THE JACOBI FIELDS FOR A SPRAY ON THE TANGENT BUNDLE *

Ioan Bucataru

Faculty of Mathematics
"Al.I.Cuza" University Iaşi 6600 Iaşi, Romania
Email address: bucataru@uaic.ro

Abstract

For a spray S on the total space of the tangent bundle we consider a variation of integral curves. The vector field of variation satisfies a kind of Jacobi equation in that appears the curvature of the nonlinear connection induced by S. A global form for the Berwald connection associated to a nonlinear connection is given. This is useful in study of the horizontal curves and in variation of such curves. When S is provided by a linear connection ∇ the vector field of variation is just the Jacobi vector field for ∇ .

AMS Mathematics Subject Classification (1991): 53C60, 58A20, 58A30. Key words and phrases: Jacobi fields, spray, nonlinear connection.

Introduction

It is well known that a second order differential equation (SODE) or a semispray S determines a nonlinear connection N on the tangent bundle of a manifold M by means of an almost product structure [5] or by a vertical projector. For a nonlinear connection we can consider a linear connection on the tangent bundle, usually denoted $Berwald\ connection$. A global expression of it is proposed. A global equation which determine the Berwald connection was given by Martinez, Carinena and Sarlet in [9]. The horizontal curves of the nonlinear connection N associated to a semispray S are integral curves for S if and only if S is a homogeneous vector field with respect to velocity (in that case S is called a spray). In the homogeneous case is proved that a curve \tilde{c} on the tangent bundle is horizontal for the

^{*}Partially supported by Grant no.3020/1997, Aa 4060/1998, MCT - Academia Română, Filiala Iași

70 Ioan Bucataru

nonlinear connection if and only if \tilde{c} is a geodesic for the Berwald connection. If the semispray S is Lagrangian, that means there exists a Lagrangian $L:TM\to I\!\!R$ such that the canonical semispray associated to it is just S, then the geometry of the tangent bundle TM can be derived from L and the geometrical object associated to it.

In this paper we provide a study of the integral curves of a spray, especially when this is no Lagrangian. The vector field of variation for an integral curve of a spray, equivalent for a geodesic of the Berwald connection, satisfies two types of equations that generalise the classical *Jacobi equation*.

1 Preliminaries

Let M be a real, smooth, n-dimensional manifold. The tangent bundle of the manifold M will be denoted by (TM, π, M) . Denote by $\widehat{TM} = TM \setminus \{0\}$, where 0 denotes the null section of the tangent bundle. For a local chart $(U, \varphi = (x^i))$ in $p \in M$ its lifted local chart in $u \in \pi^{-1}(p)$ will be denoted by $(\pi^{-1}(U), \Phi = (x^i, y^i))$.

There is a vertical subbundle $V \subset TTM$, provided by the kernel of the differential of the natural submersion $\pi: TM \to M$. Let $\{\frac{\partial}{\partial x^i}|_u, \frac{\partial}{\partial y^i}|_u\}$ be the natural frame of the tangent space T_uTM in a point $u \in TM$. It is easy to check that $\{\frac{\partial}{\partial y^i}|_u\}$ is a local frame for V(u). Denote by $\Gamma(V)$ the $\mathcal{F}(TM)$ module of vector fields that belong to V.

The tensor field $J=\frac{\partial}{\partial y^i}\otimes \mathrm{d} \mathbf{x}^i$, is globally defined. It is called the natural almost tangent structure. One has: 1. $J^2=O$, 2. rank J=n, 3. Im $J=\mathrm{Ker}\ J=V$.

A vector field $S \in \chi(TM)$ is said to be a semispray on TM if $JS = \mathcal{C}$, where $\mathcal{C} = y^i \frac{\partial}{\partial y^i}$ is the Liouville vector field. The local expression of a semispray is: $S = y^i \frac{\partial}{\partial x^i} - 2G^i \frac{\partial}{\partial y^i}$. A subbundle N of the tangent bundle (TTM, τ, TM) which is supplementary to the vertical subbundle V, i.e. the following Whitney sum holds:

$$TTM = N \oplus V,$$

is called a nonlinear connection on TM. A nonlinear connection determines a n-dimensional distribution $N: u \in TM \to N(u) \subset T_uTM$.

Definition 1.1 An $\mathcal{F}(TM)$ -linear map $v: \chi(TM) \to \chi(TM)$ for which we have:

$$(1.1) J \circ v = 0, \quad v \circ J = J$$

will be called a vertical projector.

Note that a vertical projector can be regarded as a morphism of vector bundles. As $v(\frac{\partial}{\partial y^i}) = v(J(\frac{\partial}{\partial x^i})) = J(\frac{\partial}{\partial x^i}) = \frac{\partial}{\partial y^i}$, from the first condition (1.1) it results that $v(\chi(TM)) = \Gamma(V)$. Obviously rank v = n. We have that every vertical projector v induces a nonlinear connection and conversely every nonlinear connection N induces a vertical projector v such that the nonlinear connection determined by v is just v. In local coordinates a vertical projector can be written as follows:

$$v = N_j^i \frac{\partial}{\partial u^i} \otimes dx^j + \frac{\partial}{\partial u^i} \otimes dy^i.$$

The functions N_j^i are called the coefficients of the nonlinear connection N. For every $u \in TM$, $\{\frac{\delta}{\delta x^i}|_u := \frac{\partial}{\partial x^i}|_u - N_i^j(u)\frac{\partial}{\partial y^j}|_u, \frac{\partial}{\partial y^i}|_u\}$ is a basis for T_uTM adapted to the horizontal and the vertical distribution.

Proposition 1.1 Let v be a vertical projector. There is an unique vector field $S \in \chi(TM)$ such that

(1.2)
$$\begin{cases} J(S) = \mathcal{C}, \\ v(S) = 0. \end{cases}$$

This vector field is called the canonical semispray of the nonlinear connection N induced by v.

2 Sprays and integral curves

Proposition 2.1 Let S be a semispray on TM. Then the map $v: \chi(TM) \rightarrow \chi(TM)$ defined by

(2.1)
$$v(X) = \frac{1}{2}(X + [S, JX] + J[X, S])$$

is a vertical projector.

In local coordinates:
$$v = \frac{\partial G^i}{\partial y^j} \frac{\partial}{\partial y^i} \otimes dx^j + \frac{\partial}{\partial y^i} \otimes dy^i$$
.

Proposition 2.2 Let S be a semispray on \widetilde{TM} and v be the vertical projector associated to it like in Proposition 2.1. Then S is the canonical semispray of the nonlinear connection determined by v if and only if

$$\mathcal{L}_{\mathcal{C}}S = [\mathcal{C}, S] = S.$$

A semispray verifying (2.2) (which means that S is a homogeneous vector field of degree two with respect to velocity) is called a *spray*. In local coordinates (2.2) becomes:

$$(2.2)' 2G^{i} = \mathcal{C}(G^{i}) = y^{j} \frac{\partial G^{i}}{\partial y^{j}}.$$

The condition (2.2)' means that the functions G^i are homogeneous of degree 2.

Let $X = X^i \frac{\partial}{\partial x^i}$ be a vector field on M. Then the complete lift of X to TM follows:

(2.3)
$$X^{c} = (X^{i} \circ \pi) \frac{\partial}{\partial x^{i}} + \frac{1}{1!} S(X^{i} \circ \pi) \frac{\partial}{\partial y^{i}}$$

and it does not depend of the choice of the semispray S. The vertical lift of X will be denoted by X^v . We have imediately $X^v = J(X^c)$.

Let $\tilde{c}: t \in I \subset \mathbb{R} \to \tilde{c}(t) \in \widetilde{TM}$ be an integral curve of a semispray S. Then $c = \pi \circ \tilde{c}$ is called a path of the semispray S.

Next we consider a spray S on \widetilde{TM} .

Proposition 2.3 Let $c: I \subset \mathbb{R} \to M$ be a smooth curve and $X(t) = \frac{dc}{dt}$ be the tangent vector field along c. Then c is a path for the spray S if and only if

$$(2.4) v(X^c) = 0.$$

Let N be the nonlinear connection associated to the spray S. Denote by X^h the horizontal lift of a vector field $X \in \chi(M)$ and by h the horizontal projector induced by N. We have $X^h = h(X^c)$. Taking into account (2.4) we have that a curve c is a path for a spray S if and only if

$$(2.4)' X^c = X^h = h(X^c).$$

For a horizontal curve $\tilde{c}: I \to \widetilde{TM}$ with respect to a nonlinear connection N its projection $c = \pi \circ \tilde{c}$ is called a h-path of N.

Proposition 2.4 Let $c: I \subset \mathbb{R} \to M$ be a smooth curve and $X(t) = \frac{dc}{dt}$ be the tangent vector field along c. Then c is a h-path of the nonlinear connection N associated to the spray S if and only if c is a path of S.

Denote by Ω the $\Gamma(V)$ -valuated two form of curvature of the nonlinear connection N, $\Omega: \chi(M) \times \chi(M) \to \Gamma(V)$,

$$\Omega(X,Y) = [X^h, Y^h] - [X, Y]^h.$$

Definition 2.1 Let c be a path for s spray S on \widetilde{TM} . A vector field Y on M along c is called a Jacobi vector field along c if it satisfies:

$$[v(Y^c), X^c] + \Omega(Y, X) = 0,$$

where X is the tangent vector field along c.

Theorem 2.1 Let $c: I \subset IR \to M$ be a path of a spray S. Consider a variation by paths of S, $\alpha: (-\varepsilon, \varepsilon) \times I \to M$, i.e. $\alpha(0,t) = c(t), \forall t \in I$ and $\alpha_s(t) := \alpha(s,t)$ are paths of S for every $s \in (-\varepsilon, \varepsilon)$. Let $X = \frac{\partial \alpha}{\partial t}|_{s=0}$ and $Y = \frac{\partial \alpha}{\partial s}|_{s=0}$. Then Y is a Jacobi vector field along c.

Proof. First, we observe that [X,Y]=0. Since $v(X^c)=0$ then $[X^c,Y^c]=[X,Y]^c=0$ and $\Omega(X,Y)=[X^h,Y^h]=[X^c-v(X^c),Y^c-v(Y^c)]=-[X^c,v(Y^c)]$. Thus Y satisfies (JE). q.e.d.

Proposition 2.5 For a path c of a spray, the tangent vector field $X = \frac{dc}{dt}$ and $\widetilde{X}(t) = tX(t)$ are Jacobi vector fields along c.

Proof. It is easy to check that X satisfies (JE). For \widetilde{X} we have: $\widetilde{X}^c = (tX)^c = tX^c + X^v$ and $v(\widetilde{X}^c) = tv(X^c) + X^v = X^v$. Then $[v(\widetilde{X}^c), X^c] + \Omega(\widetilde{X}, X) = [X^v, X^c] + t\Omega(X, X) = [X^v, X^c] = 0$. q.e.d.

Proposition 2.6 The solutions Y of the Jacobi equations (JE) along a path c are completely determined by the initial condition $Y(t_0) = Y_0 \in T_{c(t_0)}M$ and $v(Y^c)(t_0) = V_0 \in V(\widetilde{c}(t_0))$.

Proof. For a vector field $X = X^i \frac{\partial}{\partial x^i}$ along a curve $c: t \in I \subset \mathbb{R} \mapsto c(t) = (x^i(t))$ we have:

(2.5)
$$v(X^c) = \left(\frac{\partial X^i}{\partial x^j}(x)y^j + \frac{\partial G^i}{\partial y^j}(x,y)X^j\right)\frac{\partial}{\partial y^i}, y^j = \frac{dx^j}{dt}.$$

74 Ioan Bucataru

We observe that the equation $v(X^c) = 0$ is linear with respect to the components X^i of the vector fields X. So, with the initial condition $X(t_0) = X_0 \in T_{c(t_0)}M$ the equation $v(X^c) = 0$ has a unique solution. This solution is called a parallel vector field along the curve c.

Let $t_0 \in I$ and $\{E_i^0; i = \overline{1,n}\}$ be a basis for the tangent vector space $T_{c(t_0)}M$. Then there exist n parallel vector fields $\{E_1, ..., E_n\}$ along c with the initial conditions $E_i(t_0) = E_i^0$.

Next let $X=a^iE_i$ be the tangent vector of c and Y be a vector field along c. Then $Y=f^iE_i$. We obtain $Y^c=(f^i\circ\pi)E^c_i+\frac{df^i}{dt}E^v_i$. Since $v(E^c_i)=0$ we have that $v(Y^c)=\frac{df^i}{dt}E^v_i$. The Jacobi Equation (JE) becomes

$$\left[\frac{df^{i}}{dt}E_{i}^{v},X^{c}\right]+f^{i}\Omega(E_{i},X)=0,$$

which is equivalent with

$$\frac{d^2 f^i}{dt^2} E_i^v + \frac{d f^i}{dt} [E_i^v, X^c] + f^i \Omega(E_i, X) = 0.$$

Set $\Omega(E_i, E_j) = \Omega_{ij}^k E_k^v$, and $[E_i^v, X^c] = b_i^j E_j^v$. The last equation becomes:

(2.6)
$$\frac{d^2f^i}{dt^2} + \frac{df^j}{dt}b^i_j + f^j a^k \Omega^i_{jk} = 0.$$

The equation (2.6) is linear in $f = (f^i)$ and the given initial conditions determine in a unique way the vector field Y. q.e.d.

Corollary 2.1 The set of Jacobi vector fields along a path c is a real linear space of dimension 2n.

Proof. We observe that if Y and Z are two vector fields along c and a, b are two real numbers the vector field aY + bZ satisfies also (JE). Taking into account the above Proposition we have the statement.

3 Sprays and linear connection

Let S be a spray on \widetilde{TM} . We consider the nonlinear connection N induced by S, the vertical projector v given by (2.1), the horizontal projector h = Id - v and the bundle isomorphism $\theta: V \to N$, $\theta(X^i \frac{\partial}{\partial v^i}) = X^i \frac{\delta}{\delta x^i}$.

Proposition 3.1 The map $D: \chi(TM) \times \chi(TM) \rightarrow \chi(TM)$ given by: (3.1)

$$D_XY = v[hX, vY] + h[vX, hY] + J[vX, (\theta \circ v)Y] + (\theta \circ v)[hX, JY],$$

is a linear connection on the tangent bundle, compatible with the nonlinear connection N, that means: Dh = Dv = 0.

Proof. By a straightforward computation one verifies:

- $1)D_{fX}Y = fD_XY, D_XfY = X(f)Y + fD_XY;$
- $2)D \circ J = 0, D \circ h = 0.$

This linear connection is called the Berwald connection and it appears in many papers [8], [1] in local coordinates. A global characterisation of this connection was given in [9], too.

Proposition 3.2 In the basis $\{\frac{\delta}{\delta x^i}, \frac{\partial}{\partial y^i}\}$ adapted to the nonlinear connection N, the Berwald connection D has the following form:

$$\begin{split} D_{\frac{\delta}{\delta x^{i}}} \frac{\delta}{\delta x^{j}} &= F_{ji}^{k} \frac{\delta}{\delta x^{k}}, \ D_{\frac{\delta}{\delta x^{i}}} \frac{\partial}{\partial y^{j}} &= F_{ji}^{k} \frac{\partial}{\partial y^{k}}, \ F_{ji}^{k} &= \frac{\partial N_{i}^{k}}{\partial y^{j}}, \\ D_{\frac{\partial}{\partial y^{i}}} \frac{\delta}{\delta x^{j}} &= D_{\frac{\partial}{\partial y^{i}}} \frac{\partial}{\partial y^{j}} &= 0. \end{split}$$

Next, the Berwald connection will be indicated by the set $B\Gamma = (N_i^i, F_{ii}^k, 0)$.

Remark 3.1 For the Berwald connection we have the following formula:

(3.2)
$$v(D_X^H Y) - h(D_Y^V X) = [h(X), v(Y)],$$

where:

$$D_X^H Y := D_{h(X)} Y; \ D_Y^V X := D_{v(Y)} X$$

are the h- and v-covariant derivatives of the Berwald connection. See also [9].

Proposition 3.3 Let $c: I \subset \mathbb{R} \to M$ be a smooth curve, $X = \frac{dc}{dt}$ its tangent vector field and $\tilde{c}: I \to TM$, $\tilde{c}(t) = (c(t), \frac{dc}{dt})$. Then c is a path for S if and only if \tilde{c} is a geodesic for the Berwald connection D.

Proof. We must prove that the conditions $v(X^c) = 0$ and $D_{X^c}X^c = 0$ are equivalent.

76 Ioan Bucataru

Assuming $v(X^c) = 0$, by (3.1) we have: $D_{X^c}X^c = (\theta \circ v)[X^c, J(X^c)] = (\theta \circ v)[X^c, X^v] = 0$.

Let now $D_{X^c}X^c = D_{X^c}h(X^c) + D_{X^c}v(X^c) = 0$. Since D preserve the horizontal and the vertical distributions then $D_{X^c}h(X^c) = D_{X^c}v(X^c) = 0$. But

$$D_{X^c}h(X^c) = h[v(X^c), h(X^c)] + (\theta \circ v)[h(X^c), J(X^c)] = 0.$$

It is very easy to check that $h[v(X^c), h(X^c)] = 0$. So we have $(\theta \circ v)[h(X^c), J(X^c)] = 0$. Using $h(X^c) = X^c - v(X^c), J(X^c) = X^v$ and $[X^c, X^v] = 0$ we obtain $(\theta \circ v)[v(X^c), X^v] = 0$. Along the curve \tilde{c} we have $C = X^v$ and since $v(X^c)$ is a homogeneous vector field of degree two, $\mathcal{L}_{C}(v(X^c)) = v(X^c)$. Thus $0 = -(\theta \circ v)(v(X^c)) = -\theta(v(X^c))$. It follows $v(X^c) = 0$. q.e.d.

Now, let c be a path for S, X be the tangent vector field and Y be a vector field along c. Since $h(X^c) = X^c$, $[X^c, Y^v] = [X, Y]^v$ and $[X^c, v(Y^c)]$ is a vertical vector field we have:

(3.2)
$$D_{X^c}Y^c = [X^c, v(Y^c)] + [X, Y]^h.$$

Let us consider the Nijenhuis tensor field $N_v(X,Y)$ of the vertical projector v. We have:

$$N_{\nu}(X^c, Y^c) = \Omega(X, Y).$$

Theorem 3.1 Let $c: I \subset \mathbb{R} \to M$ be a geodesic for the Berwald connection D. Consider a variation of c, $\alpha: (-\varepsilon, \varepsilon) \times I \to M$, such that $\alpha(0, t) = c(t), \forall t \in I$ and $\alpha_s(t) := \alpha(s, t)$ are geodesics for D for every $s \in (-\varepsilon, \varepsilon)$. Let $X = \frac{\partial \alpha}{\partial t}|_{s=0}$ and $Y = \frac{\partial \alpha}{\partial s}|_{s=0}$. Then Y satisfies the following equation:

(3.3)
$$v(D_{X^c}Y^c) + N_v(X^c, Y^c) = 0.$$

Proof. Taking into account (3.2) and [X,Y] = 0 we get $D_{X^c}Y^c = [X^c, v(Y^c)]$. Since c is a geodesic for D, according to Proposition 3.3, c is a path for S or equivalent a h-path for N. In these conditions Y is a Jacobi vector field and $N_v(X^c, Y^c) = \Omega(X, Y) = -[X^c, v(Y^c)]$, so (3.3) is proved. **q.e.d.**

Theorem 3.1 shows that the Jacobi equation (JE) and (3.3) are equivalent.

4 Examples

1. Let M be a manifold and S be a spray on TM. Then the local coefficients of S are given by $G^{i}(x,y) = \gamma^{i}_{ik}(x)y^{j}y^{k}$, where $\gamma^{i}_{ik}(x)$ are the

local coefficients of a symmetric linear connection ∇ on M. Then $S=y^i\frac{\partial}{\partial x^i}-\gamma^i_{jk}(x)y^jy^k\frac{\partial}{\partial y^i}$ is a spray on TM. A vector field that is a Jacobi vector field in the sense of Definition 2.1 is a Jacobi vector field in the classical sense for the linear connection ∇ .

For the considered spray S the 2-form of curvature of the nonlinear connection associated to it is given by:

$$\Omega(X^i(x)\frac{\partial}{\partial x^i}|_x,Z^j(x)\frac{\partial}{\partial x^j}|_x)=R_i{}^k{}_{jp}(x)X^i(x)Z^j(x)y^p\frac{\partial}{\partial y^k}|_{(x,y)},$$

where R is the (1,3) curvature tensor of ∇ . We consider c a geodesic, X the tangent vector field and Y the transverse vector field. A path for S is a geodesic for ∇ . We have $v(Y^c) = (\nabla_X Y)^v$ and $v(D_{X^c} Y^c) = v(D_{X^h} Y^h + D_{X^h} v(Y^c)) = D_{X^h} (\nabla_X Y)^v = (\nabla_X^2 Y)^v$. Then (JE) which is equivalent with (3.3) becomes

$$\nabla_X^2 Y + R(Y, X)X = 0.$$

The last equations is the classical Jacobi equation for the linear connection ∇ .

2. Suppose that the spray S is Lagrangian. This means that there is a map $L: \widetilde{TM} \to I\!\!R$ for which the matrix with the entries

$$g_{ij} = \frac{1}{2} \frac{\partial^2 L}{\partial y^i \partial y^j}$$

is nondegenerate and the local coefficients \mathcal{G}^i of the spray S are given by

$$2G^{i} = \frac{1}{2}g^{ij}(\frac{\partial^{2}L}{\partial u^{i}\partial x^{m}}y^{m} - \frac{\partial L}{\partial x^{j}}).$$

Put $N^i_j = \frac{\partial G^i}{\partial y^j}$ and $F^i_{jk} = \frac{\partial^2 G^i}{\partial y^j \partial y^k}$. Let $B\Gamma = (N^i_j, F^i_{jk}, 0)$ be the Berwald connection and R its curvature. For a geodesic c we consider the tangent vector field X and Y the transverse vector field. We observe that X is fixed. If we consider the X-covariant derivative D^X and the X-curvature R^X , the equation (3.3) reduces to that obtained by Z.Shen in ([10]):

$$(D^X)_X^2 Y + R^X(Y) = 0.$$

References

[1] M. Abate, A characterization of the Chern and Berwald Connections, Houston Journal of Mathematics, 22:4(1996), 701-717.

- [2] M. Anastasiei, and I. Bucataru, Jacobi fields in generalised Lagrange spaces, Rev. Roumaine Math. Pures et Appl., XLII: 9-10(1997), 689-695.
- [3] P.L. Antonelli, R.S. Ingarden and M. Matsumoto, The theory of sprays and Finsler spaces with applications in Physics and Biology, Kluwer Acad.Publ., 1993.
- [4] I. Bucataru, Semisprays and vertical projectors in the higher order geometry, to appear in Algebra, Groups and Geometries, 16: 1(1999).
- [5] J. Grifone, Structure presque-tangente et connexions, I, II, Ann.Inst.Fourier, 22: 1,3(1972), 287-334, 291-338.
- [6] B.T.M. Hasan, Sprays and Jacobi fields in Finsler geometry, An. Univ. Timişoara, ser. St.matematice, XIX: 2(1981), 129-139.
- [7] P.W. Michor, The Jacobi flow, Rend. Sem. Mat. Univ. Pol. Torino, 54: 4(1996), 365-372.
- [8] R. Miron, and M. Anastasiei, The geometry of Lagrange spaces: Theory and Applications, Kluwer Acad. Publ. 1994, FTPH, no. 59.
- [9] E. Martinez, J. Carinena, and W. Sarlet, Derivations of differential forms along the tangent bundle projection I, Diff. Geom. Appl., 2(1992), 17-43.
- [10] Z. Shen, Finsler manifold of constant positive curvature, Contemporary Mathematics, 196(1996), 83-93.