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Abstract

The radical axis, as the only straight line in a pencil of circles,
brakes the continuity in the infinite succession of the circles. In the
same way, in space, the radical plane is an ”intruder” in a pencil of
spheres which brakes the infinite succession of the spheres.

Therefore, in order to realize the continuity principle in pencils of
circles and spheres, we must leave those classical concepts of straight
lines and planes as something quite different from circles and spheres,
and introduce the new, relativistic, concepts of "straight lines” and
"planes” which also are real circles and spheres but with a particular
relation to the observer.
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1 Continuity in Pencils of Circles

A parabolic pencil of circles, for example, consists of uncountably many
circles and only one straight line (Fig. 1). Since, in Euclidean geometry,
a straight line is something quite different from a circle, this line has to
be considered as an intruder into the pencil of circles. Thus, the classical
principle of continuity in the pencil is evidently broken by that intruder for
nobody can explain intelligible how a circle can be changed into an open-
ended Euclidean line, and then, immediately after, the Euclidean line into
a circle with opposite curvature.

However, if we observe the forming of the pencil of circles as a continuous
process, we will be able to see clearly that the straight line b in fact is not an
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Figure 1: Straight lines intersect twice

intruder because it meets the axis a of the pencil at two points as any other
circle does. Namely, every member of the pencil of circles, from the smallest
to the greatest, crosses the straight line a at the point S and one more point
(1,2, 3, ...), and so does the straight line b: at S and at the infinitely distant
point S which lies on the both lines, a and b. It means that two straight
lines really intersect at two points. Therefore, the definite conclusion must
be that the open-ended Euclidean straight line does not exist, and, if there
is no classical straight line, there is no classical plane, either. In other words,
the pencil of circles in reality does not lie on an abstract Euclidean plane
but on a sphere of unperceivable dimensions, so that all straight lines, iu
general, secondly intersect at the antipodal point of that spheric ”plane”.
And, really, when the pencil of circles is stereographically projected from
the spheric ”plane” onto a sphere of perceivable dimensions (Fig. 2), we can
see that, for the observer at S, the "straight lines” are all circles which meet
secondly at his antipodal point S. Accordingly, the parallel ”lines”, a and
d, meet at the antipodal point at two consecutive points, that is, they touch
each other at the observer’s antipodal point.

Since all points of a relativistic "plane” (as a sphere) are equivalent,
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Figure 2: Continuity in a pencil of circles; all "lines” secondly intersect at
the observer’s antipodal point

any observer has got his own antipodal point and, accordingly, his own
system of ”straight lines”, so that this relativistic concept of ”straight lines”
leads to the relativistic geometry which enables not only the realization
of the continuity principle but also a definite synthesis of Euclidean and
non-Euclidean geometries into a unique theory of curves and surfaces with
an absolute classification of them in surprisingly wide groups of harmonic
equivalents [2].
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2 Continuity in Pencils of Spheres

The Euclidean radical plane of a pencil of spheres is also the intruder which
apparently brakes the continuity in the succession of the spheres, for nobody
can explain how a sphere can be continually changed into an open-ended
Euclidean plane, and then, immediately after, that Euclidean plane into
a sphere with opposite curvature. Whereas the realization of the continu-
ity principle in pencils of circles has been relatively easy, the continuity in
pencils of spheres requires more sophisticated clarification.

While the greatest circle in a relativistic pencil of circles is its radical
"line”, the greatest sphere in a relativistic pencil of spheres is not its radical
"plane”, but, seemingly paradoxically, it is a "plane” through the ”rectilin-
ear” axis of the pencil. Let us try to elucidate it by comnparing the classical
concept of symmetry with the relativistic one.

d

Figure 3: Euclidean symmetry - unattainable ideal of elliptic (left) and
hyperbolic symmetry (right)

In classical geometry, the plane of symmetry of a sphere is orthogonal
to the sphere, it passes through its centre and intersects it at its great circle
(Fig. 3, middle). However, this Euclidean symmetry of a sphere is only
unattainable ideal of a relativistic symmetry of a sphere, since whatever
great a sphere of hyperbolic symmetry of a given sphere is (Fig. 3, right), it
can never become a Euclidean plane, that is to say, the orthogonal sphere
can never be at the same time the sphere which intersects the given sphere
at its great circle (Fig. 3, left; an elliptic symmetry), and, of course, neither
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of the two spheres (right and left) can ever pass through the Euclidean
centre of the given sphere. But, naturally, when the two spheres become of
unperceivable dimensions we cannot tell the difference between them and,
consequently, we wrongly equate both of them with an abstract Euclidean
plane. In other words, a relativistic ”plane”, which intersects a sphere at its
great circle, can never be orthogonal to the sphere. That also means that
two mutually harmonically symmetric parts of a sphere can never be equal,
i.e., two equal hemispheres can never be harmonically symmetric.

Figure 4: Pencil of ”concentric” spheres based on a ”plane” and on a sphere

Since the relativistic ”plane” is, in fact, a sphere of unperceivable dimen-
sions which intersects all spheres of the pencil at their great circles, in order
to see what is really going on here, we will project stereographically these
pencils of circles onto a sphere of perceivable dimensions. Now, since geom-
etry is actually a physical science, which can only describe and not prescribe
the laws of nature, let us imagine that a multitude of hemispherical cupolas
are being built on the globe.
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As the relativistic 7plane” through the "rectilinear” axis of a pencil of
spheres actually is a sphere, the hemispherical cupolas, based with their
great circles on that basic sphere, can never have greater dianeter than the
basic sphere has. Therefore, the heights of the enlarging cupolas range from
zero up to a maximal height (the height of the cupola whose sphere passes
through the centre of the basic sphere; cf. Figs. 4-8) and back to ”
height” of the largest "cupola” identical to the basic sphere, which enables
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countinuous transition to the other, symmetric side of the pencil of spheres.

These cupolas, i.e. the spheres of the pencils, form surfaces whose con-
tour curves are the ovals of Descartes: one-part ovals for hyperbolic pencils
of spheres (Fig. 5), the cardioid - for a parabolic pencil of spheres (Fig. 6),
and two-part, ovals for elliptic pencils of spheres (Fig. 7).

The boundary cases of the ovals are: the ellipse (a = bv/2, foci N and S)
for the pencil of ”concentric” spheres (Fig. 4; the parallel plancs of the basic
circles of the cupolas intersect at the conjugate polar through the pole H at
infinity), and, the contowr circle of the basic sphere Lg (cf. Fig. 7) when the
pole F is at the centre O of the sphere (thus all the basic circles of these
7cupolas” are the great circles of the basic sphere so that all the ”cupolas”
are ideutical to basic sphere).

In all the cases, the spheres of a pencil, even if considered as surfaces
without thickness, actually form filled up solids (through any point iuside the
solid two spheres pass). Tin the boundary case of the hollow solids formed by
elliptical pencils of spheves (cf. Fig. 7), when the pole F reaches the centre O
of the basic sphere, the "solid” becomes identical to the hollow basic sphere
as a surface without thickuess.

The vertices V1 and V, and of two highest cupolas always lic on the polar
of a chosen pole with respect to the contour circle of the basic sphere Lyg.

By moving the pole from1 H at infinity to E at the centre of the basic
sphere (Fig. 8) all forms of the solids, i.e. all forms of their contour Descartes’
ovals, between the starting cllipse and the finishing circle, can be obtained:
for the poles between H and Hj - one-part couvex ovals; for the pole Hs
(60°) - one-part oval with a flattened vertex; for H, (45°) - one-part oval
with a bitangent and two inflectional points; for H, (30°) - the bitangent
passes through Hy (cf. Fig. 5); for P - the cardioid (cf. Fig. 6); for the poles
between £ and Ep - two-part ovals with a bitangent and two inflectional
points on the outer part of the curve; for E; (30°) - two-part oval with a
flattened vertex (cf. Fig. 7); for the poles between E, and E - the outer
oval is also convex (for E, - the moving vertex of the inner oval reaches the
centre E of the sphere).

The gencral conclusion about pencils of circles and pencils of spheres is
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Figure 5: Hyperbolic pencil of spheres based on a "plane” and on a sphere

that their classical Euclidean interpretations are as illusive as the abstract
Euclidean lines and planes are. Since an observer on a real sphere of unper-
ceivable dimensions sees that large sphere as an abstract Euclidean plane, he
cannot tell the difference between, for instance, a real hyperbolic pencil of
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Figure 6: Parabolic pencil of spheres based on a "plane” and on a sphere

hemispherical cupolas based on the large sphere and an abstract Euclidean
pencil of cupolas based on an abstract Euclidean plane. He cannot tell any
difference because of the fact that in the starting fase of the cupolas con-
structing the difference is imperceptible, and later on, when the difference
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Figure 7: Elliptic pencil of spheres based on a ”"plane” and on a sphere

could be seen, the respective cupolas are out of his sight.
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Figure 8: Poles and polars for different forms of Descartes’ ovals
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