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Abstract

The DPW method determines classes of surfaces with special fea-
tures (minimal surfaces, surfaces of constant mean or Gaussian curva-
ture and Willmore surfaces), by means of loop groups. The harmonicity
of special maps associated to these surfaces is characterized in terms
of meromorphic potentials of a certain shape. The link between these
concepts is performed using the Birkhoff and Iwasawa decomposition
for loop groups. The paper presents the main features of the method
and describes explicitly these decompositions in an extended frame-
work which includes the non-semisimple case.
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1 The proper DPW method

Among the methods which determine harmonic maps from Riemannian sur-
faces to symmetric spaces or to Lie groups, one of the most recent is the
DPW method [8], which proved to be useful in determining classes of CM C-
surfaces, minimal surfaces, surfaces of constant Gaussian curvature and Will-
more surfaces.

The primary objects of the DPW method are

e a Riemannian compact simply connected surface M of genus ¢ > 1 and
D € {C, D'} its universal cover, where D is the open unit complex disk;
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e a compact connected semisimple Lie group G having the Lie algebra
L(G) = g;

e an involution o € Aut(G) with the fixed point set G° D K D G§, g° =
L(K)=k (we denoted the induced map of o on g by the same symbol);

e a solvable subgroup B C K ® which provides an Iwasawa decomposition
for the complexified group K€,

K=K B, KnNB ={e}, (1)
and the corresponding splitting of the associate(i Lie algebras
k®=ka®b, b = L(B). | (2)
The DPW method determines classes of harmonic maps
f:M—>N=G/K ==(G),

where 7 is the projection 7 : G = G /K as described in the following.
The Cartan decomposition

g =kop, p = Ker(o + Id),k = Ker(o — Id), (3)

provides the essential relations [k, k] C k, [k, p] C p, [p,p] C k.

Assuming M simply connected surface, any map f : M — G/K provides
canonically a lift to F : M — G,f = w o F, and the g-valued 1-form
a = F~1dF € A'(M,g) splits relative to (3), & = ap +q; also, the splitting
TM® =TM&T"'M of TM¢® into its (1,0) and (0,1) subspaces, induces
the decompositions d = 9 + 9, o = o; + o'y, i = 0,1, and hence o =
o + o+ af.

The harmonicity of f and the Maurer-Cartan equations for « provide
the system

dag + Lo A ag] = —[a] A ]
3 ! (4)
{ 0o + slag Aag] =0

which are iff conditions for the existence and harmonicity of the function
f, constructed as the projection of the lifted frame F provided by the pair
of forms oy € A'(M,k) and oy € A'(M,p) by integration. The system
(4) is equivalent to the integrability conditions dax, + 3[ax A ay] = 0 of the
"loopified” form

ay = Ata] + ag + Ao,
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whose associated system F~!'dF = ay integrates to the extended lift F :
M — AG,, unique up to a gauge transformation H : M — K, where we
denoted

AG,Z{h | h: 8" = G, h(e*™ /™)) = ch(\),VX € S' = U(1)}.

For M simply connected, assuming w.r.g. M = D, the harmonicity of f is
equivalent to the existence of a holomorphic map f : M — AG,/K which
is provided by a AG,-translation of a 1-form

0, =2"'n+ xq € ApY;
this map is related to f via f |x=1= f. The whole family of maps

AZFO)N) : M — G/K, YA€ S

obtained from such holomorphic forms are harmonic [8].

The procedure which constructs (mod singularities), the harmonic func-
tions f from p ®valued holomorphic 1-forms is called the Weiersirass repre-
sentation of harmonic maps and is described in [8, 1].

A central question is to obtain the exact form of meromorphic potentials
which provide the extended frames F(z, 2, A). This goal is accomplished by
solving ”the J-problem” [3] and applying a generalization of the Grauert
theorem, to obtain the global holomorphic loop g given by the relation

F= gwll.
Then the holomorphic potential is ¢ = §~'dg, and the meromorphic poten-
tial is ¢ = §~'dj_ - obtained from the negative loop §_ given by the further
Birkhoff decomposition of §

9=9-9+
where g+ € A*GS and

ATG,% = {g € AG,%| g(0) = e, g extends holomorphically to D'},
A=G,®={g € AG,%| g(c0) = €, g extends holomorphically to C\ D'}.

For example, for determining classes of minimal surfaces, the DPW
method determines the meromorphic potentials associated to the Gauss
map - which is holomorphic (and hence harmonic) and provides via the
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Weierstrass representation the concrete surface. Being valued in S? =
S0O(3)/S0O(2) = G/K, it provides a loopified frame valued in the com-
plex universal cover G® = SL(2, C); For such loops, the decompositions can
be carried on for providing the meromorphic potential from the extended
frame, and then recapturing a whole fainily of frames, after applying the
dressing procedure.

The same procedure works for CMC-surfaces, with the difference that
generally the Gauss map is harmouic, but not necessarily holomorphic.

For Willmore surfaces, the conformnal Gauss map is valued in

G/K = S0(4,1)/50(3,1)

and here G® = SO(5, C); the procedure provides directly the immersion of
the surface in R3, S%or H® [12].

In the following we present briefly a series of results of the extended DPW
framework, in which the same techniques are used to study the harmonicity
of maps valued to general Lie groups. Namely, we characterize the harmonic-
ity of these maps in terms of conditions on the associated Maurer-Cartan
forms, and provide natural exteunsions of the Birkhoff and Iwasawa decom-
positions for loop groups, in the non-twisted case (similar to the twisted case
of the proper DPW method).

2 Harmonic maps

Let a Lie group G endowed with a left invariant pseudoriemannian metric g,
and let ¢ : D — G a weakly conformal immersion {23]. Then the immersion
"¢ is harmonic, if it is a critical point for the the energy functional is [10, 11,

23] . _
1 d¢*d¢?
E = SYi 7 “d 1,
() /D 591 fra gg0 ) A VO

where (v%%) is the inverse of ¥ = ¢*g. The energy E(yp) is conformally
invariant (e.g., [23]), and can be rewritten

1
Be) = 5 [ (1 A 41 Ay [Pdzdy, %)

where
Ay =9 00, Ay =9 oy € A'(D, 8). (6)

Here we use g = Lie(G) and the subscripts z,y, zz, etc denote the partial
differentiation with respect to the corresponding variable(s).



Loop Group Decompositions in the Generalized DPW Method 59

The harmonicity (Euler-Lagrange) equations for ¢, are provided by
Theorem. Let G be a Lie group admitting a left-invariant pseudoriernan-

nian metric g. Then the map ¢ : D — G is harmonic iff the associated
vector-valued I-forms Ay and Ay (6) satisfy the equation

(adA())* Ay + (adA))" Agy) — (O Ay + OyA(y)) =0, (7)

where the star superscript indicates the adjoint w.r.t. the nondegenerate
bilinear form induced by g on the Lie algebra g.

Corollary. If the metric g is bi-invariant, then the harmonicity condition
becomes:
a’;A(z) + 5yA(y) =0, (8)
with A(z), A(y) defined in (6).
For complex coordinates z = z + 4y, Z = z — iy on D, the equations (8)
rewrite
55A(2) + azA(f) =0, (9)
where 0, = (0 —19,)/2, 0; = (0z +10,)/2, and A(,y = 0 Lo, A =
o oz
We can characterize the harmonicity of the map ¢ : D — G, in terms of
its associated Maurer-Cartan form

a=¢ ldp:D - g= Lie(G),a € A'(D,g)
as follows:

Proposition. The following statements are equivalent:
a) The map ¢ is harmonic.
b) The form « satisfies the integrability and harmonicity equations:
L =
da -,i- sla /\"a] 0 (10)
Oz + 0,0 = 0.
c) The "loopified form”
14+t 1+ ‘
ay = +2 o+ ; o' € A(D,g%),V) € S

is integrable for V) € 81, i.e., it satisfies the integrability condition:

1
day + '2—[(1,\ /\a,\] =0,

where d = 9, + 0; and the form « splits canonically

a=d +0a' = A,dz+ Apydz : TDY @ TD! — g% va e S
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3 Loop group decompositions

Let G be a simply connected real analytic Lie group which admits a faithful
finite dimensional continuous representation. Then, the Levi theorem [15,
24] provides the following subgroups: e H - a reductive, analytic subgroup
of G, and

e B - a simply connected solvable normal subgroup of G,
such that G can be written as a semidirect product

G=H®B.

The complexified groups, B® and H?® inherit the properties of B and H
, hence H® is a reductive complex group, and B% is also simply con-
nected, solvable normal subgroup of G® Then G% admits a faithful finite-
dimensional complex representation and satisfies

G®= H“8B". (11)

Being complex and reductive, H % is the complexification of a (maximal)
real compact subgroup K of H® (H® = K%). On the other hand, being
solvable and simply connected, the group B® decomposes canonically

B®= A°N® (12)

where A¢ is abelian and N® = [B% BY is simply connected and is the
nilradical of B® [2]. N % is closed in B® and has the Lic algebra Lie(N ) =
[Lie(B?), Lie(BY)]. :
We remark that
BEIN®2 A2V x W, (13)
where V 2 C* = (R*)® has an abelian additive Lie algebra, and W is a
complex torus which has a multiplicative abelian Lie algebra.

Let p be a finite-dimensional faithful representation of G® and for g :
S = G®smooth, let § = % ap¥, ar € p(G%), ) € S* be the associated
keZ

Fourier series. Then the loop group AG® defined by
AG®={g:8' - G| § is absolutely convergent}

can be organized as a complex Banach Lie group with the Wiener topology
[17].
We shall use also its subgroups
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AG = {g e AG®| g()) € G,¥X € S}

ATG® = {g € AG?| g extends holomorphically toD},

A~G® = {g € AG®| g extends holomorphically to C\ D},
where D is the open unit complex disk and e € G is the unity of the group
G.

Let N be the nilradical of BY then N¥4G® We assume w.r.g. that
in the given representation, AN ® is provided by upper triangular matrices
with ones on the diagonal.

Under the assumptions on G stated above, the Birkhoff decomposition
for the loop group AG ¢ is provided by [5]

Theorem. a) Any element g € AG® can be written as
=g-Dg4 (14)
where g+ € ATG®, D = sbtd € AG* x (A"BY} x A“B® and
A4G® = { upper-diagonal polynomial loops in AG®},
(A"B®f ={bec A"B%|sbs"! € A*BY}.

The expression (14) will be called canonic Birkhoff decomposition, with g+
having a specific form [5].
b) The "big cell” Pgc is open and dense in AG®, and the mapping

AG® ATG® - AG®
provides a surjective submersion onto the big cell.
Let G be a connected, simply connected real analytic Lie group which
admits a faithful finite dimensional continuous representation.
We have the decomposition of its reductive subgroup H as the product of
a semisimple Lie group S and a compact abelian Lie group (complex torus)
K, H = S K, which leads to the decomposition H® = S¢. K® Then,

regarding the loop group AH %, the Iwasawa decomposition is provided by
the following generalisation of a result of P.Kellersch [18],

Theorem. If H is connected, then
AH®=AH-A"H-ATHC, (15)
where: AH = AS - AK, A™"H = A™S, AtH® = AtS®. ATK®, and

A™S C {g € AS | g is a finite-series diagonal loop}
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consisting of loops valued in the Cartan subgroup of S.
Using this result, we get the following theorem which describes the Iwasawa
decomposition for an arbitrary loop group AG%:

Theorem. a) Let G be a connected, simply connected Lie group, which
admits a finite-dimensional faithful representation. Then

AG®=AG - A™G® ATGS, (16)

where the double cosets are indezxed by the middle terms A™G® = kJ S(A+S‘[’);.
seAm™m

b) The "big cell” P = A G- A*GC of the decomposition is open in AGE.
Moreover, for S the compact real form of S¢, we have

P=AG -ATG®=AGS (17)
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