Novi Sad, October 8–11, 1998

AREA SWEPT BY LINE SEGMENT UNDER A PLANAR MOTION

Momčilo Bjelica

University of Novi Sad, "M. Pupin", Zrenjanin 23000, Yugoslavia Email address: bjelica@zpupin.tf.zr.ac.yu

Abstract

Formula for the area swept by line segment under a planar motion in the Euclidean plane is presented.

AMS Mathematics Subject Classification (1991): 53A04.

Key words and phrases: swept area, roulette.

Let \mathcal{M} be any motion of Euclidean plane. Then the motion \mathcal{M} can be obtained as a rolling of some curve c along a fixed curve l. For the curve l we can take the polode of trajectory of any point.

A roulette $\mathcal{R}(c,l,P)$ is a curve traced out by a point P which is in fixed position with respect to a rolling curve c, and which rolls without slipping along a fixed base curve l. Area bounded by the roulette and base curve, area $\mathcal{R}(c,l,P)$ in some cases is minimal if the tracing point is barycenter B of curve c (which is) pondered by a difference of curvature measures $\kappa_c - \kappa_l$.

Let $c = \widehat{C_1C_2}$ and $l = \widehat{L_1L_2}$ be oriented piecewise regular curves with parametric equations r(t) = (x(t), y(t)), where $a \leq t \leq b$, and $\rho(t) = (u(t), v(t))$, where $c \leq t \leq d$, respectively. Tangent vector $\dot{r}(t) = (\dot{x}(t), \dot{y}(t))$ at regular point X(t) is non-zero. A parametric representation is regular if vector function r is of class C^1 and $\dot{r}(t) \neq 0$ for all $a \leq t \leq b$. Tangent vectors can be translated so that they have same origin. The total curvature κ_c^T is difference $\theta_1 - \theta_0$ in the values of inclination θ of the tangent to the curve at the end points of the curve. For closed curve c ($C_1 = C_2$) it holds $\kappa_c^T = 2z\pi$, z is an integer. Natural parameter is length of arc $s = \int |\dot{r}(t)| \, dt$; then tangent vectors have length 1. If c is smooth in some neighborhood of point X, then curvature of curve c at point X is

$$\kappa(X) = \lim \frac{\Delta \alpha}{\Delta s} = \frac{d\alpha}{ds}, \qquad \Delta s \to 0, \qquad Y \to X,$$

 $\Delta \alpha$ is angle between tangent vectors at X and Y, Δs is length of arc \widehat{XY} . Classical formula for the curvature is

$$\kappa(X) = \frac{\dot{x}(t)\ddot{y}(t) - \ddot{x}(t)\dot{y}(t)}{(\dot{x}(t)^2 + \dot{y}(t)^2)^{3/2}}.$$

At singular point S the point curvature is $\kappa(S) = \angle(\dot{r}_{-}(S), \dot{r}_{+}(S))$, so that $-\pi \leq \kappa(S) \leq \pi$. We take $\kappa(S) = \pm \pi$ if $\lim \angle(\dot{r}_{-}(S), \widehat{SX}) = \pm \pi$, $X \to S$, $x \in \widehat{SC}_2$. If the whole arc \widehat{SC}_2 is straight segment opposite to $\dot{r}_{-}(s)$, we can choose either π or $-\pi$. Mention that curvature κ as function of length of arc gives natural equation of the curve. If two curves have equal curvatures as functions of length, then they can coincidence by motion.

Definition 1 Curvature measure κ on curve c is defined on regular segments by the curvature functional $\kappa(t)$, and at singular points the point-measure is equal to point-curvature.

Definition 2 Steiner point B of curve c is the barycenter of curve c which is pondered by the curvature measure κ .

Theorem 1 ([1]) Let B be a barycenter of curve c by difference of curvature measures $\kappa_c - \kappa_l$ pondered, and let κ^T be total curvature. Then, area bounded by a roulette and base curve l is

$$area \mathcal{R}(c, l, P) = area cone Pc + \frac{1}{2} \int_{c} PX^{2} d(\kappa_{c} - \kappa_{l}), \qquad X \in c$$
$$= area \mathcal{R}(c, l, B) + \frac{\kappa_{c}^{T} - \kappa_{l}^{T}}{2} BP^{2} + area \Box PC_{1}BC_{2}.$$

For closed rolling curve area cone Pc = area c and $area \square PC_1BC_2 = 0$.

Theorem 2 ([1]) Let area $\mathcal{R}(c, l, PQ)$ be the area traced by a segment PQ in fixed position with respect to the rolling curve c, i.e., the area between two roulettes traced by points P and Q which ends are connected by straight segments. Then

$$area \mathcal{R}(c, l, PQ) = \frac{1}{2} (\kappa_c^T - \kappa_l^T) (BP^2 - BQ^2).$$

Specially,

$$area \mathcal{R}(c, l, BP) = \frac{1}{2}(\kappa_c^T - \kappa_l^T)BP^2.$$

Theorem 3 Let \mathcal{M} be a motion of Euclidean plane which polode contains only finite points, and let ρ be the total angle of rotation of \mathcal{M} . Then there exists a point J such that the area swept by any segment PQ under the motion \mathcal{M} is

$$area\,\mathcal{M}(PO) = \frac{\rho}{2}(JP^2 - JQ^2).$$

Proof. Let the motion \mathcal{M} can be presented as a rolling of some curve c along the polode l. Also, take that J is Steiner point of the system c and l. Then Theorem 3 follows from Theorem 2. \square

References

[1] M. Bjelica, Area and length for roulettes via curvature, Differential geometry and applications, Proc. Conf. 1995, Brno, 245–248.