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Abstract

The present paper surveys the history of algebraic represetations
of complete directed graphs, known in graph theory as tournaments,
or equivalently, relational structures with a trichotomous binary re-
lation. Essentially, two kinds of algebraizations of tournaments were
studied in the literature: algebras with one binary operation (called
groupoids of tournaments) and algebras with two binary operations
(weakly associative lattices). Different properties of these algebras
have been explored by many authors. Also, varieties generated by al-
gebraic versions of tournaments attracted a certain interest in univer-
sal algebra, primarily such questions as equations satisfied by tourna-
ments and finite base problems, congruences, simple and subdirectly
irreducible algebras, homomorphisms and, especially, automorphism
groups, decidability problems, etc. A selection of results concerning
these problems are also presented in the current survey.
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1. Introduction

As an object of the graph theory, a tournament is a complete directed graph,
i.e. a digraph in which every pair of different vertices is connected by exactly
one directed edge. Certainly, it will make no major difference (moreover,
it will make the algebraic treatment easier) if we consider tournaments to
have loops, that is, edges leading from a vertex to itself. To be more precise,
we define tournaments as relational structures T = (T, —), where T is a
nonempty set and — is a relexive trichotomous binary relation, which means
that for each z,y € T such that = # y, exactly one of the assertions z — y,
y — x 1s true.

The fact that £ — y usually reads as "z beats 4” in accordance with the
terminology of sports, which, among others, gave motivation for the concept
of tournament. Sometimes, the universe 7' of a tournament is required to
be finite (in order to meet intuitive expectations), but some authors do
not follow this restriction, considering some algebraic and model-theoretic
properties of infinite graphs, such as in [6].

In 1965, Z. Hedrlin observed that any tournament T can be transformed
into a groupoid by defining the multiplication operation for all z,y € T
by zy = yz = z if and only if £ — y. In particular, this yields z? =
xz for all z € T. It takes only a short reflection to see that this is, in
fact, a bijective correspondence between the class of all tournaments and
all idempotent and commutative groupoids satisfying zy € {z,y} for all z
and y, the latter being special cases of what Jezek and Kepka in [15] called
quasitrivial algebras. The groupoids obtained in the way just described are
called groupoids of tournaments, or simply tournaments for short, whenever
it makes no confusion. In addition, it should be mentioned that credits for
the above ideas belong to Chvital as well, whose paper [3] was also dealing
with the subject. Since then, a systematic study of algebraic properties
of directed graphs was carried out, especially in the early seventies by the
graph theory group at the Charles Univesity, Prague, led at the time by
Hedrlin, Nesetiil, Sabidussi, Culik and Pultr. Their work yielded successful
applications in various branches of mathematics (see, for example, [13]).

An alternative approach to algebraization of tournaments was almost
simultaneously proposed by Fried [8] and Skala [27]. Namely, while the
result of the operation in groupoids of tournaments applied to z and y is
the "winner” of the "match” of z vs. ¥, in this case we introduce two
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binary operations which will denote both the "winner” and the looser”.
More formally, we represent a tournament T = (T, —) by an algebra At =
(T, V,A) such that if 2 — y, then 2vVy = yVa = z and zAy = yAz = y. Both
of these operations are idempotent and commutative, but not associative
except for transitive tournaments. However, a weak form of the associative
law is satisfied, as well as the absorption law, thus the described algebras
belong to a class named by Fried and Gratzer weakly associative lattices. We
will not be dealing with this kind of algebras associated to tournaments until
Section 7, where the results concerning tournaments as weakly associative
lattices will be presented.

The rest of the paper is organized as follows. Section 2 starts with
definitions of basic notions used throughout the survey and gives a brief
account on some results of a general character, while its main part is devoted
to tournaments having no nontrivial congruences, i.e. tournaments which
are simple algebras. Their properties are also brought to connection with
homomorphisms of tournaments and Hamiltonian cycles. Section 3 deals
with charaterizations of congruence lattices of tournaments. In Section 4,
the focus is on groups of automorphisms of tournaments. Questions that
arc motivated by equations satisfied by (finite) tournaments (more generally,
their logical aspect) are the subject of Sections 5 and 6. Most of the results of
these sections are, in fact, the contents of two recent papers by Crvenkovié,
Dolinka and Markovi¢ [4] and Jezek, Markovié¢, Maré6ti and McKenzie [16].
Finally, as already mentioned, in Section 7 we survey contributions that are
related to represetations of tournaments with two binary operations. The
latter is, in fact, a story of the variety generated by the triangle: the cycle
with three elements. Also, we give, as an appendix, the summary list of
open problems raised through the exposition in these seven sections.

2. Simple tournaments

Let T = (T,—7T) and S = (5, —5) be two arbitrary tournaments. A map-
ping ¢ : T — § is called tournament homomorphism if for all z,y € T,
T 4 implies ¢(z) =3 ©(y). Some special kinds of homomorphisms,
such as endomorphisms, automorphisms and isomorphisms of tournaments
are defined in a usual way. The set of all homomorphisms from T to S
is denoted by Hom(T,S). Of course, this set is never empty, since every
constant mapping 7" — S is a homomorphism of tournaments. If T = S, we

xr —
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obtain the monoid of endomorphisms of T under composition of mappings,
denoted by End(T). The group part of this monoid consists precisely of all
bijective endomorphisms, that is, automorphisms of T and this group, often
called the symmetry group of T, we denote by Aut(T).

If a tournament S is a subtournament of T, we write S < T. Clearly,
any nonempty subset M of T induces a subtournament with M as its uni-
verse. This subtournament is usually denoted by T|ps. Moreover, if we
have a surjective homomorphism ¢ : T — S, then S can be regarded as
a subtournament of T by considering a set of representatives of the family
{¢71(s): s € S}. Hence, every epimorphism of tournaments is a retraction,
see [14].

The ambigous use of the notion of the homomorphism of tournaments
in the sense of both graph theory and algebra is justified by the following
observation.

Proposition 2.1. [24] The mapping ¢ : T — S is a homomorphism of tour-
naments T and S considered as graphs if and only if it is a homomorphism
of the corresonding groupoids of tournaments. 0O

Naturally, this will yield the equivalence of the concept of congruence of
tournaments respectively as graphs and groupoids. Namely, an equivalence
relation # on the set T is a congruence of the tournament T if forall z,2’,y €
T, {z,2') € # and ¢ — y implies 2’ — y. That the definition just given
exactly matches the notion of the congruence of a groupoid of tournament
is shown by the proposition below.

Proposition 2.2. [24] Let T be a tournament, M and N congruence classes
of T for some congruence § and z,z2' € M, y,y' € N. Then z — y if and
onlyifz’ — ¢'. O

From the unive}sal—algebraic standpoint, the construction of direct prod-
uct of tournaments would be also interesting. However, it is easy to show
that a direct product of groupoids representing tournaments (even of a two
finite ones) need not be a groupoid of a tournament (a quite precise ar-
gument is presented, for example, in Suboti¢ [28]). Therefore, the class of
(finite) tournaments is not a variety. Throughout the paper, the variety of
groupoids generated by all tournaments will be denoted by 7. It is impor-
tant to note that the restriction of the notion of a tournament only to finite
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structures does not affect 7 at all. The proof of the following fact is the first
appearance of equations satisfied by tournaments in any crucial role here.
That role will be developed in more detail in Section 6.

Proposition 2.3. The variety T is generated by all finite tournaments.

Proof. By Birkhoft’s Theorem on the equivalence of varieties and equational
classes, it is enough to prove that an identity satisfied by all finite tourna-
ments is satisfied by all tournaments without any restriction on their cardi-
nality. So let p(z;,...,2,) = q(21,...,2,) be such an identity and let T be
any tournament. If aq,...,a, € T are arbitrary, then for M = {aq,...,a,},
T|ar is a finite subtournament of T, thus it satisfies the given equation.
This, in particular, means that

pT|M(a1, ey lpy) = qTIM(al,...,an),

hence
pT((Ll, . .,an) = qT(al, .. .,(Ln),

proving that Tl=p~gq. O
From the above proof, one can deduce

Corollary 2.4. T |= p(z1,...,2%x) = q(21,...,2%,) if and only if the iden-
tily p = q 15 satisfied by all n-element tournaments. O

For the reasons explained above, from here on the word tournament will
cover only finite graphs and algebras. For tournaments having arbitrary
cardinality, we shall use the expression generalized tournaments.

Many examples from universal algebra illustrate the fact that under-
standing the nature of simple and subdirectly irreducible algebras is of a
great importance in the study of varieties which they belong to. This justi-
fies the significance of the research on the structure and properties of simple
tournaments, having the diagonal and the full relation as their only congru-
ences, i.e. the simplest possible congruence lattices. The main charateriza-
tion theorem of simple tournaments is as follows.

Theorem 2.5. [24] Let T be a tournament. Then the following statements
are equivalent:
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(1) T s simple.
(2) If a tournament S cannot be embedded into T, then |Hom(T,S)| = |95].

(8) If|T| > 3, then for any proper subset M C T with |M| > 2 there ezists
z € T\ M such that x — y and z — z for somey,z€ M. O

Erdés, Fried, Hajnal and Milner in [6] define a convez subset of a tour-
nament T as a subset M C T such that for all z € T'\ M either z — y
forall y € M or for all y € M, y — z. Now if we define C(T) as in [6]
to be the set of all convex subsets M of T with M # T and |M| > 2, the
condition (3) from the above theorem is obviously equivalent to C(T) = 0.
Concerning this family of convex subsets, we have two interesting results.

Theorem 2.6. [6] Suppose T = (T, —) is not a transitive generalized tour-
nament, that is, — is not a linear order on T'. Then there exists a linear
order — on T such that C(T) C C(T') for T = (T,—). O

Theorem 2.7. (6] For any generalized tournament T, C(T) has the Bern-
stein property, i.e. there is a set B such that BN M # 0 and B € M for all
MeC(T). O

Equipped with these two, Erdos, Fried, Hajnal and Milner prove

Theorem 2.8. [6] Any generalized tournament with at least three elements
“has a two-point simple extension. O

In general, this is not true for one-point extensions. But later it turned
out that the only exceptions are the three-element tournaments and tran-
sitive tournaments with an odd number of vertices. This was proved first
for tournaments by Moon [23] and extended for generalized tournaments by
FErdos, Hajnal and Milner in [7].

Note that the previous theorem implies that there exist simple general-
ized tournaments of any cardinality except 4. It can be effectivelly checked
that there is no 4-element simple tournament.

The connection between convex subsets and simple tournaments becomes
even more transparent after the following
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Lemma 2.9. Let T be a tournament and M € C(T) then 0y = M2 U A7
15 a congruence of T. O

But the really interesting thing is that all principal congruences of tour-
naments are of the above form.

Proposition 2.10. If @ is a principal congruence of a nontrivial tourna-
ment T, then there exists M C T such that § = 8py. O

The latter proposition now allows to easily characterize atoms of con-
gruence lattices of tournaments.

Proposition 2.11. [24] Let T be a tournament. The atoms of Con(T) are
ezactly the congruences of T of the form O, where M € C(T) and T|p is
nontrivial simple subtournament of T. 0O

It is clear that the factor-tournament T/@ is a simple tournament, when-
ever # is a maximal congruence of T, i.e. a coatom in Con(T). Thus any
tournament has a nontrivial simple homomorphic image. On the other hand,
the above result shows that simple tournaments turn out to be related with
minimal congruences on tournaments as well.

Recall that a Hamailtonian tournament is a tournament with a Hamilto-
nian cycle, that is, a cycle containing all elements of the tournament. The
importance of Hamiltonian tournaments from the algebraic pont of view lies
in two facts. First, it is well-known that every tournament has a Hamilto-
nian path (by Rédei’s Theorem) and so every tournament has a one-point
Hamiltonian extension. Therefore, all Hamiltonian tournaments generate
the variety 7. The other reason why Hamiltonian tournaments are interest-
ing in the current context is the following

Theorem 2.12. [28] All simple tournaments with at least three elements
are Hamiltonian. O

The converse of this theorem is false: a five-element counterexample can
be found in Subotié [28]. Nevertheless, the previous conclusion can now
be strengthened in the sense that 7 is generated by simple Hamiltonian
tournaments only. Another nice feature of Hamiltonian tournaments is given
below.
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Proposition 2.13. [24] If T is a Hamiltonian tournament, then Con(T)
has a unique coatom. O

Using this proposition and

Proposition 2.14. [24] A tournament T is Hamiltonian if and only if it
has a Hamiltonian homomorphic image. O

we can characterize Hamiltonian tournaments by purely algebraic terms.

Theorem 2.15. A tournament T is Hamiltonian if and only if Con(T)
has a unique coatom, which is a congruence of inder at least 3.

Proof. (=) By Proposition 2.13, T has a unique maximal congruence 8.
By Proposition 2.2, the factor-tournament T /6y is Hamiltonian, so it must
have at least three elements.

(<) Let 6y be (the unique) maximal congruence of T of index > 3.
Then T/6y is a simple tournament having at least three elements, which is
Hamiltonian by Theorem 2.12. The conclusion now follows by Proposition
2.14, since T /6y is a homomorphic image of T. O

However, one question concerning Hamiltonian tournaments, having a
rather model-theoretical character, remains open. Roughly speaking, we are
interested whether the property of tournaments of being Hamiltonian can
be expressed by a first-order formula, either in relational, or in algebraic
settings. It is not hard to see that for each n, the property ”if a tournament
has n elements, then it is Hamiltonian” can be first-order codified by a
formula. If we let n to run over the set of natural numbers, the obtained
set of formulae will certainly "filter” the Hamiltonian tournaments as its
finite models. But we are looking for just one formula ® capturing the
Hamiltonian property.

Problem 1. Is there a first-order formula ® such that a (finite) tournament
T is Hamiltonian if and only if T = &7

Such formula (if it exists at all) clearly cannot be universal, since uni-
versal formulas are preserved under taking submodels (and it is quite easy
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to construct a Hamiltonian tournament having a non-Hamiltonian subtour-
nament). The posed problem asks, in other words, whether there exists
a finitely axiomatizable class of tournaments having Hamiltonian tourna-
ments as the set of its finite members. We conjecture the negative answer.
To prove it, it would be sufficient, for example, to construct an ultraproduct
of non-Hamiltonian tournaments which is a Hamiltonian tournament. Here
we quote a related result.

Theorem 2.16. [6] The class of all simple generalized tournaments is not
closed for ultraproducts. O

We end this section by mentioning two more results on simple tourna-
ments. A first one is a deep result of Miiller, Nesetfil and Pelant [24], which
is essentially of a graph-theoretical nature. However, its proof heavily em-
ploys the notion of tournament congruences and so it stands as a beautiful
example of an application of algebra in graph theory.

Theorem 2.17. (24] Let T = (T,—) be a Hamiltonian tournament such
that |T'| # 4. Then there exists a simple tournament T/ = (T',—) which s
degree-equivalent to T. O

Finally, one can ask about the number of simple tournaments with =
elements. Is a simple tournament a rare phenomenon in the multitude of
all possible ones? Not at all! Namely, some calculations that are concerned
with maximal congruences of tournaments show that almost all tournaments
are simple.

Theorem 2.18. [6, 24] Let S, and T, denote the number of all sunple
tournaments and all tournaments with n elements, respectively. Then

n—00 Tn

In (6], the above result was obtained by calculations on convex subsets
of an arbitrary tournament.



104 S. Crvenkovié, I. Dolinka and P. Markovié¢

3. Congruence lattices of tournaments

In the previous section we already exhibited several properties of congru-
ences of tournaments and their congruence lattices. Here we give a short
account on the work done by Miiller, Nedetfil and Pelant in [24]. They
gave a characterization theorem which describes finite lattices representable
as congruence lattices of tournaments. This characterization relies on the
description of the partially ordered set formed by join-irreducible congru-
ences. If T is a tournament, the set of join-irreducible elements of Con(T)
is denoted by Iy(T).

One additional notion we shall need is the one of cyclic decomposition of
a tournament. Its definition is based on the following

Proposition 3.1. Let T be a tournament and let 'T,, denote the n-element
chain. Let ¢ be a epimorphism from T onto T, such that there is no epi-
morphism from T onto T,, for m > n. Then ¢ is determined uniquely and
T|¢_1(1.) is a Hamiltonian tournament for every x € T. O

Now the partition {¢~'(z) : z € T} from the above proposition is
called the cyclic decomposition of T. Note that the cyclic decomposition is a
congruence of T as being the kernel of the homomorphism . Its importance
lies in the fact that it supplies a useful criterion whether a tournament
congruence is join-irreducible.

Proposition 3.2. [24] Let T be a tournament. Then 6 € Iy(T) if and only
if @ = Op(= M?2U A7) for some M C T, |M| > 2 such that the cyclic
decomposition of T|p has at most two elements. O

Hence, we can identify join-irreducibles in Con(T) with the correspond-
ing nontrivial congruence classes. The following lemma is one of the key
ingredients for the characterization of posets of join-irreducible tournament
congruences, but it is also interesting itself.

Lemma 3.3. [24] Let 0,602,685 be three mulually distinct join-irreducible
congruences of a tournament T and M, N, P the corresponding nontrivial
congruence classes. If P C M and P C N (that is, if 03 < 6, and 65 < 6;),
then T|pun has the cyclic decomposition Cy,Cq,C3 such that C; = P,
CiuCy=M and CyUC3=N. O
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Now we can state one of the three main results of this section.

Theorem 3.4. [24] Let P = (P, <) be a finite partially orederd set. There
exists a tournament T such that P = (I, (T), <) if and only if the following
two conditions hold:

(1) The diagram of P does not contain the following patterns:

for alln > 2.

(2) The partial order induced on the set of mazimal elements of P and
the elements they cover is for some n isomorphic either to the partial
order P, given below, or to the partial order which arises from it by
deletion of some of its lower elements.

~
n

Further on, one could prove that if 6,6,,...,6, are join-irreducible con-
gruences of a tournament T such that 8 < 6, V...V 8,, then § < §; for
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some 1 < 1 < n. By a well-known theorem of Birkhoff, this means that
Con(T) is a distributive lattice. Since distributive lattices are completely
determined by the poset of its join-irreducibles, one obtains the following
theorem immediately.

Theorem 3.5. [24] Let L be a finite lattice. There ezists a tournament T
such that L = Con(T) if and only if L is distributive and the poset of its
Join-irreducibles satisfies the conditions (1) and (2) of Theorem 3.4. O

Finite distributive lattices satisfying the conditions of the previous the-
orem will be called admissible.

However, although tournaments have distributive congruence lattices,
the variety 7 they generate is not congruence-distributive. To prove this
statement, once more we are going to make use of equations satisfied by
tournaments.

Lemma 3.6. Let t(z,y) be a groupoid term in which both of the variables
z,y appear. Then T |= t(z,y) = zy.

Proof. By induction on the complexity of the term ¢(z,y). Recall that tour-
naments satisfy the commutative and the idempotent law, as well as

z(zy) = zy,
which can be easily checked.

If t(z,y) = zy or t(z,y) = yz, there is nothing to prove. So let t(z,y)
be a term with n + 1 operation symbols and assume that the lemma holds
for all terms having < n operation symbols. By commutativity, it suffices
to consider three cases:

(1) t(z,y) = zp(x,y), where p(z,y) contains both z and y. Then
t(z,y) = z(zy) = zy
holds in 7.

(2) t(z,y) = yp(z,y), where p(z,y) contains both z and y. In this case,
T satisfies the identities

t(z,y) = y(zy) = y(yz) = yz =~ zy.
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(3) Finally, if ¢(z,y) = p(z,y)q(z,y) for some terms p(z,y),q(z,y) con-
taining both variables z, y, then

t(z,y) = (a:y)2 2y

is satisfied in 7, thus the induction is completed. O

From here, using the well-known result of Freese and Nation on congru-
ence lattices of semilattices, it is easy to derive

Proposition 3.7. (28] The variety 7 satisfies only regular identities. Hen-
ce, it contains the variety SL of all semilattices and consequently, the class
of congruence lattices of its members does not satisfy a nontrivial lattice
identity. O

Concluding this section, whose topic was highly related to simple tor-
naments and vice versa, we should mention one more unsolved problem.
Namely, while the simple tournaments are relatively well explored, nothing
is known about subdirectly irreducible tournaments. More generally, one
can ask about subdirectly irreducible members of 7.

Problem 2. Characterize all subdirectly irreducible members of the variety
T. Are they all tournaments?

This problem is important for a better understanding of the structure
of 7, because subdirectly irreducible algebras are building blocks of any
variety.

4. Automorphisms of tournaments

Suppose that a finite group G is isomorphic to Aut(T) for some tournament
T. The first observation that can be made is that the order of G must be
odd, because all its members have odd orders. Really, if we assume the
contrary, i.e. that there exists an automorphism ¢ of T of order 2k, then
¥ = ¢* is a nontrivial automorphism of order 2. If z € T is not a fixed point
of ¢, then ¥(z) = y implies ¥(y) = = and vice versa. Since z # y, it has
to be either £ — y, or y — z. But the first case implies ¥(z) — ¥(y), that
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is, y — z, which is a contradiction; the other case is handled analogously.
Therefore, |Aut(T)| cannot be an even number.

On the other hand, every group of odd order can be represented as an au-
tomorphism group of a tournament, see Moon [22]. Moreover, the following
result says that we can even restrict ourselves only to simple tournaments.

Proposition 4.1. [24] For any group G of odd order there ezist a simple
tournament T such that Aut(T)= G. O

This assertion is proved using the Cayley technique. Namely, given an
odd group G, G = {g1,. .., 92n41} one can fix alinear order < of its elements
(for example, g; < g; if and only if 2 < j) and consider a minimal system of
its generators, say H = {g1,...,gx}. The central role in the proof is played
by the model Rg = (G, po,p1,...,pk), Where p; = A, UAg for 1 <1 <k
(Ag is the left translation corresponding to g € G) and

po = {{g.h): hlg < g 'h}U Ag.

It can be shown that Aut(Rg) = G and that all endomorphisms of Rg
which are not automorphisms are constant mappings.

It is worth noting that in the proof of the above proposition a special
type of simple tournaments appear. These are the rigid tournaments, whose
only endomorphisms are the constants and the identity mapping. See [3]
for a detailed treatment of rigid tournaments. We shall return to rigid
tournaments once more at a later stage of this section.

We now turn our attention to the problems of simultaneous realization
of automorphism groups and congruence lattices of tournaments. The well-
known result of Lampe shows that these two structures are independent for
universal algebras in general. Miiller, Nesetfil and Pelant prove that the
same is true for tournaments. In fact, even the previous proposition is a
result of this kind: one can always construct a tournament with a given
odd group of automorphisms and trivial congruence lattice. Now the same
conclusion holds if we require the automorphism group to be trivial and the
congruence lattice to be arbitrary (but, of course, admissible).

Proposition 4.2. [24] Let L be an admisstble lattice. There exists an asym-
metric tournament T (a tournament having the identity mapping as its only
automorphism) such that Con(T)= L. O
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Towards oblaining the general result, the following doubling construction
was used. If T is a given tournament, make two disjoint copies of T over the
sets of vertices 7' x {0} and T x {1}, respectively. The arrows between the
copies are defined so that (z,0) — (y,1)ifz,y € T, 2 # y and (z,1) — (z,0)
for all z € T. The tournament which is the result of this construction we
denote by 2T.

Proposition 4.3. [24] Let G be an odd group. There ezists a tournament
T such that Aut(T) = Aut(2T) 2 G and that both T and 2T are simple
lournaments. O

We arrived at the main result which deals with automorphisms of tour-
naments.

Theorem 4.4. [24] Let L be an admissible lattice and G a group of odd
order. There ezists a tournament T such that Con(T) = L and Aut(T) =
G. O

The above theorem can be strenghtened in such a way that the con-
sidered tournament has a specified subtournament. This shows that the
congruence lattice and the automorphism group of a tournament do not
force any forbidden parts whatsoever.

Theorem 4.5. [24] Let L be an admissible lattice, G a group of odd or-
der and S a tournament. There exists a tournament T such that S < T,
Con(T) =L and Aut(T)= G. DO

The presented results fully answer the question of representability of
finite groups by automorphism groups of tournaments. However, the anal-
ogous problem for endomorphism monoids seems to be much harder.

Problem 3. Characterize all finite monoids isomorphic to End(T) for so-
me tournament T.

Finally, we shall mention two more results concerning automorphisms of
tournaments. We say that a sequence of integers d forces the property P
of tournaments if any tournament with a degree sequence (score vector) d
has the property P. Tt turned out that very few automorphism groups of
tournaments are forced by degree sequences.
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Theorem 4.6. [24] The only automorphism groups of tournaments which
may be forced by degree sequences are the trivial group and finite direct prod-
ucts of cyclic groups Zz and Zs. In addition, the sequences forcing the trivial
automorphism group of a tournament (i.e. that a tournament is asymmetric)
are exactly the sequences having no three equal elements. 0O

As in Section 2, one can raise a question about the number of all asym-
metric and, in particular, rigid tournaments. The last theorem of this section
shows that these properties hold for almost all tournaments.

Theorem 4.7. [24] Let T, denote the number of all tournaments with n
elements and let A,, and R, be respectively the numbers of all n-element
asymmetric and rigid tournaments. Then

R A
lim = =1 and consequently, lim — =1. O
n—co [, =0 An

5. Decidability problems

Whenever a variety is given, different algorithmic problems may arise about
its members and formulae they satisfy. Among the most interesting ones
are, for example, the decision problem for the equational and the elemen-
tary theory, the membership problem and word problems. These questions
are usually formulated in terms of exsistence of various algorithms, but, ac-
cepting Church’s Thesis and applying the arithmetization process proposed
by Gadel, this is just the same as asking whether some sets of algebras and
formulae are recursive. For example, if one is concerned with the set of pairs
of terms

EqV)={{p,9): VEp=4},
where V is a variety, the decidability problem for equations of V is to deter-

mine whether the above set is recursive or not. The same question for the
set Vg, of all finite members of V is the membership problem for V, etc.

Let Q, denote the set of all tournaments with {1,2...,n} as the set of
their vertices. Clearly, Q, is always a finite set and each n-element tour-
nament is isomorphic to some member of §,,. Because of the observation
made back in Corollary 2.4, the following result we have for free.

Proposition 5.1. [4] The equational theory of T is decidable. O
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The required algorithm which decides an equation in 7 consists of con-
secutive checkings of the given equation for all possible interpretations of
variables in all tournaments from $2,,.

Most of the other positive results in this field about the variety 7 follow
from the assertion below. Namely, the fortunate occurence is that it is
possible to give a closer localization of finitely generated free algebras of 7.
But the importance of the following statement is much more emphasized in
its corollaries.

Proposition 5.2. [4] If F7(n) denotes the free algebra of T on n free gen-
erators, then Fr(n) € ISP4,(Q,). Moreover, if Q, = {Ty,..., Tk}, then
Fr(n) can be embedded into the finite direct product Hle Y. O

Since this yields that all finitely generated free algebras of 7 are finite,
we immediately obtain

Corollary 5.3. [4] 7 is a locally finite variety. O
as well as the solution of the membership problem:

Corollary 5.4. (4] There ezists an algorithm which for every finite groupoid
G decides whether G € 7. O

In [24], Miiller, Negetfil and Pelant prove that one cannot obtain 7 by
taking only finitely many tournaments. As a consequence of Proposition
5.2, we can strengthen this result.

Corollary 5.5. (4] 7 is not finitely generated. O

Maybe the most important consequence of Proposition 5.2 is that it
admits to effectively construct any finitely presented algebra in 7. By
Corollary 5.3, we know that Pr(G, R) must be a finite groupoid, provided
the presentation (G, R) is finite. Moreover, if |G| = n, then P7(G,R) €
HS(H?=1 T?"), where 0, = {Ty,...,T,}. Therefore, it remains to algo-
rithmically determine which one of the quotients of subalgebras of Hf:]_ "
is isomorphic to Pr(G, R). But for each of these "candidates” (note there



112 S. Crvenkovié, I. Dolinka and P. Markovié¢

are only finitely many of them) one can check whether they are n-generated
and if so, whether they satisfy the relations from R for some sequence of n
generators. In this way, precisely all homomorphic images of P (G, R) are
produced and now it remains to pick the largest among them. Thus we just
proved

Corollary 5.6. [4] The word problem for T is uniformly solvable. O

As the uniform solvability of the word problem is for any variety known
to be equivalent to the decidability problem for quasi-identities, we have

Corollary 5.7. The theory of quasi-identities of T is decidable. O

Finally, it remains to discuss the decidability of the elementary thecory,
that is, the set of all first-order formulz satisfied by 7. The negative result
stated below is very much an expexcted one.

Theorem 5.8. [4] The elementary theory of the variety 7 is hereditarily
undecidable. O

This result is obtained by a heavy use of interpretation schemes of first-
order languages and interpretations of models and theories. The necessary
technique is described in the monograph of McKenzie and Valeriote [20] and
we shall make no further reference here about interpretations. Let us only
say that the fact that a theory I'y in a finite language is interpretable in a
theory I' if there exists a class of models having Ty as its elementary theory
and if every structure from this class can be in a certain sense ”encoded”
by a model of I'. McKenzie and Valeriote proved that in this case if T'g is
finitely axiomatizable and decidable, then I' is decidable too, and if I'y is
hereditarily undecidable (i.e. if any axiomatic extension of I'g is undecidable),
sois .

In the present situation, the authors in [4] interpreted the theory of finite
undirected graphs (which is well-known to be hereditarily undecidable) in
Th(T). The key formula R(z,,zq,y) which allowed to carry out the program
above was the follwing one:

(z1 g zo) A (Fu)(Fv)(uZvAug yAyu R yv R Yy A1 R Ty A T30 = Ty A
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A(zrzo 21 A uvmu) V (2122 R T2 A uv & v))).

Intuitively, this formula is concerned with the realization of a certain 5-
element subtournament, which is used to describe a single undirected edge.

Now a finite graph G = (G, p) with n elements, G = {a1,a2,...,0a,}
is interpreted by a (2n + 1)-element tournament T, defined over the set
T = {b1,...,bn,¢1,...,¢n,d} in such a way that the vertices b; encode the
edges which are present in G, vertices ¢; serve to fix a linear order on vertices
of the original graph, while d is a special vertex which connects these two
and plays a special role in the interpretation scheme. Namely, in this setting,
T |= R[b;, b, d] turns out to be equivalent to (a;,a;) € p and this equivalence
will suffice to complete the proof.

6. Tournaments are not finitely based

The alm of this section is to review results about equations satisfied by all
tournaments, i.e. about the equational theory of 7. We have already seen
that tournaments satisfy the following identities:

(1) z? ~ =,
(2) Ty X yz,
(3) z(zy) = zy,

while the associative law does not hold in 7. Moreover, we know that
tournaments can satisfy only regular identities. Because of the latter fact,
we have not only that the class of congruence lattices of 7 does not satisfy a
nontrivial lattice identity, but that 7 is not a congruence-permutable variety,
using the well-known criterion of Mal’cev, see [2].

Unfortunately, one cannot expect to find more ”nice” identities in £q(7).
The following theorem partially explains why is that so.

Theorem 6.1. [28] Let T be a tournament. The following conditions are
equivalent:

(1) T is a semilattice.

(2) T is a medial groupoid, i.e. it satisfies the equation

(zy)(2t) = (zz)(yt).
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(3) T s a distributive groupoid, i.e. it satisfies the equation
(zy)z = (zz)(yz).

(4) T satisfies a balanced identity (that is, a regular identity in which every
variable has exactly one occurence on each side of the identity) which
is not a consequence of the commutative law.

(5) T is an acyclic tournament, i.e. a chain., 0O

In the proof of this theorem, of essential importance were several charac-
terizations of semilattices and medial groupoids which are due to J. Dudek.

Most of the research in this field was chiefly motivated by a simple
and natural question posed in Miiller, Nesetfil and Pelant [24] which asked
whether 7 can be defined by a finite set of equations, i.e. whether Eq(7)
is finitely based. Namely, if T' is any set of equations, we say that a set of
equations ¥ C T' is an (equational) base of T if every element of I' can be
formally deduced from ¥ using the rules of equational logic (see {2]). In case
that I' is the equational theory of a variety or an algebra, we simply call ¥
the base of that variety or algebra, respectively.

Miiller, Nesetfil and Pelant note that equations (1)—(3) form a base for all
identities of 7 in two variables. Also, they consider the following groupoid
terms

A= (.. ((z122)z3) .. )Tk, Ank = (... ((Anz1k71)T2) ... )2k (m > 2)

and identities Apipnk = Ank. These identities are for all £ > 1 satisfied
by all tournaments with at most n elements, but for each n one can find a
tournament with more than n elements in which this equation is false for a
suitable £. On the other hand, it can be proved that the equations

(4) An!+n,n ~ An,n

are satisfied in 7 for all n > 1. There exist infinitely many of them which are
independent, but neyertheless, Subotié {28] proved that they do not form a
base for T (even with laws (1) and (2) adjoined) by considering the following
groupoid:

l 0 a b ¢
0{0 0 0 0
a|l0 a b6 0
bi0 b b a
c|0 0 a c
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This groupoid is idempotent and commutative and satisfies all equations
(4). However,

b(bc) = ba =b# a = bc,

thus it does not satisfy (3). The situtation remains the same when one adds
the identity (3) as an axiom. Namely, the illustrious Park groupoid (one of
the best known nonfinitely based algebras) given by the following table:

I 0 a b ¢
0({0 0 0 O
al0 a b 0
b|0 b b ¢
c|0 0 ¢ ¢

satisfies all identities (1)-(4) but does not satisfy

z(yz) = z((22)(y2)),

which holds in all tournaments (recall that it is enough to check it only for
all 3-element tournaments) and hence it holds in 7. Therefore, we have

Proposition 6.2. (28] The identity z(yz) =~ z((zz)(yz)) is not deducible
from (1)~(4). ©

The question is whether the process of adding new identites to (1)—(4)
can be finished in finitely many steps if we want to obtain a base for 7.
Thus we have reached our next open problem.

Problem 4. Is there a finite set of identities which together with (1)-(4)
form an equational base for T ?

In order to serve with some ”inspiration”, we give a list of some identities
of 7 in three and four variables.

Proposition 6.3. (28] The variety T satisfies the following identities:

(z(y2))z =~ =((zy)2),
z((2(yz))2) (z((zy)2))z,
(zy)(zz) =~ z((zy)(z2)),

2

P4
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z(yz) =~ ((((zy)2)y)?)z,
((zy)z)e =~ ((((zy)2)y)z)2,
((zy)2)y = ((((zy)2)2)y)z
(2(y2))((zy)2) ~ ((= )
(
(

But one can also consider different classes identities not holding in 7.
The following is an illustration of results of this kind.

Proposition 6.4. [28] Let t(z,y,2) be a groupoid term in which all paren-
theses are grouped to the left. Then T - (zy)(zz) = t(z,y,2). O

Another interesting property of tournament identities is the following
one.

Proposition 6.5. (28] Assume 7 = p(z1,...,%,) & q(21,...,2,). Then
T satisfies any identity which one obtains by deletion of some variable from
pxq. O

The above proposition is proved by considering all tournaments with
n — 1 elements enlarged with a new vertex which is beaten by all other
vertices. The result now falls out by applying Corollary 2.4.

After all this work done, a slight suspicion arised on whether the answer
to the previously formulated finite base problem for 7 might be negative,
i.e. that all attempts to find a finite set of equations axiomatizing 7 are
absolutely hopeless. In a recent paper [16], Jezek, Markovié, Mardti and
McKenzie proved that this is indeed the case. If V is any variety, let V(™)
denote the variety defined by all equations holding in V with at most n
variables. In this way we obtain a chain of varieties

v >p@ > s>y > >y,

For example, 7(1) is just the variety of all idempotent groupoids and 7(2)
is the variety of all groupoids satisfying equations (1)-(3). Now it is well-
known from universal algebra that a locally finite variety V of finite type
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(and 7 certainly meets this requirements) is finitely based if and only if
V = V() for some n > 1, i.e. if and only if the above chain is finite.

What Jezek, Markovi¢, Maréti and McKenzie have done is nothing else
than proving the infinity of this chain if V is 7. In more detail, their result
is as follows.

Theorem 6.6. [16] For every n > 3 there exists a groupoid G,, with n + 2
elements such that G, € T™, but G, ¢ T**V. O

Consequently, we obtain
Corollary 6.7. [16] The variety 7 has no finite base for its equations. O

Roughly speaking, the plan of the proof was the following. After defining
an idempotent and commutative multiplication on a set with n + 2 elements
in a suitable way, one should construct first a special equation in n + 1
variables (it has a very complex structure and it is defined in a recurrent
way; we shall not quote it here). This equation is shown to be true in 7,
mainly by a repeated application of our identity (3). On the other hand, this
equation turns out to be false in G, and since this groupoid is constructed
so that it is generated by n + 1 elements, one concludes that G,, ¢ 7("+1),
The final step is to prove that G, € 7{® by demonstrating that all n-
generated subgroupoids of G,, belong to 7. This is done by considering three
cases, among which the hardest requires to prove that a certain subgroupoid
of G, is a subdirect product of two of its quotients, which appear to be
tournaments themselves.

So we know that there can be no finite list of axioms for equations of
tournaments: such list must inevitably be infinite. And still, we do not
have any equational base for 7. This is a problem itself, and at present it
seems to be a hard one. Of course, the following greatly intersects with the
previous Problem 4.

Problem 5. Find an equational base for T.

There are several examples in the literature of nonfinitely based equa-
tional theories which are exactly equational parts of some finitely axioma-
tized implicational theories. It seems chalenging to determine whether this
is the case with tournaments.
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Problem 6. [Is there a finite set & of quasi-identities such that Eq(T) is
precisely the set of all equations which are logical consequences of X7

But what about equational bases for single tournaments? Since all two-
element algebras are finitely based (Lyndon, 1951) and since the three-
element chain is a semilattice and thus also finitely based as being a com-
mutative semigroup (Perkins, 1969), the first really interesting tournament
is the triangle, the three-element cycle. The corresponding groupoid, given
by the table

is often denoted by 3. It turned out that 3 is finitely based too. This result
was never published, but J. Berman proves it in his letter to R. E. Park [1] by
showing that the variety HSP(3) has DPC (definable principal congruences).
Moreover, Berman shows that every finite member A of HSP(3) can be
partitioned into subalgebras isomorphic to direct powers of 3 and that the
partition so induced forms a congruence # such that A/f is a semilattice.
From this, Berman calculates the free spectrum of 3 and obtains

=Y ()3,

k=1

However, no axiom system for HSP(3) is known yet.
Problem 7. Find a finite equational base for 3.

Clearly, such a base must involve equations with at least four variables,
because it is very easy to prove that each equation with at most three vari-
ables holding in 3 is true for all tournaments.

In contrast to the previous considerations, almost every tournament has a
two-point extension which can be made by a slight change into an inherently
nonfinitely based groupoid. As we can see below, the trasformation is quite
simple.

Proposition 6.8. Let T be a tournament which is not a chain and Gt @
groupoid which one obtains from T by adjoining a zero element 0 and an
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identity element 1 and setting 22 = 0 for all z € T U {0}. Then Gr is
inherently nonfinitely based.

Proof. The result follows immediately as a consequence of Proposition 3.7
and the famous result of McNulty and Shallon [21], according to which every
nonassociative, commutative groupoid satisfying no absorptive identity and
having a zero and an identity is inherently nonfinitely based. O

In other words, the construction described above consists just of adding
two new vertices 0 and 1 such that 0 beats, while 1 is beaten by all other
vertices and putting all zeroes on the pricipal diagonal, except, of course,
12 = 1. Hence, the tournament 3 considered above can be transformed into
the following inherently nonfinitely based groupoid 5:

[en B o B e i« BN« ] [ an]
oo O R oo
O O 0 O
— 0 o Ol

—_ 0 o8 O
Q 6 8 © o

Problem 8. Does there exist a nonfinitely based tournament?

Finally, the study of the lattice of subvarieties of 7 might be of some
interest. Corollary 5.7 immediately yields the following

Proposition 6.9. [28] The lattice L(T) of all subvarieties of T contains a
countably infinite chain., O

The cardinality of L(7) is not known. Thus we have
Problem 9. Is the lattice L(7T) countably or uncountably infinite?

Of course, a positive answer to Problem 8 would automatically solve the
one above.
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Suboti¢ [28] describes the bottom of L(7). Let 4 be a 4-element tour-
nament whose groupoid is the following:

] a b ¢ d
ala a a d
bla b b d
cla b ¢ ¢
dld d ¢ d

This tournament is subdirectly irreducible. Since the two-element semilat-
tice, 3 and 3° (the triangle with a zero adjoined) are proved by J. Berman
in [1] to be the only subdirectly irreducible members of HSP(3), 4 does not
belong to HSP(3) and, moreover, 4 is the only 4-element tournament that
falls outside HSP(3). Therefore,

HSP(3) < HSP(4).

But one can prove even more: namely, HSP(4) exactly covers HSP(3), while
3 belongs to all nontrivial subvarieties of 7 which are different from the
variety SL of all semilattices. Summing up, we have

Theorem 6.10. (28] Let £ be the variety of trivial groupoids and SL the
vartety of semilattices. The lattice L(T) has the following form:

Problem 10. FEzplore the structure of the lattice L(T). For ezample, de-
scribe all subvarieties of T covering HSP(3). Are there any coatoms in this
lattice (mazimal subvarieties of T)?
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7. Representation by two binary operations

As it was already mentioned in the introduction, for a given tournament
T = (T, —) we define an algebra At = (T, V,A) such that if 2 — y, then

xrVy = yVz=uzx,
TANy = yAz=y.

The algebra AT constructed in this way is not, of course, a lattice, because
both v and A fail to be associative, unless T is a chain. However, the
idempotent, the commutative and the absorptive law are satisfied, as well
as an additional pair of identities which can be considered as a weak form
of associative laws. The algebras satisfying these conditions are called 7-
lattices in Fried [8], trellis in Skala [27], while we are going to adopt the
terminology from Fried and Gritzer and speak about weakly associative
lattices.

To be quite precise, a weakly associative lattice ( WA-lattice) is an algebra
(., Vv, A) satisfying the following identities:

(5) tVrxz, zAzTm7,

(6) tVyxsyve, zAy=xyAr,

(7N tV(zAy)=z, zA(zVy) =z,

(8) ((zA2)V(yA2)Vazmz, ((zV2)A(yV2)Azxz.

Observe that the first identity (and similarly the second identity) of (8) can
be written as

((zAz)V(yA2)Vzrm(zA2)V((yA2)V2),

which makes the term ”weakly associative” much clearer. A nice feature of
WA-lattices is the following

Lemma 7.1. [9] The variety of all WA-lattices is congruence-distributive.

Proof. Note that p(z,y,2) = ((z Ay) V(¥ A2)) V(2 A z) is a majority term
for WA -lattices, i.e. they satisfy the equations

p(z,z,y) = p(z,y,2) =~ p(y,z,2) = z,
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implying the lemma by the well-known result of Jénsson [18]. O

Of course, for each tournament T, the algebra A is a WA-lattice. Let
T, denote the variety generated by all such algebras. Gritzer and Lasker
[11] give an infinite axiom system for 7;. Let

Pn=((zV2)Az)V...20,
g =(((zAY)V2)A22) V... 20,
rn=((y V) At2) V.. .ty
sn=(((zAY) V) AL) V.. 1,
Un = Pn A Gny bn =pnV gn,

Cn =Tp ASp, dy =7,V qn.

Theorem 7.2. [11] Identities (5)-(8) along with
((uVa))Abp)Ven)Adp = ((vVar)Aby)Ve,)Ady

for all n > 1, form an equational base of 7;. O

However, the following remains open.
Problem 11. Is 7; finitely based?

Concerning 73, Fried and Grédtzer [9] show two further properties.
Proposition 7.3. ) L, EzA(yVz)= ((zAy)V(zA2)A(yVvz). O

I"roposition 7.4. [9] Let L be a WA-lattice satisfying the identity from
Proposition 7.8. Then for all a,b,c € L ifavb=aVecandaAb=aAc
thenb=1c. O

But the truth is that the whole variety 73 attracted much less attention
in the literature than one distinguished subvariety of it. This is the variety
generated by the three element cycle, which is in this approach often denoted
by Z. To make the notation shorter, we write Z for HSP(Z). It can be proved
an analogous description for finite members of Z as the one for HSP(3) and
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the only (though important) difference is that the Z has only two subdirectly
irreducibles: the two-element lattice and Z itself. Having this, it is not hard
to derive that Z covers the variety of all distributive lattices D.

The most significant advantage of studying tournaments as algebras with
two binary operations is that any finite algebra obtained from a tournament
is finitely based, because of Lemma 7.1 and the celebrated Baker’s finite base
theorem. The gross part of the research in this field was mainly motivated
by determining the base for Z. Fried and Gréitzer [9] came to this through
" considering properties of principal congruences in Z and their result was
later even sharpened by Gritzer, Kisielewicz and Wolk [10]. Our aim in the
rest of this section is to give an account on their efforts. Also, we review
some structural theorems from [9] about the finite members of Z. It will be
interesting to compare them with the corresponding properties of HSP(3).

First of all, let
gq=ToAT5 T =29V Ty, S:(I3V£Es)/\iE4

and
p(T1,T2,73,24,75) = (21 V g) V1) As) A zs.

Except that, in any WA-lattice (and so in any member of Z) one can define
a reflexive and antisymmetric relation < such that z < y if and only if
zVy =y (if and only if z Ay = ¢). Now we can state the first cornerstone
theorem of [9] as follows.

Theorem 7.5. [9] Let A € Z and a,b,c,d € A such that a < b and ¢ < d.
Then the following conditions are equivalent:

(1) {c,d) € O(a,b).
(2) p2(a,a,b,¢,d) = ¢ and p(b,a,b,¢c,d) = d.

(3) (ave)vb=(aVvd)VbandaA(cAb)=aA(dAb). O

Since the above theorem yields that {c,d) € ©(a, b) can be decided in the
subalgebra of A generated by {a,b,c,d}, by the result of Day [5] we obtain

Corollary 7.6. [9] Z has the congruence extension property (CEP). O
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Using this, Fried and Grétzer prove
Corollary 7.7. (9] Z has the amalgamation property (AP). O

Of crucial importance in the search for the equational base for Z was
the following

Theorem 7.8. [9] Let W be a variety of WA-lattices in which for any A €
W and a,b,c,d € A such that a < b and ¢ < d the condition (1) of Theorem
7.5 tmplies the condition (3) of the same theorem. Then W < Z. O

Towards discovering the above theorem, Fried and Gréatzer were primar-
ily leaded by similar characterization results for distributive lattices. This
theorem turned out to be the key ingredient for the determination of a fi-
nite axiom system for Z as it will be presented in the few lines below. The
main idea is that it is possible to find identities which prove that arbitrary
principal congruences in Z are, in some sense, transitive extensions of those

described by Theorem 7.5.
Let
q1(21,22,23,24) = p(21,21, 71V T2, 3,23 V T4)
and
q2(1, T2, 23, 24) = p(T1 V T9,21,21 V T2, 23,3 V T4),

where p denotes the same as above. Now consider the following system of
equations:

(9) (zV(yVvz)Vvz = (zvy)V(zAz)V(zV2z),
(10) nAzs =~ q(T1,%2,q1 A Ts,q1 ATs),
(11) qAzs = q(z1,%2,q A Ts,q2 A T5),
(12) @ ATs = q(T1,Z2,q2 A Ts,q1 A Ts),
(13) @ ATs = q(T1,T2,92 A Ts,q2 A Ts),
(14) aVis = q(z1,z2,0VIs5,qVIs),
(15) aVzs = qr1,22,qVTs5,qVTs5),
(16) @Vzs ~ q(z1,22,¢2V 75,01V T5),
(17) @Ves = q(T1,22,02V T5,¢ V Ts5),
(18) qVzs ~ gz1,72,1VTs,q1VTs),
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(19) (anVes)V(gaVes) = qlz,z,qV s, (1 Ves)V(gVes)),

(20) @V Ts & qr1,22,02V T5,q2 V T5),

(21) nAzs = q@r1,22,q1 ATs,q A T5),

(22) (pAzs)V (e Azs) = qa(z1,22,q1 A 25, (g1 Azs)V (g2 Azs)),
(23) @ ATs & qz1,22,02 A Ts, 02 A zs),

2) i A A(zy V) = 21 A(pA(z1Vz2)),

(25) (za V@) A(z1 V) = (21Vage)A(z1V z2).
Theorem 7.9. (9] The variety Z is determined by identities (5)—(25). O

Note that in (5)-(25) no more than five variables were used. Hence, we
have

Corollary 7.10. [9] A € Z if and only if every subalgebra of A generated
by five elements belongs to Z. O

I'or similar reasons as before, Z cannot be defined by identities with
only three variables and hence A € Z cannot be decided in subalgebras
of A generated by three elements. But for a long time it was an open
problem whether four will do (and consequenly, whether Z can be defined by
equations with at most four variables). The positive answer was discovered
by Gritzer, Kisielewicz and Wolk [10]. Their equational base for Z is an
improvement of Theorem 7.9 not only regarding the number of variables,
but also in respect to the number of defining identities.

Let
' wz,y,2) = (zAy)A((zVY)A2)

and let @(z,y,2) denotes the dual term of t (obtained by replacing V by A
and vice versa). Also, define

v(z,y,2,t) = u(z,y,2)Vi(z,y,t),
v'(z,y,2,t) = u(z,y,2)Vu(z,y,t),
w(z,y,z,t) = u(z,y,2)Au(z,y,t).

Consider the following identities:

(26) u(z,y,2Vt) = (v(z,y,2,t) Av(z,y,t,2)) Av'(z,y,2,1),
(27) w(z,y,zAt) = w(z,y,z,t)Aw(z,yt, z2),

and also their duals (28) and (29), respectively.
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Theorem 7.11. [10] Identities (1)-(4), (26)-(29) define the variety Z. O

Corollary 7.12. [10] A € Z if and only if every subalgebra of A generated
by four elements belongs to Z. O

Since any two identities of an arbitrary idempotent variety can be re-
placed by one, it is possible to reduce the equational base for Z to three
identities. But a result of Padmanabhan [26] shows that a further reduc-
tion to two equations can be performed. The existential character of these
conclusions motivates to pose the following

Problem 12. Construct explicitely a base for Z consisting of two identities.
Is there a single identity defining Z 2 If yes, give an ezample of such identity.

As promised, we end this survey by quoting three results which are
concerned with the structure of finite members of Z. We have already
seen that the way that finite members of HSP(3) are built is pretty well
understood. But the really nice thing is that finite algebras in the variety Z
show even more regularities. We can see below that their description sounds
indeed simple.

Theorem 7.13. [9] Every finite algebra A € Z has a representation of the
form
A¥DxZ",

where the integer n > 0 and the finite distributive lattice D are unique (the
latter up to an isomorphism). In fact, D is the mazimal distributive lattice
which is a homomorphic image of A. O

Because of congruence-distributivity,
Con(D x Z™) = Con(D) x Con(Z)" = Con(D) x C3,

where C, denotes the two-element chain. Since congruence lattices of finite
distributive lattices are Boolean, we immediately obtain

Corollary 7.14. [9] If A € Z is a finite algebra, then Con(A) is a Boolean
lattice. O
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Applying Theorem 7.13 to finitely generated free algebras in Z, one
easily derives

Theorem 7.15. [9] Let F,(D) and F,(Z) denote the free distributive lattice
and the free algebra in Z on n free generators, respectively. Then

F,.(2)= F.(D) x Z*~,

where k, = 3771 — 2" + 1. Thus f,(Z) = 3%» D,,, where D, denotes the nt"
Dedekind number. O

The second part of the above theorem has obviously a high level of
similarity to the corresponding result from Berman’s letter [1]. But in sharp
contrast to the free spectrum of 3, which was expressed in closed form, the
problem of determining the free spectrum of Z reduces to the calculation
of D,, a problem frequently referred to as the Dedekind problem, which,
posed back in 1900, tends to become one of the most long-lasting classical
problems in the contemporary mathematics in general.

Appendix. List of open problems

Problem 1. Is there a first-order formula ® such that a tournament T is
ITamiltonian if and only if T = &%

Problem 2. Characterize all subdirectly irreducible members of the variety
7. Are they all tournaments?

Problem 3. Characterize all finite monoids isomorphic to End(T) for so-
me lournament T.

Problem 4. Is there a finite set of identities which together with z° =~ z,
ry = yz, z(zy) = zy and Apynn & Anp for alln > 1, form an equational
base for T ?

Problem 5. Find an equational base for T.

Problem 6. Is there a finite set ¥ of quasi-identities such that Eq(7T) 1is
precisely the set of all equations which are logical consequences of ¥ ?
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Problem 7. Find a finite equational base for 3.
Problem 8. Does there ezrist a nonfinitely based tournament?
Problem 9. Is the lattice L(T) countably or uncountably infinite?

Problem 10. Ezplore the structure of the lattice L(7T). For ezample, de-
scribe all subvarieties of T covering HSP(3). Are there any coatoms in this
lattice (mazimal subvarieties of T)?

Problem 11. Is 7; finitely based?

Problem 12. Construct ezplicitely a base for Z consisting of two identities.
Is there a single identity defining Z? If yes, give an ezample of such identity.
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