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Abstract

The Helmholtz (self-adjoint) conditions for differential systems of
second and first order have been heighlighted by many authors. On
the other hand the discretization of systems of differential equations
of first and second order leads to mechanical integrators which are de-
scribed with difference equations. The paper establishes the Helmholtz
conditions for variational integrators associated to discrete evolutive
systems.
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1 Introduction

The mechanical integrators are numerical integration methods for mechani-
cal systems simulation. They preserve some of the invariants of the mechan-
ical system as energy, momentum or symplectic structure. The construction
of the integrators uses time-stepping algorithms to approximate the contin-
uous equations of motion. Concerning their classification there are explicit
integrators and implicit integrators according to the nature of the numer-
ical algorithms used in construction. The implicit integrators obtained by
discretizing Hamilton’s principle are called variational integrators and they
are studied by many authors: Moser-Veselov [3], Wendlandt-Marsden (7],
Marsden-Patrick-Shkoller [2], Albu-Opris [5], Criciun-Opris [1], etc.
A variational integrator & satisfies some relations of the form:

Ai o @(gk+1,gx) + Bilgr+1,q6) =0
*Research supported by Grant 35/1998
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®:Q*° > Q% , ¥(qei1,9) = (Grr2, q+1)

as we shall see in the sequel.

The aim of this paper is to present necessary and sufficient conditions in
order to an integrator @ verifying the above relations be variational. The
obtained conditions represent the analogous of the Helmholtz conditions for
second order differential systems Fj(z,z,Z) = 0, 1 = 1,n, systematically
studied by many authors among which Obddeanu-Marinca [4].

2 Discrete Variational Principle (DVP)

Let @ be the n-dimensional configuration manifold and cousider a function
L : Q? -5 R. We associate to L the corresponding action § : Q¥ =5 R
defined by

2

S(q0, -1 qn) Z (@k+1, k) (1)

where g, € Q,k € Z.

The discrete variational principle (DVP) seeks the sequences (go, ..., ¢n)
for which the action S is stationary for all variations of (qo, ..., qn) With g
and gy fixed. This yields the discrete Euler-Lagrange equations (DEL):

JL JL N -
: )=0, k=T, N=1,i=1n 2
9q (@k+1,qx) + 3%(%% 1) g n (2)
or I oL
~od — : _1)=0 3
74l o ®(qk, qr—1) + Gq};(qk’q'“ 1) (3)

where the mapping ® : Q? = Q? is defined implicitly by ®(qx,qx-1) =
(qk+1,qk). @ is called a variational integrator of the evolutive system gou-
verned by L.

Example 1. Let Q = R and L : R? = R given by L(gii1,qx) =
2(=1)*(ght1 — ak)® + 5(—1)*q}. The equations 2.(2) lead to gxt1 = gk +
gi_1- With gg = 1, ¢; = 1, the obtained equation represent the Fibonacci’s
sequence. The mapping ® : R? —» R? is given by ®(gx,qx-1) = (gx +
Q-1 Gk)-

Besides DEL and variational integrator, DVP supplies a symplectic struc-
ture on Q2.

Let 6 be the canonical 1-form on T*@ given in local coordinates by
f = p;dg'. If we consider the fiber derivatives FL;, FLy : Q*> — T*Q
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defined by
oL
FLi(qr+1,9%) = <Qk7 (a_qi((Ik+1:(Ik))> (4)
%
oL
FLo(qk+1,9%) = | @k+15 | 57— (qk+1, k)
9451

then we can define the 1-forms 8,6~ on Q%

) . oL i
6t = FL}(A) = 8Tf(CIk+lan)qu (5)
k

— * oL 1
0~ = FL3(0) = T(Qkﬂ,%)d%ﬂ
T+1
by pulling back the canonical form 8 on 7*(Q.
Proposition 2.1. ([2], [7]). For L, ®, 6+, 6~ the following relations are
satisfied:
0t +0- =dL
O*(dot) = —do™ (6)
P*w = w ,where w = df~
Here
O*L

= W(kayf]k)dqz ANdq,,,
k k+1

w
is the symplectic form on Q.

The last relation 2.(6) shows that & preserves the symplectic form i. e.
® is symplectic.

Remark: We considered only discrete lagrangian systems for which L
is time-independent. For the ”nonautonomous” case a DVP and the vari-
ational integrator can be formulated by considering the fibered manifold
Q — R with dim Q =n + 1 ([1)).

3 Discrete Helmholtz Conditions for Integrators

We introduce a general class of discrete systems. We consider a 1-form 6 on
QQ? having the expression

0 = A;(qk11,qx)dgt + Bi(qry1, a)dgh i (1)
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in a local coordinate system on Q2.
We call an evolutive system on Q2 associated to 8 the system

Ai(gk+1-9k) + Bi(gk,qe—1) =0, i=1,n (2)

A mapping ® : Q* — Q?, ®(qk,qk-1) = (@k+1,qx) is said to be an
integrator associated to the system 3.(2) if

A; o ®(qk,qr—1) + Bilgr,qk-1) =0, i =1,n (3)

The tnverse problem in the theory of the variational integrators is to de-
termine the necessary and sufficient conditions for the existence of a function
L : Q? — R such that the evolutive system 3.(3) derive from a DVP.

Theorem 3.1. The necessary and sufficient conditions for an evolu-
tive system associated to the form € in order to come from a DVP are the
following:

8Ai( )= 0A; i( )

E)q,i dk+1, 94k 3q 1 Qk+1,4k

0B; 0B;

—(gk+1,ak) = (G415 k) (4)
dq k11 qk+1

0A; 0B;

(Gr+1, k) = S (Qrt1+ Gk)
qu+1 9q 2

Proof: If 3.(2) comes from a DVP then there is a function L : Q? — R
such that

L OL
Ai(qrr1,Gr) = o (@e+1,ak) > Bilgre1, %) = '(r)‘qT_(Qk+17(1k) (5)
k k+1

The functions given by 3.(5) satisfy the condition 3.(4).

Conversely if the relations 3.(4) hold then the 1-form @ given by 3.(1)
is closed. According to the Poincaré Lemma therc exists locally a function
L:Q? = R such that @ = dL. L is given by

L{qk+1,qx) = / gk Ai(tqk+1, tak) + by Biltasr, tax)]dt (6)

and 3.(2) comes from a DVP.
The relations 3.(4) are called the discrete Helmholtz conditions (DHC).
Example 2. Let § = g4, sin qpdqy — cos grdgr4, be a 1-form on R2.
The associated evolutive equation is g4+ s%n g, — cos qx—; = 0 and the cor-

responding integrator is ® : R? = R?, ®(qx,qp—1) = (%7@«—1)- The

SN gy
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equation comes from a DVP because the functions A(ge+1, qk) = Q41597 Gk,
B(qr+1,qk) = —cos qx satisty 3.(4).

Example 3. Let 6 = (agx11 + bgx)dqy + (dg2,,, + cqi)dgr+, be a 1-form
on R?, where a,b,c,d € R, a # 0, ¢ # 0. The associated evolutive equation
is

agr+1 + bgk + cqy—1 + dgi =0
and the integrator associated to this equation is ® : R? — R?, ®(qx, qx—,) =
(—%qk —fqp — %qi, qk). The equation comes from a DVP if and only if
a = c. In this case L : R? — R is given by L(qx+1, k) = aqxqrs1 + %bqﬁ +

143
zdqi_ .
3%k +1
By considering the fiber derivatives FL,, FL : Q? — T*(Q associated
to € and given by

FL(qk+1, k) = (ak, Ailqra 1, qk))) (7)

FLy(qk159%) = (Gk+1, Bil@hr1,x)))

we define the 1-forms on Q:
6% = FLI(0) , 0~ = FL}(9) (8)

where @ is the canonical 1-form on 77*Q.
Proposition 3.2. The following relations are satisfied:

0" +6- =40 (9).
(1) = -6~
Proof: From 3.(7) and 3.(8) we obtain:
0" = Ai(qes1,qr)dar , 07 = Bi(git1, @e)dghs (10)

which yield 81 + 6~ = 6. Let ®(y,z) = (u,v) where y = v = ¢y, T = qy,
U = gg42. Taking into account of 3.(3) we have

B0t = O (A;(u,v)dv') = A; o O(y, z)d(vi(y, ) = —By(y, z)dy* = —0~

Proposition 3.3. The integrator ® : Q2 — Q? is symplectic if and ouly
if DHC are satisfied.

Proof: From 3.(9) it results 8+ — ®*(61) = 8 thercfore df — &*(d67) =
df. If the DHC 3.(4) are satisficd then d6 = 0 and d0F = ®*(d0t). dO7 is
the symplectic form given by :

det =

(Gh+1, gk)da] 4 A d (11)

dA
fli+1
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Conversely if ® is symplectic then d§*t = ®*(df*) and df = 0 which
implies DHC 3.(4).

4 Discrete Helmholtz Conditions for Integrators
satisfying Decomposable Evolutive Systems

An evolutive system in the most general form is described by a subset of
Q? x Q2% which is the graph of a system of equations:

F'i((Qk:-i—th)) (Qkan~l)) =0 3 i = 17—'”: (1)

where F; : Q% x Q* — R. A mapping @ : Q% — Q% ®(qx, gk—1) = (qk+1,9x)
is an integrator associated to the system 4.(1) if

Fi(®(qk, qk-1), (qk, ge—1)) =0, i =1,n (2)

The evolutive system 4.(1) is called decomposable with respect to @ if
there are some functions A;, B; : Q2 = R, i = 1,n, such that

Fi=Ajo®+B; , i=1n (3)

We shall say that an evolutive system of the form 4.(1) comes from a
DVP if it is decomposable with respect to ® and there exist a function
L : Q? = R such that

oL oL
Ai(Gk+1, %) = g (ak+159%) > Bilar, qk—1) = 'B?(Qka(ﬂc—l)
k

Proposition 4.1. For n > 1 the system 4.(1) comes from a DVP if and
only if
OFi(k) _ OF;(k) OFi(k) _OF;(k+1)

. k) OF Gij=Tw @
Oy, 94} O 41 dgj,

where Fi(k) "2 F;((qk+1, k), (Qk: Tk—1))-
Proof: If 4.(1) comes from a DVP then it is decomposable; the left side

has the form

oL .
Fi(k) = Ai(qk+1,9x) + Bi(gr, qr—1) = (gr+1,qx) + 94 @ q-1) , i=1Ln

aq;,

The functions given by 4.(5) verify 4.(4).



Helmholtz type condition for mechanical intcgrators 17

Cosversely if 4.(4) hold then the first relations imply the existence of the
functions A, B : Q%2 — R such that

0A 0B .
= 7 (@r+1,9%) + 75 (2 W-1) = Ai(qk+1,96) + Bilgr, ge—1)  (6)
Jq;, dq,

F;(k)

From the other relations it results that the functions A;, I3; verify that
Aiges1,a6) = 2 (@41, k) Bilaw ak-1) = 53¢ (@k,qx 1) and the system
4.(1) comes from a DVP. '

Proposition 4.2. If n = 1 then the decomposable evolutive equation
4.(1) comes from a DVP if and only if

OF(k) OF(k+1)

— 7
Oqk 1 g (@)

Example 4. Consider F(k) = agpy1 + bgi + cqr—1 a function describ-
ing an evolutive system in the Samuelson-Hicks model. We have F(k) =
A(gr+1,qk) + B(qk, gk—1), where A(gei1,qx) = agir1 + 5k B(Gky1, ) =

%qk+ch_1. This system is decomposable and it comes for a DVP if and only

ifa = OF(k+l) _ B — o OF(K) _ 84 —
if a = c¢. Indeed =57= = 52 (qk11,Gk) = € Gooty = Bgryg (Tkt1 k) = 6

therefore a = c.
We can associte to the functions F;, i = 1, n, defining an evolutive system
4.(1), the Fréchet derivative

OFi(k) OFi(k) ;  OFi(k)
DF;(k)(n) = —n] M+ (8)
(k)(n) (9qi+1 M1 (‘)Qi % 3(1i_1 k—1
and the adjoit operator
OF;(k—-1) ; oF;(k) ; OFj(k+1) ;
D*F;(k)(n) = —L——Inl_, +2—L " nl + ————n] (9)
(k) (n) L Me—1 aqt k oqL k+1
where 77,7c = a‘%q;i(e)lezo, i,j =1,n. [6]
An evolutive system is called self-adjoint if
D*Fy(k)(n) = DFy(k)(n) , ¥n (i=1n) (10)

Proposition 4.3. [6] For n > 1 an evolutive system comes from a DVP
if and only if it is self-adjoint.

Proposition 4.4. If n = 1 then a decomposable evolutive system comes
from a DVP if and only if it is self-adjoint.
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5 Discretization of Differential Systems

Let L : TQQ — R be a Lagrange function; L = L(x, %). The discretization of
L can be maked by using the midpoint rule which consists in the substitution
of z with g’—“—'tlg—Jrq—k and of £ with i’”—t;—_q—’” where h is the time-step. Oue obtain
a discrete Lagrangian L: Q x Q — R,

q’\’l +q Q', - Yk ;
L(qk+1,qk)=L( +12 k. A+1h %) )

DVP for L yields an evolutive systemn:

1[OL (qey1+ ar Gk — G oL (qk + Gr—1 Gk — Gr—
F‘ k = — - —_— .
(k) 2 [’dw’ ( 2 ’ h ) + Ozt 2 ’ h )} +
‘ (2)
1 [OL (Qk +qk-1 gk — Qk~l> _ 0L (Qk+l + gk Q1 — (JAH 0 i=TT
h |0zt 2 ’ h ozt 2 ’ h i ’
which i1s decomposable because
Fi(k) = Ai(qeq1, qk) + Bilge, qe1) , 1 = Lin (3)
where
Ay qr) = 10L (<Jk+1 +ak Qet1 — %)_EB_L (Qk+l +ar Qi1 — Qk)
DAL AR T S 5 2k h O3t 2 ' h
d oL “
1L (qx+qr—1 gk —qr—1\ 1 (q;c+%—1 Qk—qu)
B‘ — = T B — e
(k> @x-1) 2 Oxt ( 2 ’ h >+h, ot 2 ’ h

Generally by discretizing the Euler-Lagrange equations with the mid-
point method we not obtain a decomposable evolutive system, consequently
this system is not derived from a DVP. Moreover it differs from the systcm
obtained by applying DVP to the discretized Lagrangian.

Example 5. Consider the Lagrangian of the harmonic osscilator L =

%a’;z — %azQ, a > 0. The Euler-Lagrange equation is & + axz = 0. DBy
discretizing this equation we obtain (2 + ah?)qr+1 + (ah? — 4)qg +2qk-1 = 0
or g1 = —gi’;qu - 2+ih2 qk—3. By discretizing L we have L{qk 1, qx) =
iz (qer1 — ak)? — $(qus1 + qr)? which yields DEL: 2t0h2q, | 260,

24a _ __ 2(2—ah?
Gprdk—1 =0 0r gpy) = ‘(2—+;7p—)(1k — Qk—1-

For the first order differentiable systems given by

i —file)=0 , i=Tn (5)
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the midpoint rule is an usual method of discretization. From 5.(5) we obtain
the discretized system:

Ghs1 — Gk — hS* <———~q"’+‘2+ q’“) =0,i=1n (6)

Consider the associated evolutive system:

Filk) = 8 (al — o] = b7 (Z22)) - @

—4i (qi —ql_, —hfl <%)> =0

According to Proposition 4.1. we obtain

Proposition 5.1. The system 5.(6) comes from DVP if and only if the
vector field f = (f?) is irotational that is 5:{7 = 5%; , 1,7 = 1,n or 5.(6) is
of gradient type. .

Example 6. Counsider the system i* = z°, ©° = x*. By discretizing
this system we have g}, —qf = %(¢2, | +q2), a1 —di = 5(ahs, +q}) and
the associated evolutive system is the following

1 2 52 .1

h
Ght1 = 20k + Gh-1 — 5 (% + 2q; +qi_,) =0,

h
2 2, 2 1 1,1
Qie+1 — 24k + Q-1 — §(Qk+1 +2q; +qx_y) =0.

The corresponding Lagrangian is

Ligky1,q) = (q;+1 - CI;)Q + (CI/%+1 - CI/%)2 + "'((I/lc+1 + q;i)(q‘iﬂ + QIQC)

6 Integrating Factor

Generally the 1-form 6 on Q? given by 3.(1) is not closed which is an obstacle
into decide if the evolutive system 3.(2) associated to § comes from a DVP.
This is the reason for introducing the integrating factor method.

Recall that @ = A;(gx+1,9k)dq, + Bi(gr+1,qk)dgs,; and the evolutive
system associated to 6 is A;(grs1,qx) + Bilgrs1,q5) =0, i =1,7.

A nondegenerate tensor field C of type (1,1) on Q2 is called an integrating
factor for 8, respectively for the associated system, if the 1-form =0 o C is
closed (det C # 0).
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Such a tensor field C on Q? is locally given by

15} ; i 2 ' ]
—.®dqi+Ej(k)5“q7é®dqi+1+ 1)

C = Cj(k) B
k

+F*(k)

® dg] + G(k) 5

Qk+1 g 7 0q 9k+1
where C}(k) ot C}(qic.q-],fIk)a E}(k) net E;(Qkﬂ:q}c): F;(k) et Eii(q’““’q"")’
Gi(k) not G;-(CIHMIk)- It result that

6 = (Ai(k)Ci(k) + Bi(k)F}(k))dg], + (A; (k) E} (k) + Bi(k)Gi(k))dal,, (2)

By applying Theorem 3.1. we deduce
Proposition 6.1. The decomposable evolutive system 3.(2) admits an
integrating factor C if and only if

. aCt i
ci (6h6A _6haA_)+( ]_aq)AiJr

@ qu+1

7 dq} dq]. dqr  dq]
A BFZ i
+F} 5"63 5’LdA + QF% B; =0,

h\ %7 g1

6 qu 8qk aqu
. OFE:
B} (6? O g O )+ (——, L o8 )Ai+ (3)
O} 3q1]c+1 Opy1 gl

i i
+Gj, (5;633 ~ap 0% ) + ( 8?j - ,Bfl )B,; =0,
Ghs1 d‘ﬂcﬂ 911 Oqj

1 1
88;4’3 cl— 6A;'E;i + ( ale - QETJ> A+
Q41 dgj, 9g1 O
0B; i 9Bi ( 6F]? B 6G_§> B -0
Ogpy ' Og; Ogi1  Og, % .
In the concrete problems the integrating factor is sought such that the
system 6.(3) be as simple as possible.
Example 7. Consider the evolutive equatlon given by agg41 + bgx +
cqk-1 +dgi =0,a #c. )
This system is not derived from a DVP. The associated 1-form is 6 =
(aqr+1 + bgr, + dg?)dgr + cqrdgr 1. We seck an integrating factor of the
form C— ® dqi + Gaqu ® dgr41, where C,G € R. The conditions 6.(3)
lead to aC —¢G = 0 that is G = 2C. It results that 6 = (agr+1 + bgx +
d2)dgr + agrdgr+1- g is closed. A corresponding discrete Lagrangian is
L(qk+1,9x) = aqeqrr1 + 3ai + $qi.
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