - \ln v$$

$$= -\gamma - \psi(\lambda + 1) - \ln v.$$

It now follows from equations (3), (4) and (5) that

(6)
$$N-\lim_{n\to\infty} \int_{-1}^{1} x_{+}^{\lambda} (x_{+}^{-\lambda-1})_{n} dx = -\gamma - \frac{1}{2} \psi(-\lambda) - \frac{1}{2} \psi(\lambda+1) - 2c(\rho).$$

Now let φ be an arbitrary function in \mathcal{D} with support contained in the interval [-1,1]. By the mean value theorem

$$\varphi(x) = \varphi(0) + x\varphi'(\xi x),$$

where $0 < \xi < 1$ and so

$$\langle x_{+}^{\lambda}(x_{+}^{-\lambda-1})_{n}, \varphi(x) \rangle = \int_{0}^{1} x^{\lambda}(x_{+}^{-\lambda-1})_{n} \varphi(x) dx$$

$$= \varphi(0) \int_{0}^{1} x^{\lambda}(x_{+}^{-\lambda-1})_{n} dx + \int_{0}^{1} x^{\lambda}[x(x_{+}^{-\lambda-1})_{n}] \varphi'(\xi x) dx.$$

Since the sequence of continuous functions $\{x(x_+^{-\lambda-1})_n\}$ converges uniformly to the continuous function $x^{-\lambda}$ on the closed interval [0,1], it follows on using equation (6) that

$$\begin{split} \mathrm{N-lim}_{n\to\infty} \langle x_+^{\lambda}(x_+^{-\lambda-1})_n, \varphi(x) \rangle &= \mathrm{N-lim}_{n\to\infty} \varphi(0) \int_0^1 x^{\lambda} (x_+^{-\lambda-1})_n \, dx \, + \\ &\quad + \lim_{n\to\infty} \int_0^1 x^{\lambda} [x(x_+^{-\lambda-1})_n] \varphi'(\xi x) \, dx \\ &= -[\gamma + \frac{1}{2} \psi(-\lambda) + \frac{1}{2} \psi(\lambda + 1) + 2c(\rho)] \varphi(0) + \int_0^1 \varphi'(\xi x) \, dx \\ &= -[\gamma + \frac{1}{2} \psi(-\lambda) + \frac{1}{2} \psi(\lambda + 1) + 2c(\rho)] \varphi(0) + \\ &\quad + \int_0^1 x^{-1} [\varphi(x) - \varphi(0)] \, dx \\ &= -[\gamma + \frac{1}{2} \psi(-\lambda) + \frac{1}{2} \psi(\lambda + 1) + 2c(\rho)] \varphi(0) + \langle x_+^{-1}, \varphi(x) \rangle, \end{split}$$

giving equation (2) on the interval [-1,1] when $-1 < \lambda < 0$. However, since $x_+^{\lambda}.x_+^{-\lambda-1} = x_+^{-1}$ on any closed interval not containing the origin, equation (2) holds on the real line when $-1 < \lambda < 0$.

Now suppose that equation (2) holds when $-k < \lambda < -k + 1$. If $-k - 1 < \lambda < -k$, the product $x_+^{\lambda+1}x_+^{-\lambda-1}$ exists by Definition 1 and is equal to H(x). By Theorem 1 we have

$$(\lambda + 1)x_+^{\lambda} \circ x_+^{-\lambda - 1} - (\lambda + 1)x_+^{\lambda + 1} \circ x_+^{-\lambda - 2} = \delta(x)$$

and it follows from our assumption that

$$(\mathbf{z}_{+}^{\lambda} \circ x_{+}^{-\lambda-1} = x_{+}^{-1} - [\gamma + \frac{1}{2} \psi(-\lambda - 1) + \frac{1}{2} \psi(\lambda + 2) - (\lambda + 1)^{-1} + 2c(\rho)]\delta(x).$$

Since $\Gamma(x+1) = x\Gamma(x)$, it follows that

$$\psi(x+1) = x^{-1} + \psi(x).$$

Equation (7) reduces to

$$x_+^{\lambda} \circ x_+^{-\lambda - 1} = x_+^{-1} - [\gamma + \frac{1}{2}\psi(-\lambda) + \frac{1}{2}\psi(\lambda + 1)^{-1} + 2c(\rho)]\delta(x)$$

and equation (2) follows by induction for negative $\lambda \neq -1, -2, \ldots$

A similar proof shows that equation (2) holds for positive $\lambda \neq 1, 2, \ldots$ This completes the proof of the theorem.

Comparing Theorems 2 and 3 when $\lambda = -\frac{1}{2}$ we note that we have proved that

$$2\ln 2 = -\gamma - \psi(\frac{1}{2}).$$

Corollary 3.1. The neutrix product $x_{-}^{\lambda} \circ x_{-}^{-\lambda-1}$ exists and

(8)
$$x_{-}^{\lambda} \circ x_{-}^{-\lambda - 1} = x_{-}^{-1} - \left[\gamma + \frac{1}{2}\psi(-\lambda) + \frac{1}{2}\psi(\lambda + 1) + 2c(\rho)\right]\delta(x)$$

for $\lambda \neq 0, \pm 1, \pm 2, \ldots$

Proof. Equation (8) follows immediately on replacing x by -x in equation (2). \Box

In the next corollary, the distribution $(x+i0)^{\lambda}$ is defined by

$$(x+i0)^{\lambda} = x_{+}^{\lambda} + e^{i\lambda\pi} x_{-}^{\lambda}$$

for $\lambda \neq 0, \pm 1, \pm 2, \dots$ and

$$(x+i0)^{-1} = x^{-1} - i\pi\delta(x).$$

Corollary 3.2. The neutrix product $(x+i0)^{\lambda} \circ (x+i0)^{-\lambda-1}$ exists and

(9)
$$(x+i0)^{\lambda} \circ (x+i0)^{-\lambda-1} = (x+i0)^{-1}$$

for $\lambda \neq 0, \pm 1, \pm 2, \ldots$

Proof. The neutrix product is distributive with respect to addition and so

$$(x+i0)^{\lambda} \circ (x+i0)^{-\lambda-1} = x_{+}^{\lambda} \circ x_{+}^{-\lambda-1} - x_{-}^{\lambda} \circ x_{-}^{-\lambda-1} + -e^{-i\lambda\pi} x_{+}^{\lambda} \circ x_{-}^{-\lambda-1} + e^{i\lambda\pi} x_{-}^{\lambda} \circ x_{+}^{-\lambda-1}.$$
(10)

Further, it was proved in [3] that

(11)
$$x_{+}^{\lambda} \circ x_{-}^{-\lambda - 1} = x_{-}^{\lambda} \circ x_{+}^{-\lambda - 1} = -\frac{1}{2} \pi \operatorname{cosec}(\pi \lambda) \delta(x)$$

for $\lambda \neq 0, \pm 1, \pm 2, \ldots$ It follows from equations (2), (8), (10) and (11) that

$$(x+i0)^{\lambda} \circ (x+i0)^{-\lambda-1} = x^{-1} - i\pi\delta(x) = (x+i0)^{-1},$$

proving equation (9).

We finally note that the following results can be proved similarly.

$$|x|^{\lambda} \circ (\operatorname{sgn} x |x|^{-\lambda - 1}) = (\operatorname{sgn} x |x|^{\lambda}) \circ |x|^{-\lambda - 1} = x^{-1},$$

$$|x|^{\lambda} \circ |x|^{-\lambda - 1} = |x|^{-1} - [2\gamma + \psi(-\lambda) + \psi(\lambda + 1) + 4c(\rho) + \pi \operatorname{cosec}(\pi \lambda)] \delta(x),$$

$$(\operatorname{sgn} x |x|^{\lambda}) \circ (\operatorname{sgn} x |x|^{-\lambda - 1}) = |x|^{-1} - [2\gamma + \psi(-\lambda) + \psi(\lambda + 1) + 4c(\rho) + \pi \operatorname{cosec}(\pi \lambda)] \delta(x)$$

for $\lambda \neq 0, \pm 1, \pm 2, \ldots$

References

- [1] van der Corput, J.C., Introduction to the neutrix calculus, J. Analyse Math. 7(1959-60), 291-398.
- [2] Fisher, B., The product of distributions, Quart. J. Math. Oxford (2), 22(1971), 291-298.
- [3] Fisher, B., A non-commutative neutrix product of distributions, Math. Nachr. 108(1982), 117-127.
- [4] Fisher, B., Kuribayashi, Y., A theorem on the neutrix product of distributions, Dem. Math. 17(1984), 785-794.
- [5] Fisher, B., Kuribayashi, Y., Neutrices and the Beta function, Rostock. Math. Kolloq. 32(1987), 56-66.
- [6] Fisher, B., Savaş, E., Pehlivan, S., Özçağ, E., Results on the non-commutative neutrix product of distributions, Math. Balkanica 7(1993), 347-356.
- [7] Gel'fand, I.M., Shilov, G.E., Generalized Functions, Vol. I, Academic Press, 1964.

Received by the editors May 4, 1998.