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Abstract

In 1945 A .Einstein [6] and E.Schrddinger [11] started form a gen-
eralized Riemann space, that is, a space M associated with a nonsym-
metric tensor G;;(x) and desired to find the set of all linear connections
I'sj, () compatible with such a metric : Gy = 0 (see also [1]).The ge-
ometry of this space (M.G);) is called the Einstein - Schrodinger’s
geometry [3], [4].

The purpose of this paper is to discuss a nonsymmetric tensor field
Gij(z,y™,y?) where (2,4, 4?) is a point of the osculator bundle
of the second order (Osc>M,x, M) and to obtain the results for the
Einstein - Schriodinger’s geometry of the order two in a natural case.

The fundamental notions and notations concerning the osculator
bundle of the order two are in the papers [2] [5] [7] [8].

We give, shortly, at the begining the notations used.
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1 Preliminaries

A transformation of coordinates (x?, y(1V?, (%) — (& 5V §(2)%) on Osc2M
is given by

( 2 S T | n 851’
= iz, ..., 2"), rank 7

L g = %y(m (1)
()i gy B oi(1)i .

\

The point u € Osc?M of coordinats (¢, 3y, 4(2)%) will be noted, also,
with u = (27, y {7, 4(2)7).

The bundle of the 1-jets Osc' M can be identified with the tangent bundle
T™.

A non linear connection N on E = Qsc?M is characterized by the func-

tions Nij (z,yM,y@) (@ =1,2) called the coefficients of N which to a

(@)
transformation of coordinates on E has as effect the rules:
( S
oi o 0™ _ om0 '
Now a7 = N3 e~ S
i 8im _ . a‘zz -~ a~(1)i 0{"(2)‘
N,n _j' — N] 6_7”_ X + N'I’SL é%l_lm- - aijJ
L @ (2) (1)
We obtain the direct decomposition:
T.E = No(u) ® Ny(u) & Va(u)®, Yu € E (Ny = N) (3)
with the local basis adapted to this
) & & .
{W’W,:{y(—m;} s (z—-l,...,n) (4)

given by
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S -9 _ N _O0_ _ pni_0_
s~ o~ Niggw T Mg e
(1) (2) e
< (5)
s _ _8_ _ N _0
Sy = gy (J‘g i Gy
1

The fields of geometrical objects wich are important on E are introduced
with respect to the direct decomposition (3).
The transformation (1) implies:

E - I ) 5 0% ¢

6ot 0ai 650 ' by ot og()i sy dwi 500

If we consider the projectors h, vy, v, determined by (3) and denote
veX = XY (a=1,2) we can uniquely write
X=X" 4 X" X%, VX€X(E) (6)

Thus we have

é vs _ y(2i_ 0
5y(1)i , X=X 5y(2)z’

xH _ X(O)i% XM = x i
:L-Z

The coordinates X(®¢  (a = 0,1,2) change under (1) as follows:

. ©-

Xl — 22

ozt

Each of them is called a distinguished vector field, shortly a
d-vector field. Let us consider the dual basis of (4):

X (a=0,1,2).

@t O, 5y, =1 g

Then for a field of 1-form w on E we put:

w = w + w" +w™, (8)
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where

Wl = wfo)d.z'i W = wz(l)(gy(l)i W= wl@’(sy(?)’i

and with respect to (1) we have:

w(a) _ @ ~ ()

) 5@y (@=0,1,2)

Now , we can define a distinguised tensor field on E of type (r,s) (shortly
a d-tensor field) as an clement T € T} (E) with the property:

T( X oy X y0y@) =T X7 X2 0f 0™ (9)
1 K] 1 s
V X, X €X(E), V&, .., 0ex ()
1 s
Then in adapted basis (4), (7) we obtain:
T = T””M(CL y(l) U(Q)) J ®.® 0 ® dle R. 6y(2)js
Tloensds 5057 Szt T T oy
and with respect to (1) we get:
T?l,mﬂjr _ 057“ 8::12'1'" oz oxs ety
Toede T G Ggme Q1T QFds T s

Consequently we can give a d-tensor field T, of type (r,s) by its local
components Tj "7 (z, g1 @),

Let us consider the F(E)-linear map J : X(&) — X(€) given on the
natural basis of X (&) by:

0 0 0 0 0 :
1(55) = mm gm) ~ae e (ge) -0 w
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We define a N-linear connection on E as a connection D on E wich
preserves by parallelism the horizontal distribution N and wich is compatible
with the structure J (i.e. DxJ = 0,VX € X(&)).

In the adapted basis (4) it is sufficient to give

4] 4] 6 4]

D = L D —_— = 7 11

a7 Oy U gylem Ty syle) @ % Sotem (1)
(@=01,2 8=12 9 =z

in order to obtain all the coefficients DI'(N) = (ij, (”]lm , (']’m ) of

(1) (2)
a N-linear connection D.

With respect to (1) we have for the coeflicients C;m (z, vV, y@) the
()
transformation of the d-tensor field of type (1,2) and for the coeflicients
L. (z, y(1), 4(?)) the transformation law of an object of connection:

O e A %
PI9gr Ogs TP Ox™  OxTOxs
The h-covariant derivative noted with | and the v,-covariant derivative

(a)
noted with | (a = 1,2) in the algebra of the d-teusor act, for exemple, for

a d-tensor field K]’:(a:, y(1) @) of the type (1,1) as:

;[m = OE”' + L;‘mK]T 7mK'

i K : . o ; B (12)
K (a) - 1/(0‘)'"1 + C‘1’!'777, K Jm KS 3 (a - 1, 2)

ilm (o) (a)

If DT(N) = (L:’}, C7, G} ) are the local components of a N-lincar

M (2)
connection D on E, then the identities of Ricci holds, written for a d-vector
field X™(z,yD, y(2):
X%l = X Mgy = XTR g = T X"

T opg 2 |~
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m, M @ @
—(](;2) g X l; — R oy Xl
(0)
m (‘B) m(ﬁ) T T T L
X lp lg ~X ’qlp = X' F pa Cpq [
(8) (8)
(1) (1) (2) (2
- P, X™ |, - P, X" |, (B=12)
(8) (#)
m 1y 2 m 2 @ . . , . (1)
X™ b lg X" {g b =X B", —( Ch X™ [,
(1)(2) (2)
(2) (2) (2)
Cv:]'p Xm l1) _ Prpq X‘nL "r
ey (1)(2)
™ (1) (1) o (1) (1) . " m " (1
X |P Iq —X |q |P = X Sr pe Sr 4 X IT‘
(1) (1)
(1) (2)
1 m
= B X7 s
1
m (2) (2) m (2) (@) . m r . (2)
X |p lq -X lq |p = X Sr pe ) Pq X ‘T
(2) (2)
(1) (2)
where the tensor fields of torsion T"pq, R"pq , R’pq , Crpq , C",pq ,
(0) (0) (1) (2)

(1) (1) (2) (2) (2) (1)
Phy » Py s Py Py Pqu ’ Srpq’ Srpq’ Ry,
(1) (2) (2) (1) (1)(2) (1) (2) (1)
and the tensor fields of curvature R,.""M , T"’M , P,.mm , P,,Q’"M ,

(1) (2) M@
S, s Sy, appear.

(1) )
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2 N-linear connections compatible with an asym-
metric metric Gy;(z,yY, y®)
For a nonsymmetric tensor field G, (x, y( (@) on Osc? M, we have a sym-

metric tensor field g;;(x, ¥V, y?) and a skew-symmetric one a;;(z, y(1), 4(*)
from the spliting

Gij = gij + aij, (13)
where we suppose that
det || gij(a,y™ gy - Naij (2,5, 5P) 1| #0 (14)
and dim M = n = 2n’.
We denote

g (5 g2 = g (2, 5D,y
lais 2,y y ! = lla (2,50 y @)

(a)
We have from Gy, =0 , Gy |, =0 (a=12)
the following equations :

(@) (@)
Gijik =0, g |, =0, ayp=0, a5 | ;=0 (@=12), (15)
which is equivalent to
y @ y (@ |
g|k:0,g] |k=0,a|k:0,a] | ;=0 (a=1,2). (16)

We investigate the set of all N-linear connections DI'Y(V) = (L'; K Cij i)
(a)
(a = 1,2) for which we have (15) in the form

ko= L +A%, Ch = Cy +Bj) (a=12),
(o) (@)

o o]

where D T (N) = (L;-k, C;k ) (@ =1,2) is a fixed N-linear connection on

(@)

Osc?M and A;k , B;»k are arbitrary tensor fields of type (1,2).
(a)
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We obtain for A and for B the equations

(@)
Aigri + Algir = g o, Algtrj + Alpair = a o, (17)
ij|k ijlk
( (a)
X [¢]
J Bl 9rj+ Bjx 9 =i |y,
(o) (@) N
@ (18)
B:k Orj + B]T.k Qjr = U5 [ k (O’. =1,2)
(@) (@)

We do not know the general solution of the equation system (17) and
(18)
We give a solution for these equations in the following special case.

Definition 2.1 An assymmetric melric (18) is called natural if we have
kg h kah
Azrs (I)r; = q)zrs A'r; (19)
where

X 1 1, . )
AR = §(<5f5?—9i_7‘9kh') , Ot = 5(5f'5,7—(Lijakl")- (20)

Theorem 2.1 An assymmetric metric Gij(a;,y(]),ym) on Osc®M is natu-
ral if and only if there exist a function u(m,y(l),y(z)) on Osc*M such that

Girgjsa"® = (1gij. (21)
Examples.
1. Let fi(=, yW .y bea tensoT field of type (1,1) which gives an almost
complex d-structure on Osc?M : f2 = —4. If we put:
aij = fi Grj, (22)
then a;; (z,y, 4 is alternating and Gij = gij + a;; is an asymmetric
metric on Osc?M. In this case p = —1.

2. Let q;- (z, ¥, y) be a tensor field of type (1,1) which gives an almost
product d-structure on Osc?M : ¢? = +6. If we put:
i = 4 Grj (23)

then a;;(z, y(l),ym) is alternate and G;; = g;; +a;; 1s an asyminetric metric
on Osc?M. In this case p = +1.
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Theorem 2.2 If there exist a N-linear connection on Osc*M compatible
with a natural asymmetric metric G,;j(n:,y(l),y(?)), then the function i is
constant.

Definition 2.2 A natural asymmetric metric (13) is called elliptic if 4 =
—c? and hyperbolic if p = ¢?, where ¢ is a positive constant.

The converse of Theorem (2.2) holds as follows:

Theorem 2.3 If a natural asymmetric metric (13) is elliptic or hyperbolic,

then there exist N-linear connections DT'(N) = (~§k, C’i]»k ) compatible

(@)
(=) O. 04
with G,-j(x,y(l),.?/(Q)). Let DT (N) = ( ;ka C' ik ) be a given N-linear
()
connection, then in the elliptic case we have
l. ) —_ Ll‘ _I___ r ° + (L"(I, ° + "(‘ ‘Lo
< ° (g) ('é,') (g) (24)
Chyy = Cyp +1{9"gr | +aar | +F70F |}
L (@ (o)
(¢ =1,2) , and in the hyperbolic case we have
4
~ o . 1 . . .
L= LY +:{g"g o +d"a o —q%q,
ok s rile rlk}
.
o (g) (g) (g) (20)
Czjk = Cljk + %{gzrgrj | ¢ +a"ar; |4 —q;4; | e}
G ()
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compatible with a natural asymmetric metric (13) on Osc*M is given by

=Lk +Am‘1’ps %, Ol = C'y +A§;‘I);Z vk (26)
(a) (o) (o)

where DT'(N) is the N-linear connection in Theorem (2.3) and Y}ik, ij

(cr)
(a = 1,2) are arbitrary tensor fields on Osc*M.
0 c c. ‘.
If weput DT (N)=DT (N)=(Lj, Cjy ), (o=12) for
(a)
i (2, ¥, y@), that is:
4 C
i 1 is {8955 | Sgsx 89,k
o= dot (P G )
C
Ci., = lpgis (99 4 S% 09k
ik 297 \ Gy (WE T 55007 ~ 550 ) » .
< (1) ( y Y Yy ) (27)
C
i _ 1is  0gjs 3gs dg
Cy = 39" (G + ity — )
L (@

the generalized Christoffel symbols (cf. with [8], pg.54) we have:

Theorem 2.5 The canonical N-linear connection compatible with a natural
asymmetric metric Gi_,'(x,y(l),y(Q)) is given in the elliptic case by:

C
U i +l aTa e +f7"fic
sk 7k 4{ rilk J 1'|k}
. oY @ (28)
o= Ch+ilaTay | +fif | He=1,2)
(o)

and in the hyperbolic case by
o= Do - )

rilk
() , (a) (29)
-4 |}, (@=1,2)

;k = Clk + ;{a”ay;
(a) ()
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Now, the Einstein equations, electromagnetic tensors, Maxwell equations

for the Einstein-Schrodinger geometry of the sccond order can be studied
using these N-linear conncctions.
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