NOVI SAD J. MATH. VOL. 29, No. 3, 1999, 23–33 XII Yugoslav Geometric Seminar Novi Sad, October 8–11, 1998

DISTINGUESHED LINEAR CONNECTIONS IN THE EINSTEIN-SCHRÖDINGER GEOMETRY OF THE SECOND ORDER

Gheorghe Atanasiu

Department of Geometry, Faculty of Sciences Transilvania University, 2200 Brasov, ROMANIA

Panayiotis Stavrinos

Department of Mathematics, University of Athens Panepistemiopolis, 15784 Athens, GREECE

Abstract

In 1945 A.Einstein [6] and E.Schrödinger [11] started form a generalized Riemann space, that is, a space M associated with a nonsymmetric tensor $G_{ij}(x)$ and desired to find the set of all linear connections $\Gamma_{jk}^i(x)$ compatible with such a metric : $G_{ij/k} = 0$ (see also [1]). The geometry of this space $(M.G_{ij})$ is called **the Einstein - Schrödinger's geometry** [3], [4].

The purpose of this paper is to discuss a nonsymmetric tensor field $G_{ij}(x, y^{(1)}, y^{(2)})$, where $(x, y^{(1)}, y^{(2)})$ is a point of the osculator bundle of the second order (Osc^2M, π, M) and to obtain the results for the Einstein - Schrödinger's geometry of the order two in a natural case.

The fundamental notions and notations concerning the osculator bundle of the order two are in the papers [2] [5] [7] [8].

We give, shortly, at the beginning the notations used.

AMS Mathematics Subject Classification (1991): 53C60, 53B50, 53C80. Key words and phrases: osculator bundle, Einstein-Schrödinger's geometry.

1 Preliminaries

A transformation of coordinates $(x^i,y^{(1)i},y^{(2)i}) \to (\tilde{x}^1,\tilde{y}^{(1)i},\tilde{y}^{(2)i})$ on Osc^2M is given by

$$\begin{cases}
\tilde{x}^{i} = \tilde{x}^{i}(x^{1}, ..., x^{n}), & rank \left\| \frac{\partial \tilde{x}^{i}}{\partial x^{j}} \right\| = n \\
\tilde{y}^{(1)i} = \frac{\partial \tilde{x}^{i}}{\partial x^{j}} y^{(1)j} \\
2\tilde{y}^{(2)i} = \frac{\partial \tilde{y}^{(1)i}}{\partial x^{j}} y^{(1)j} + 2 \frac{\partial \tilde{y}^{(1)i}}{\partial y^{(1)j}} y^{(2)j}
\end{cases}$$
(1)

The point $u \in Osc^2M$ of coordinate $(x^i, y^{(1)i}, y^{(2)i})$ will be noted, also, with $u = (x^i, y^{(1)i}, y^{(2)i})$.

The bundle of the 1-jets Osc^1M can be identified with the tangent bundle TM.

A non linear connection N on $E = Osc^2M$ is characterized by the func-

tions $N_{\ j}^{i}$ $(x,y^{(1)},y^{(2)})$ $(\alpha=1,2)$ called the coefficients of N which to a (α)

transformation of coordinates on E has as effect the rules:

$$\begin{cases}
\tilde{N}_{m}^{i} \frac{\partial \tilde{x}^{m}}{\partial x^{j}} = \tilde{N}_{j}^{m} \frac{\partial \tilde{x}^{i}}{\partial x^{m}} - \frac{\partial \tilde{y}^{(1)i}}{\partial x^{j}} \\
(1) & (1)
\end{cases}$$

$$\tilde{N}_{m}^{i} \frac{\partial \tilde{x}^{m}}{\partial x^{j}} = \tilde{N}_{j}^{m} \frac{\partial \tilde{x}^{i}}{\partial x^{m}} + \tilde{N}_{j}^{m} \frac{\partial \tilde{y}^{(1)i}}{\partial x^{m}} - \frac{\partial \tilde{y}^{(2)i}}{\partial \tilde{x}^{j}}$$

$$(2)$$

We obtain the direct decomposition:

$$T_u E = N_0(u) \oplus N_1(u) \oplus V_2(u) \oplus, \forall u \in E \ (N_0 = N)$$

$$\tag{3}$$

with the local basis adapted to this

$$\left\{\frac{\delta}{\delta x^{i}}, \frac{\delta}{\delta y^{(1)i}}, \frac{\delta}{\delta y^{(2)i}}\right\} \quad , (i = 1, ..., n)$$

$$\tag{4}$$

given by

$$\begin{cases}
\frac{\delta}{\delta x^{i}} = \frac{\partial}{\partial x^{i}} - N_{i}^{j} \frac{\partial}{\partial y^{(1)j}} - N_{i}^{j} \frac{\partial}{\partial y^{(2)j}} \\
(1) & (2)
\end{cases}$$

$$\frac{\delta}{\delta y^{(1)i}} = \frac{\partial}{\partial y^{(1)i}} - N_{i}^{j} \frac{\partial}{\partial y^{(2)j}}$$

$$(5)$$

The fields of geometrical objects wich are important on E are introduced with respect to the direct decomposition (3).

The transformation (1) implies:

$$\frac{\delta}{\delta x^i} = \frac{\partial \tilde{x}^j}{\partial x^i} \frac{\delta}{\delta \tilde{x}^j} \;,\; \frac{\delta}{\delta y^{(1)i}} = \frac{\partial \tilde{x}^j}{\partial x^i} \frac{\delta}{\delta \tilde{y}^{(1)j}} \;,\; \frac{\delta}{\delta y^{(2)i}} = \frac{\partial \tilde{x}^j}{\partial x^i} \frac{\delta}{\delta \tilde{y}^{(2)j}}$$

If we consider the projectors h, v_1 , v_2 , determined by (3) and denote $v_{\alpha}X = X^{V_{\alpha}}$, $(\alpha = 1, 2)$ we can uniquely write

$$X = X^H + X^{v_1} + X^{v_2} , \quad \forall X \in \mathcal{X}(\mathcal{E})$$
 (6)

Thus we have

$$X^{H} = X^{(0)i} \frac{\delta}{\delta x^{i}} \quad , \quad X^{v_{1}} = X^{(1)i} \frac{\delta}{\delta y^{(1)i}} \quad , \quad X^{v_{2}} = X^{(2)i} \frac{\delta}{\delta y^{(2)i}}$$

The coordinates $X^{(\alpha)i}$, $(\alpha = 0, 1, 2)$ change under (1) as follows:

$$\tilde{X}^{(\alpha)i} = \frac{\partial \tilde{x}^i}{\partial x^j} X^{(\alpha)j} , \quad (\alpha = 0, 1, 2).$$

Each of them is called a distinguished vector field, shortly a d-vector field. Let us consider the dual basis of (4):

$$\{dx^i, \delta y^{(1)i}, \delta y^{(2)i}\}, (i = 1, ..., n)$$
 (7)

Then for a field of 1-form ω on E we put:

$$\omega = \omega^H + \omega^{v_1} + \omega^{v_2},\tag{8}$$

where

$$\omega^{H} = \omega_{i}^{(0)} dx^{i} , \quad \omega^{v_{1}} = \omega_{i}^{(1)} \delta y^{(1)i} , \quad \omega^{v_{2}} = \omega_{i}^{(2)} \delta y^{(2)i}$$

and with respect to (1) we have:

$$\omega_i^{(\alpha)} = \frac{\partial \tilde{x}^j}{\partial x^i} \tilde{\omega}_j^{(\alpha)} , \quad (\alpha = 0, 1, 2)$$

Now, we can define a distinguised tensor field on E of type (r,s) (shortly a d-tensor field) as an element $T \in T_s^r(E)$ with the property:

$$T(X, ..., X, \overset{1}{\omega}, ..., \overset{r}{\omega}) = T(X^{H}, ..., X^{v_{2}}, \overset{1}{\omega}^{H}, ..., \overset{r}{\omega}^{v_{2}})$$
(9)

$$\forall \quad X , ..., \quad X \in \mathcal{X}(\mathcal{E}) , \quad \forall \quad \overset{\infty}{\omega}, ..., \overset{\nabla}{\omega} \in \overset{*}{\mathcal{X}} (\mathcal{E})$$

Then in adapted basis (4), (7) we obtain:

$$T = T_{j_1,\dots,j_s}^{i_1,\dots,i_r}(x,y^{(1)},y^{(2)}) \frac{\delta}{\delta x^{i_1}} \otimes \dots \otimes \frac{\partial}{\partial y^{(2)i_r}} \otimes dx^{j_1} \otimes \dots \otimes \delta y^{(2)j_s}$$

and with respect to (1) we get:

$$\tilde{T}^{i_1,\dots,i_r}_{j_1,\dots,j_s} = \frac{\partial \tilde{x}^{i_1}}{\partial x^{m_1}} \dots \frac{\partial \tilde{x}^{i_r}}{\partial x^{m_r}} \frac{\partial x^{q_1}}{\partial \tilde{x}^{j_1}} \dots \frac{\partial x^{q_s}}{\partial \tilde{x}^{j_s}} T^{m_1,\dots,m_r}_{q_1,\dots,q_s}$$

Consequently we can give a d-tensor field T, of type (r,s) by its local components $T_{j_1,\ldots,j_s}^{i_1,\ldots,i_r}(x,y^{(1)},y^{(2)})$.

Let us consider the F(E)-linear map $J: \mathcal{X}(\mathcal{E}) \to \mathcal{X}(\mathcal{E})$ given on the natural basis of $\mathcal{X}(\mathcal{E})$ by:

$$J\left(\frac{\partial}{\partial x^{i}}\right) = \frac{\partial}{\partial y^{(1)i}}, \quad J\left(\frac{\partial}{\partial y^{(1)i}}\right) = \frac{\partial}{\partial y^{(2)i}}, \quad J\left(\frac{\partial}{\partial y^{(2)i}}\right) = 0, \quad (10)$$

$$(i = 1, ..., n)$$

We define a N-linear connection on E as a connection D on E wich preserves by parallelism the horizontal distribution N and wich is compatible with the structure J (i.e. $D_X J = 0, \forall X \in \mathcal{X}(\mathcal{E})$).

In the adapted basis (4) it is sufficient to give

$$D_{\frac{\delta}{\delta x^{j}}} \frac{\delta}{\delta y^{(\alpha)i}} = L_{ij}^{m} \frac{\delta}{\delta y^{(\alpha)m}}, \quad D_{\frac{\delta}{\delta y^{(\beta)j}}} \frac{\delta}{\delta y^{(\alpha)i}} = C_{ij}^{m} \frac{\delta}{\delta y^{(\alpha)m}}, \qquad (11)$$

$$(\alpha = 0, 1, 2, \beta = 1, 2, y^{(0)i} = x^{i})$$

in order to obtain all the coefficients $D\Gamma(N)=(L^i_{jm},\quad C^i_{jm},\quad C^i_{jm}$) of (1) (2) a N-linear connection D.

With respect to (1) we have for the coefficients $C^i_{jm}(x, y^{(1)}, y^{(2)})$ the α transformation of the d-tensor field of type (1,2) and for the coefficients $L^i_{jm}(x, y^{(1)}, y^{(2)})$ the transformation law of an object of connection:

$$\tilde{L}_{pq}^{i} \frac{\partial \tilde{x}^{p}}{\partial x^{r}} \frac{\partial \tilde{x}^{q}}{\partial x^{s}} = L_{rs}^{m} \frac{\partial \tilde{x}^{i}}{\partial x^{m}} - \frac{\partial^{2} \tilde{x}^{i}}{\partial x^{r} \partial x^{s}}$$

The h-covariant derivative noted with | and the v_{α} -covariant derivative noted with | $(\alpha=1,2)$ in the algebra of the d-tensor act, for exemple, for a d-tensor field $K_j^i(x,y^{(1)},y^{(2)})$ of the type (1,1) as:

$$\begin{cases} K_{j|m}^{i} = \frac{\delta K_{j}^{i}}{\delta x^{m}} + L_{rm}^{i} K_{j}^{r} - L_{jm}^{s} K_{s}^{i} \\ K_{j|m}^{i} = \frac{\delta K_{j}^{i}}{\delta y^{(\alpha)m}} + C_{rm}^{i} K_{j}^{r} - C_{jm}^{s} K_{s}^{i}, (\alpha = 1, 2) \\ j \mid m & (\alpha) & (\alpha) \end{cases}$$
(12)

If $D\Gamma(N)=(L^m_{ij},\quad C^m_{ij},\quad C^m_{ij})$ are the local components of a N-linear (1) (2) connection D on E, then the identities of Ricci holds, written for a d-vector field $X^m(x,y^{(1)},y^{(2)})$:

$$X^{m}_{|p|q} - X^{m}_{|q|p} = X^{r}R_{r}^{m}_{pq} - T^{r}_{pq}X^{m}_{|r}$$

$$-\frac{\binom{1}{r}}{\binom{p}{p}} x^{m} \stackrel{(1)}{\mid_{r}} - \frac{\binom{2}{r}}{\binom{p}{p}} x^{m} \stackrel{(2)}{\mid_{r}}$$

$$X^{m}_{\mid p} \stackrel{(\beta)}{\mid_{q}} - X^{m} \stackrel{(\beta)}{\mid_{q\mid p}} = X^{r} P_{r}^{m}_{pq} - C_{pq}^{r} X^{m}_{\mid r}$$

$$-\frac{\binom{1}{r}}{\binom{p}{p}} X^{m} \stackrel{(1)}{\mid_{r}} - \frac{\binom{2}{r}}{\binom{p}{p}} X^{m} \stackrel{(2)}{\mid_{r}} \qquad (\beta = 1, 2)$$

$$X^{m} \stackrel{(1)}{\mid_{p}} \stackrel{(2)}{\mid_{q}} - X^{m} \stackrel{(2)}{\mid_{q}} \stackrel{(1)}{\mid_{p}} = X^{r} P_{r}^{m}_{pq} - (C_{pq}^{r} X^{m} \stackrel{(1)}{\mid_{r}}$$

$$-C_{qp}^{r} X^{m} \stackrel{(2)}{\mid_{r}} - \frac{\binom{2}{r}}{\binom{p}{p}} X^{m} \stackrel{(2)}{\mid_{r}}$$

$$-C_{qp}^{r} X^{m} \stackrel{(2)}{\mid_{r}} - \frac{\binom{2}{r}}{\binom{p}{p}} X^{m} \stackrel{(2)}{\mid_{r}}$$

$$(1) (1) \qquad (1) (1)$$

$$X^{m} \begin{vmatrix} 1 & (1) & (1) \\ p & |_{q} & -X^{m} \end{vmatrix}_{q} \begin{vmatrix} 1 & (1) & (1) \\ |_{q} & |_{p} \end{vmatrix} = X^{r} \underbrace{S_{r}^{m}_{pq}}_{(1)} - \underbrace{S_{r}^{m}_{pq}}_{(1)} X^{m} \begin{vmatrix} 1 \\ |_{r} \end{vmatrix}_{r} - \underbrace{S_{r}^{m}_{pq}}_{(1)} X^{m} \begin{vmatrix} 1 \\ |_{r} \end{vmatrix}_{r}$$

$$X^{m} \mid_{p}^{(2)} \mid_{q}^{(2)} - X^{m} \mid_{q}^{(2)} \mid_{p}^{(2)} = X^{r} S_{r}^{m}_{pq} - S_{pq}^{r} X^{m} \mid_{r}^{(2)}$$

where the tensor fields of torsion $T^r_{\ pq}$, $R^r_{\ pq}$, $R^r_{\ pq}$, $C^r_{\ pq}$, $C^r_{\$

and the tensor fields of curvature $R_{r\ pq}^{\ m}$, $P_{r\ pq}^{\ m}$, $P_{r\ pq}^{\ m}$, $P_{r\ pq}^{\ m}$, $P_{r\ pq}^{\ m}$, (1) (2)

$$S_{r pq}^{m}$$
, $S_{r pq}^{m}$ appear.
$$(1) \qquad (2)$$

N-linear connections compatible with an asymmetric metric $G_{ij}(x, y^{(1)}, y^{(2)})$

For a nonsymmetric tensor field $G_{ij}(x, y^{(1)}, y^{(2)})$ on Osc^2M , we have a symmetric tensor field $g_{ij}(x, y^{(1)}, y^{(2)})$ and a skew-symmetric one $a_{ij}(x, y^{(1)}, y^{(2)})$ from the spliting

$$G_{ij} = g_{ij} + a_{ij},\tag{13}$$

where we suppose that

$$\det \| g_{ij}(x, y^{(1)}, y^{(2)}) \| \cdot \| a_{ij}(x, y^{(1)}, y^{(2)}) \| \neq 0$$
 (14)

and dim M = n = 2n'.

We denote

$$||g_{ij}(x, y^{(1)}, y^{(2)})||^{-1} = ||g^{ij}(x, y^{(1)}, y^{(2)})||,$$

$$||a_{ij}(x, y^{(1)}, y^{(2)})||^{-1} = ||a^{ij}(x, y^{(1)}, y^{(2)})||$$

We have from $G_{ij|k}=0$, $G_{ij}\stackrel{(\alpha)}{\mid_{k}}=0$ $(\alpha=1,2)$ the following equations :

$$g_{ij|k} = 0$$
, $g_{ij} \stackrel{(\alpha)}{|}_{k} = 0$, $a_{ij|k} = 0$, $a_{ij} \stackrel{(\alpha)}{|}_{k} = 0$ $(\alpha = 1, 2)$, (15)

which is equivalent to

$$g^{ij}_{|k} = 0 , g^{ij}_{|k}^{(\alpha)} = 0 , a^{ij}_{|k}^{(\alpha)} = 0 , a^{ij}_{|k}^{(\alpha)} = 0 \quad (\alpha = 1, 2).$$
 (16)

We investigate the set of all N-linear connections $D\Gamma(N)=(L^i_{jk},\quad C^i_{\ jk}\)$ $_{(lpha)}$

 $(\alpha = 1, 2)$ for which we have (15) in the form

$$L^{i}_{jk} = \overset{\circ}{L^{i}_{jk}} + A^{i}_{jk}, \quad C^{i}_{jk} = \overset{\circ}{C^{i}_{jk}} + B^{i}_{jk} \quad (\alpha = 1, 2),$$

where $D \stackrel{\circ}{\Gamma} (N) = (\stackrel{\circ}{L}_{jk}^{i}, \stackrel{\circ}{C}_{jk}^{i}) (\alpha = 1, 2)$ is a fixed N-linear connection on

 Osc^2M and A^i_{jk} , B^i_{jk} are arbitrary tensor fields of type (1,2).

We obtain for A and for B the equations (α)

$$A_{ik}^{r}g_{rj} + A_{jk}^{r}g_{ir} = g_{ij|k}^{o}, \ A_{ik}^{r}a_{rj} + A_{jk}^{r}a_{ir} = a_{ij|k}^{o}, \tag{17}$$

$$\begin{cases}
B_{ik}^{r} g_{rj} + B_{jk}^{r} g_{ir} = g_{ij} \mid_{k}, \\
(\alpha) & (\alpha)
\end{cases}$$

$$\begin{cases}
a_{ik}^{r} a_{rj} + B_{jk}^{r} a_{ir} = a_{ij} \mid_{k} (\alpha = 1, 2) \\
(\alpha) & (\alpha)
\end{cases}$$
(18)

We do not know the general solution of the equation system (17) and (18)

We give a solution for these equations in the following special case.

Definition 2.1 An assymmetric metric (13) is called natural if we have

$$\Lambda_{is}^{rk}\Phi_{rj}^{hs} = \Phi_{is}^{rk}\Lambda_{rj}^{hs} \tag{19}$$

where

$$\Lambda_{ij}^{kh} = \frac{1}{2} (\delta_i^k \delta_j^h - g_{ij} g^{kh}) , \quad \Phi_{ij}^{kh} = \frac{1}{2} (\delta_i^k \delta_j^h - a_{ij} a^{kh}). \tag{20}$$

Theorem 2.1 An assymmetric metric $G_{ij}(x, y^{(1)}, y^{(2)})$ on Osc^2M is natural if and only if there exist a function $\mu(x, y^{(1)}, y^{(2)})$ on Osc^2M such that

$$g_{ir}g_{js}a^{rs} = \mu g_{ij}. (21)$$

Examples.

1. Let $f_j^i(x, y^{(1)}, y^{(2)})$ be a tensor field of type (1,1) which gives an almost complex d-structure on Osc^2M : $f^2 = -\delta$. If we put:

$$a_{ij} = f_i^r g_{rj}, (22)$$

then $a_{ij}(x, y^{(1)}, y^{(2)})$ is alternating and $G_{ij} = g_{ij} + a_{ij}$ is an asymmetric metric on Osc^2M . In this case $\mu = -1$.

2. Let $q_j^i(x, y^{(1)}, y^{(2)})$ be a tensor field of type (1,1) which gives an almost product d-structure on $Osc^2M: q^2 = +\delta$. If we put:

$$a_{ij} = q_i^r g_{rj} \tag{23}$$

then $a_{ij}(x, y^{(1)}, y^{(2)})$ is alternate and $G_{ij} = g_{ij} + a_{ij}$ is an asymmetric metric on Osc^2M . In this case $\mu = +1$.

Theorem 2.2 If there exist a N-linear connection on Osc^2M compatible with a natural asymmetric metric $G_{ij}(x, y^{(1)}, y^{(2)})$, then the function μ is constant.

Definition 2.2 A natural asymmetric metric (13) is called elliptic if $\mu = -c^2$ and hyperbolic if $\mu = c^2$, where c is a positive constant.

The converse of Theorem (2.2) holds as follows:

Theorem 2.3 If a natural asymmetric metric (13) is elliptic or hyperbolic,

then there exist N-linear connections $D\tilde{\Gamma}(N)=(\tilde{L}^i_{jk},\quad \tilde{C}^i_{\ jk}\,\,)$ compatible

with $G_{ij}(x,y^{(1)},y^{(2)})$. Let $D \stackrel{\circ}{\Gamma} (N) = (\stackrel{\circ}{L^{i}_{jk}}, \stackrel{\circ}{C^{i}_{jk}})$ be a given N-linear connection, then in the elliptic case we have

$$\begin{cases}
\tilde{L}_{jk}^{i} = \tilde{L}_{jk}^{i} + \frac{1}{4} \{g^{ir}g_{rj|k} + a^{ir}a_{rj|k} + f_{j}^{r}f_{r|k}^{i}\} \\
\tilde{C}_{jk}^{i} = \tilde{C}_{jk}^{i} + \frac{1}{4} \{g^{ir}g_{rj} \mid_{k} + a^{ir}a_{rj} \mid_{k} + f_{j}^{r}f_{r}^{i} \mid_{k}\} \\
\tilde{\alpha} & \alpha & \alpha
\end{cases} (24)$$

 $(\alpha = 1, 2)$, and in the hyperbolic case we have

$$\begin{cases}
\tilde{L}_{jk}^{i} = \hat{L}_{jk}^{i} + \frac{1}{4} \{g^{ir}g_{rj|k} + a^{ir}a_{rj|k} - q_{j}^{r}q_{j|k}^{i} \} \\
\hat{C}_{jk}^{i} = \hat{C}_{jk}^{i} + \frac{1}{4} \{g^{ir}g_{rj} \mid_{k}^{\alpha} + a^{ir}a_{rj} \mid_{k}^{\alpha} - q_{j}^{r}q_{r}^{i} \mid_{k}^{\alpha} \} \\
(\alpha) \qquad (\alpha)
\end{cases}$$

$$(25)$$

$$(\alpha = 1, 2)$$

Theorem 2.4 The set of all N-linear connections

$$D\stackrel{*}{\Gamma}(N)=(\stackrel{*}{L^{i}_{jk}}, \stackrel{*}{C^{i}_{jk}})$$

compatible with a natural asymmetric metric (13) on Osc²M is given by

$$L_{jk}^{i} = \tilde{L}_{jk}^{i} + \Lambda_{jq}^{pi} \Phi_{ps}^{rq} Y_{rk}^{s} , \quad C_{jk}^{i} = \tilde{C}_{jk}^{i} + \Lambda_{jq}^{pi} \Phi_{ps}^{rq} Z_{rk}^{s}$$

$$(26)$$

where $D\tilde{\Gamma}(N)$ is the N-linear connection in Theorem (2.3) and Y_{jk}^i , Z_{jk}^i ($\alpha = 1, 2$) are arbitrary tensor fields on Osc^2M .

If we put $D \stackrel{o}{\Gamma} (N) = D \stackrel{c}{\Gamma} (N) = (\stackrel{c}{L^{i}_{jk}}, \stackrel{c}{C^{i}_{jk}})$, $(\alpha = 1, 2)$ for $g_{ij}(x, y^{(1)}, y^{(2)})$, that is:

$$\begin{cases}
L_{jk}^{i} = \frac{1}{2}g^{is} \left(\frac{\delta g_{js}}{\delta x^{k}} + \frac{\delta g_{sk}}{\delta x^{j}} - \frac{\delta g_{jk}}{\delta x^{s}} \right), \\
C_{jk}^{i} = \frac{1}{2}g^{is} \left(\frac{\delta g_{js}}{\delta y^{(1)k}} + \frac{\delta g_{sk}}{\delta y^{(1)j}} - \frac{\delta g_{jk}}{\delta y^{(1)s}} \right), \\
(1) \\
C_{jk}^{i} = \frac{1}{2}g^{is} \left(\frac{\delta g_{js}}{\delta y^{(2)k}} + \frac{\delta g_{sk}}{\delta y^{(2)j}} - \frac{\delta g_{jk}}{\delta y^{(2)s}} \right), \\
(27)
\end{cases}$$

the generalized Christoffel symbols (cf. with [8], pg.54) we have:

Theorem 2.5 The canonical N-linear connection compatible with a natural asymmetric metric $G_{ij}(x, y^{(1)}, y^{(2)})$ is given in the elliptic case by:

$$\begin{cases}
L_{jk}^{i} = L_{jk}^{i} + \frac{1}{4} \{a^{ir} a_{rj|k}^{c} + f_{j}^{r} f_{rk}^{i} \} \\
 & c & c \\
C_{jk}^{i} = C_{jk}^{i} + \frac{1}{4} \{a^{ir} a_{rj} \mid_{k} + f_{j}^{r} f_{r}^{i} \mid_{k} \} (\alpha = 1, 2)
\end{cases} (28)$$

and in the hyperbolic case by

$$\begin{cases}
L_{jk}^{i} = L_{jk}^{i} + \frac{1}{4} \{a^{ir} a_{rj}^{c} - q_{j}^{r} q_{c}^{i} \} \\
 & c & (\alpha) \\
C_{jk}^{i} = C_{jk}^{i} + \frac{1}{4} \{a^{ir} a_{rj} \mid_{k} - q_{j}^{r} q_{r}^{i} \mid_{k} \}, \quad (\alpha = 1, 2) \\
 & (\alpha) & (\alpha)
\end{cases}$$
(29)

Now, the Einstein equations, electromagnetic tensors, Maxwell equations for the Einstein-Schrödinger geometry of the second order can be studied using these N-linear connections.

References

- [1] Atanasiu, Gh., Sur le probleme d'Eisenhart, Rev. Roumaine de Math. Pures et Appl. 16 (1971) 309-311.
- [2] Atanasiu, Gh., The equations of structure of an N-linear connections in the bundle of accelerations, Balkan J. Geom. and Its Appl., Vol. 1, No. 1 (1996) 11–19.
- [3] Buchner, K., Of a new solution of Einstein's unified field theory, Progr. Theor. Phys. 48, 1972, 1708–1717.
- [4] Buchner, K., Energiekomplexe in der Einstein-Schrödinger Geometrie. Tensor N.S., 29, 1975, 267–273.
- [5] Čomić, I., The curvature theory of generalized connection in Osc^2M . Balkan J. Geom. and Its Appl., Vol 1, No. 1, 1996, 21–29.
- [6] Einstein, A., A generalization of the relativistic theory of gravitation, Ann. Math. 46 (1945) 578-584.
- [7] Miron, R., The geometry of higher order Lagrange spaces. Applications to Mechanics and Physics, Kluwer Acad.Pub. FTPH, 1997.
- [8] Miron, R. and Atanasiu, Gh., Lagrange spaces of second order, Math. Comput. Modelling, Pergamon, Vol 20, No.4/5 (1994) 41–56.
- [9] Stavrinos, P.C., Tidal forces in vertical spaces of Finslerian space–time, Rep. Math. Physics, Vol 31, No. 1 (1992) 1–4.
- [10] Stavrinos, P.C. and Kawaguchi, H, Deviation of geodesics in the gravitational field of Finslerian space—time, Memoirs of Shonan Inst. of Tech., Vol. 27, No.1 (1993) 35–40.
- [11] Schrödinger, E., The final affine field laws I,II, Proc. Royal Irish Academy, 51A (1945–1948) 163–171, 205–216.