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ON THE NON-COMMUTATIVE NEUTRIX PRODUCT
OF :E:\}_ AND :c_;’\‘1

Brian Fisher!, Fatma Al-Sirehy*

Abstract. The non-commutative neutrix product of the distributions x}
and :0:__'_'*‘1 is evaluated for A # 0,41, +2....
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In the following, we let p(z) be an infinitely differentiable function having
the following properties:

() ple) =0 for |a] > 1,

(i) plz) >0,

(ii)) p(2) = p(~2),
(

iv) /_1 p(z) dz = 1.

1
Putting d.{(z) = np(nz) for n = 1,2,..., it follows that {d,(z)} is a regu-
lar sequence of infinitely differentiable functions converging to the Dirac delta-
function d(z). »
Now let D be the space of infinitely differentiable functions with compact
support and let D’ be the space of distributions defined on D. Then if f is an
arbitrary distribution in D’, we define

Fale) = (F #6)(2) = (F(t), 6n(z — 1))

for n = 1,2,... . It follows that {f,(z)} is a regular sequence of infinitely
differentiable functions converging to the distribution f(z).

A first extension of the product of a distribution and an infinitely differen-
tiable function is the following, see for example [2].

Definition 1. Let f and g be distributions in D’ for which on the interval (a, b),
f is the k-th derivative of a locally summable function F in L?(a,b) and g'%) is
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a locally summable function in L9(a,b) with 1/p+ 1/q = 1. Then the product
fa =g9f of [ and g is defined on the interval (a,b) by

k

fa=Y_ (f) (=1)i[F gl E=1),

i=0

The following definition for the neutrix product of two distributions, given
in [4], generalizes Definition 1.

Definition 2. Let f and g be distributions in D' and let gp(x) = (g * . ) ().
We say that the neutriz product f o g of [ and g exists and is equal to the
distribution h on the inlerval (a,b) if

N-lim(f(z)gn(2), p(2)) = (h(z), ¢(2))

Jor all functions ¢ in D with support contained in the interval (a,b), where N
is the neutriz, see van der Corput [1], having domain N’ = {1,2,...,n,...}
and range the real numbers, with negligible functions finite linear sums of the
functions

2 o ta, o n: A>0, r=1,2,...

and all funetions which converge to zero in the normal sense as n tends to
mnfinity.

Note that if
Jim (f(2)g:(2), p(2)) = (h(z), (),

we simply say that the product f.g exists and equals h, see {3].

It is obvious that if the product f.g exists, then the neutrix product fog
exists and the two are equal. Further, it was proved in [3] that if the product
fg exists by Definition 1, then the product f.g exists by Definition 2 and the
two are equal.

The following theorem was proved in [6].

Theorem 1. Let f and g be distributions in D' and suppose that the neutriz
products f o g® (or f0) o g) exist on the interval (a,b) fori = 0,1,2,...,r.
Then the neutriz product fU") og (or f og(")) exists on the interval (a,b) and

$og =3 (1)1 ogte

i=0

or
T

rogt =3 (7)1 gt

€ 2
1=0

on the interval (a,b).
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The next theorem was proved in [4].

Theorem 2. The neutriz product 17:-—1/2 ) z__'_r_l/z exists and

(1) a::__l/goa::_r_l/z :;L'_T_l+a,.5(:1;)

forr=0,%1,42,..., where

ag = 2[In2-¢(p)],
0y . 1
a, =a_, = Z[ln2 —c(p) — 2 mJ
forr=1,2,... and
1
c(p) = Intp(t) dt
0

Before proving our main result we need the following definition of the Beta
function given in [5]. '

Definition 3. The Beta function B(A, p) is defined for all A, u by

1-1/n
B\, p) = N—lim/ R O ALy 8
1

—3>00 /ﬂ

It was proved that if A, u # 0,41,42,..., then the above definition is in
agreement with the standard definition of the Beta function.
In particular, it was proved in [5] that

B(0,p) = =y = ¥(n)
for p #0,+1,42,..., where 4 denotes Euler’s constant and

P(p) = %-(%

We now generalize Theorem 2.

A—1

Theorem 3. The neutriz product a:f“_ oz exists and

(2) 2hoaPM =2y = [y + 39(=X) + (A + 1) + 2¢(p)]d(2)

for N#£0,41,42,. ...
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Proof. We first of all suppose that —1 < A < 0 and put

@D = 27 ba(2)
1/n
/1/ (@— ) Yn()dt,  z>1/n,
~1/n
= (=) 15, @) dt, —-1/n<z<1/n,
—-1/n

0, r < =1/n.
Then

1 1/n
/ :L'j‘_(:cl)‘ 1 / / 215, (t) dt de +
—~1 1/n
1/n
/ / )21, (t) dt de
1/n l/n

1/n
- / Jn(t)/ e — )V dodt+
o} t

+/0 6n(t)/01 Mz — )" dz dt

—1/n
1 n
= / p(v)/ u (u —0) " Ldudo +
0 v
1 n

(3) +/ p(v)/ u*(u + 0) ™" dudv,

0 0
where the substitutions nt = v and nz = u have been made in the first integral
and nt = —v and nz = u in the second integral.

Making the substitution v = v/y, we have

n 1
/ w(u—0) A ldy = / y 11 —y) A ldy
v vin

1

= / v Hl-y)*1=-1]dy—lnv+Inn
vin

and it follows that

n

1
N-—lim w(u—0)"* " du = /'y_l[(l—y)_)‘_l—l]dy—lnv
0

n—+oo Y
= B(0,—-A)—Inv
(4) = —y—%(-)A)—Inw.
Further, making the substitution u = v(y~! — 1), we have
1

/u)‘(u—k-v)_)‘—ldu = / y 11 —y) dy
0

v/(n+v)
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1

= / y ' [1=y)>*=1dy—Ilnv+1Inn
v/(n4v)
and it follows that
n 1
N—lim wMu+2) M ldu = / y (1 -y —1]dy —Inw
n—00 0 0
= B(0,A+1)—-Inv

(5) = —y—9P(A+1)—Inv.

It now follows from equations (3), (4) and (5) that

1
(6) N-lim [ z}(2i* Ynde=—y—16(=)) — 1v(A +1) - 2¢(p).

7 =00 -1

Now let ¢ be an arbitrary function in D with support contained in the
interval [—1,1]. By the mean value theorem

p(z) = (0) + z¢' (£2),
where 0 < £ < 1 and so

(2 (27 ) p(2)) = / P27 ap(e) de

If

1 1
90(0)/ w*(z;)‘_l)n d:c+/ x)‘[a:(a:_l__’\*l)n]go’(ﬁx) dz.
0 0
Since the sequence of continuous functions {#(27*~'),} converges uniformly
to the continuous function z~* on the closed interval [0, 1], it follows on using
equation (6) that

1
N-lim(z} (27 D, o(z)) = N—limgo(O)/ a:’\('a:_l__’\_l)ndw+
0

n—oo h n—o00
1

+ lim ; x*[z(:clk_l)n]go'(ﬁz) dzx
=y 2= + L+ 1) + 2e(p)]0(0) + / o (€2) da
=—[v+ 30(-2) + 30(A + 1) + 2¢(p)]p(0) +

+ [ =7l - o0 e
=~y + 1N + 290+ 1) + 2(p)](0) + (271, 0()),

giving equation (2) on the interval [—1, 1] when —1 < A < 0. However, since
z .x:\_l = 21! on any ciosed interval not containing the origin, equation (2)

holds on the real line whei. — ¢ - XA < 0.
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Now suppose that equation (2) holds when —k < A < -k + 1. If —k -1 <
A < —k, the product :ci+1:c+ ! exists by Definition 1 and is equal to H(z). By
Theorem 1 we have

A+ Datoai™ ! = A+ 12}t ol =4(z)
and it follows from our assumption that
(B 027 =27 — [y + E(-A— 1)+ 9 +2) - A+ 1)+ 2()]6(a).
Since I'(z + 1) = zI'(z), it follows that
Ple+1) =27 +¢(z).
Equation (7) reduces to
sk oep =07 — [y + 1 p(=A) + LY(A+ 1) + 26()]6(a)

and equation (2) follows by induction for negative A # —1,-2,....
A similar proof shows that equation (2) holds for positive A # 1,2, .... This

completes the proof of the theorem. a
Comparing Theorems 2 and 3 when A = —% we note that we have proved
that

2In2 = - —1&(%)

Corollary 3.1. The neutriz product > o 2" erists and

(8) 2 or =gl [y+ Lp(=N) + Le(+ 1) +26())é(2)
for AF£0,£1,£2,....

Proof. Equation (8) follows immediately on replacing « by —z in equation (2).
O

In the next corollary, the distribution (z + i0)* is defined by
(z +i0)* _x++e”\" A
for A # 0,+1,+£2,... and
(z+ i())_1 =zl = imd(z).
Corollary 3.2. The neutriz product (z + i0)* o (z +i0)~*~! ezists and
(9) (& 410)* o (z +i0) ™! = (z +40)~!

Jor A£0,£1,£2,....
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Proof. The neutrix product is distributive with respect to addition and so

(430 o (z +i0)"* 1 = oz, M -2ro L
(10) _e—i/\ﬁxi\l_ ° l‘:)\——l + eiAwwi OZL'_T_)\_I.
Further, it was proved in [3] that
(11) zh oz =2 o2l = — L cosec(n)d(z)

for A #0,£1,42,.... It follows from equations (2), (8), (10) and (11) that
(z + 1,'0))‘ o(xz+ 1,'0)_)‘_1 =z ' —ird(z) = (x+i0)7",

proving equation (9). m

We finally note that the following results can be proved similarly.

|lz[* o (sgn zfe|™*7") = (sgnele[M)ole| N =27,
lz[* o fe|™* ! = a7 = 27 +(=A) + $ (A + 1) + 4e(p) +
+7 cosec(mA)]d(z),
(sgnelz) o (sgnafe|™*7h) = 2|7t = [27 + ¥(=A) + (A + 1) +4e(p) +
— cosec(mA)]d(z)

for AF0,£1,+2,....
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