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1. Introduction and preliminaries

1.1 Introduction

Directable automata, known also as synchronizable, cofinal and reset au-
tomata, are a significant type of automata that has been a subject of interest
of many eminent authors since 1964, when these automata were introduced
in a paper by Cerny. Some of their special types were investigated even
several ycars earlier. As automata that correspond to so-called definite lan-
guages, definite automata were studied in 1956 by Kleene and in 1963 by
Perles, Rabin and Shamir (see also Steinby’s paper [79]), whereas nilpotent
automata were investigated in 1962 by Shevrin (see also the book by Gécseg
and Peak).

Several other important types of automata were also studied in the 60’s.
Reverse definite automata and languages, that are antipodes to definite au-
tomata and languages, were studied in 1963 by Brzozowski and in 1966 by
Ginzburg. As a common generalization of definite and reverse definite au-
tomata, generalized definite automata were introduced in 1966 by Ginzburg,
and they were also studied in 1969 by Steinby.

Various other specializations and generalizations of directable automata
have appeared recently. In the papers by Petkovié, Ciri¢ and Bogdanovié,
and Bogdanovig, Ciri¢, Imreh, Petkovié¢ and Steinby, and in the Ph.D. the-
sis by Petkovi¢, trap-directable, trapped, generalized directable, locally di-
rectable, uniformly locally directable and other related kinds of antomata
have been introduced and studied. Certain gencralizations of directability
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and definiteness have also appeared in theories of nondeterministic automata
and tree automata and languages (¢f. [19], [33, 34], [40], [51] and [80], for
example).

T'he main purpose of this survey is to describe certain properties of
directable automata, their specializations and generalizations. These are
mainly algebraic and structural properties, as well as the properties of their
transilion semnigroups.

The paper is divided into three chapters and eleven sections. In the
first chapter we introduce the notions and notations concerning automata,
semigroups and ordered sets, which are needed for further work. In the
second one we define the class of directable automata, certain classes that
are contained in it and various classes 1hat contain this class. ‘Treating
automata as unary algebras, we show that it is possible to study these
classes as varieties and generalized varieties of automata, which is one of the
main ideas of the paper.

The third chapter is devoted to structural and other properties of the
automata introduced in the previous chapter. When an automaton starts
work from some of its states, then that work is localized inside its momno-
genic subautomaton generated by that state. Therefore, if we want to know
what are the possibilities of the given automaton, we have to know what
are the properties possesed by all its monogenic subautomata. This fact is a
motivation for defining two “localization” operators on classes of automata,
which were introduced and studied by Steinby in [81], Petkovi¢, Ciri¢ and
Bogdanovié in [56], and Bogdanovi¢, Ciri¢, Imreh, Petkovi¢ and Steinby in
[1]. One of these operators is used in Section 2.2 to define various gener-
alizations of directable automata such as locally directable and uniformly
locally directable automata and many other related kinds of automata. The
properties of both of these two operators, in the cases when they are applied
to varicties and generalized varieties of automata, are described in Section
3.1. Tt is shown that these operators are closcly related to the regulariza-
tion operator on varieties and generalized varieties. This operator has been
studied by numerous universal algebraists for many years, mainly by Plonka,
Graczynska and others.

Using various decompositions and composition methods, such as direct
sum and subdirect decompositions, parallel compositions, extensions and
retractive extensions of automata, in Section 3.2 we describe the structure of
many aulomata introduced in Chapter 2. We also characterize the properties
of these automata in terms of the properties of their transition semigroups.
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In Section 3.3 we present a new kind of semigroups which are associated to
directable automata and we show that these semigroups are more suitable
for studying directable automata than the “classical” transition semigroups.
In Section 3.4 we give variuos characterizations of subdirectly irreducible
nilpotent, definite, reverse definite and generalized definite automata, and
finally, in Section 3.5 we present various properties of directing words and
languages consisting of them, directing congruences, etc.

1.2 Basic notions and notations

In this section we introduce the notions and notations that will be used in
what follows. First we give some definitions concerning semigroups, quasi-
ordered sets and partially ordered sets.

An element z of a semigroup S is called a bi-zero of § if zs2 = 2, for
each s € S, a left zero of S if zs = z, for each s € 5, a right zero of 5 if
sz = z, for each s € 5, and a zero of 5, if it is both a left and a right zecro
of 5. A semigroup whose every element is a bi-zero (resp. left zero, right
zero) is called a rectangular band (resp. left zero band, right zero band).

One may associate with any ideal T of a semigroup S a congruence
relation p,. on 9, called the Rees congruence on A determined by 7', which
is defined in the following way: for 5, € § we say that (s,?) € o, if and only
if either s =1 or s,¢ € T. The factor semigroup 5/p,., usually denoted by
S/T, is called the Rees factor of S determined by T'. A semigroup 5 is said
to be an ideal extension of a semigroup T by a semigroup ) with zero if T
is an ideal of S and the Rees factor §/7 is isomorphic to Q. If, in addition,
Q is a nilpotent semigroup, i.e. if Q% = {0}, for some k € N, where 0 is
the zero of (), then we say that 5 is a nilpotent extension of T. Note that
throughout the paper, N denotes the set of positive natural numbers and
NO = Nu{o}.

Let () be a non-empty set. A binary relation < on () is said to be a
quasi-order on ) if it is reflexive and transitive, and in this case the system
(Q, =) is called a quasi-ordered set. We say that a quasi-ordered set (Q, <)
is directed if for any a,b € @ there exists ¢ € () such that ¢ < ¢ and b < ¢,
i.e. if each finite subset of ) has an upper bound. A subset Q' of Q is cofinal
in @ if for any a € Q) there exists b € ()’ such that a < b.

An anti-symmetric quasi-order is called a partial order. Partial orders
are usually denoted by <. The system (P, <), where P is a non-empty set
and < is a partial order on P, is called a partially ordered set. Let (P, <) be
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a partially ordered set. A mapping ¢ : P — P is called extensive, if a < ap,
for each a € P’, isotone, if for any a,b € P, a < b implies ap < by, and
idempotent, if (ap)p = ayp, for each a € P, and if ¢ is extensive, isotone
and idempotent, then it is called a closure operator on the partially ordered
set. (P, <). An element a € P is called closed with respect lo ¢, or p-closed,
if ap = a.

Next we present some notions and notations from automata theory. The
automata considered throughout the paper are automata without outputs,
in the sense of the definition given by F. Gécseg and I. Pedk in [22], and we
call them simply automata. Therefore, an automaton is defined as a triple
(A, X,é), where A and X are non-empty sets, not necessarily finite, A is
called the set of states and X is called the input alphabel, and é§ : Ax X — A
is the transition function of this automaton. All automata that will be
considered in the paper will have the same input alphabet X with | X| > 2.
The free monoid and the free semigroup over X are denoted by X* and X T,
respectively. The length of a word u € X* is denoted by |u|. For any k € N9,
the subsets X* X <F and X 2% of X* are defined by X* = {u € X*||u| = k},
X<k ={ue X*|{u| <k} and X2*¥ = {u € X*||u| > k}. There will be no
danger of confusion if we denote the automaton and its set of states by the
same letter, usually by A. This will be done throughout the paper, in’ order
to simplify our notations.

Any input symbol z € X can be interpreted as a unary functional symbol
which determines a unary operation z4 on A defined by z# : @ — é(a,z).
Thus, the alphabet X can be treated as a type of algebras consisting only
of unary functional symbols and any automaton with X as its input alpha-
bet can be treated as a unary algebra of type X, so the notions such as
congruence on an automaton, subautomaton, generating set, variety of au-
tomata, etc. will have their usual algebraic meanings (¢f. [7]). For z € X
and a € A, the image of a under the mapping x4 is denoted by az“. For a
word ¥ = ;2 - - T, where z,,Z9,...,2, € X, the mapping u? : A — A is
defined by au?t = (m:f.zgl -z, a € A, and for the empty word e, we define
e to be the identity mapping on A. When an automaton A is known from

the context, we shall write simply au for au?.

Let A be an automaton and let H be a non-empty subset of its states.
The smallest subautomaton of A containing H is denoted by (H) and called
the subautornaton of A generated by H. As it is known, it is represented
by (H) = {au|a € H,uv e X*}. If H is finite, i.e. if H = {a1,az2,...,a.},
then we write (a1, ag,...,ay) for (H). We say that a subautomaton B of A
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is finitely generated if it is generated by a finite subset of 4, and that it is
a monogenic subautomaton of A if it is generated by a single state of A.

TFor a subset H of the states of an automaton A and a word u € X*,
we write Hu = {au|a € H}. The set of all subsets of an automaton A,
with the transitions given by H — Hz, z € X, is an automaton called the
power-set automaton of A. An automaton A is said to he the direct sum
of its subautomata Ay, a € Y, if 4 = J,ey Ao and A, N Ag = §, for all
«.B €Y with @ # 8. By a parallel composition of automata A and B we
mean any subautomaton of their direct product.

The class of all finite antomata is denoted by Fin. Vor a class K of
automata, we denote by K the class consisting of all finite automata from
K,ie. K = KNnFin. An automaton A is connected if for all a,b € A there
exist u,v € X* such that au = bv. The class of all connected automata is
denoted by Conn. We say that A is strongly connected if it has no proper
subautomata, i.e. if for all a,b € A there exists u € X* such that au = b.
A state a of an automaton A is called a trap if au = a, for all w € X~
te. if {a} is a subautomaton of A. The set of all traps of A is denoted
by Tr(A). An automaton whose any state is a trap is called discrete. The
class of all discrete automata is denoted by D. In particular, we denote the
two-element discrete automaton by Dy. By O we denote the class of all
automata having only one state.

If A7 and K, are two classes of automata, then the Mal’eev’s product of
Ky and K5, denoted by Ky o Kq, is the class of all automata A having the
property that there exists a congruence relation # on A such that the factor
A/8 belongs to K, and every #-class which is a subautomaton of A belongs
to A'y. In particular, for a class K of automata, A o D is the class of all
direct sums of automata from K.

The transition semigroup S(A) of an automaton A, in some origins called
the characteristic semigroup of A, can be defined in two equivalent ways.
The first one is to define S(A) as the subsemigroup of the full transformation
semigroup on A consisting of all transition mappings on A, i.e. S(A) =
{u?|u € X*+}. Another way is to define S(A) to be the factor semigroup of
the input semigroup X+ with respect to the Myhill congruence piq on X+
defined by: (u,v) € py if and only if eu = av, for every a € A. Note that
(u,v) € pa if and only if u? = v4.

One may associate with any subautomalon B of an automaton A a
congruence relation g, on A, called the Rees congruence on A determined by
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B, which is defined in the following way: for a,b € A we say that (a,b) € o,
if and only if either a = bor a,b € B. The factor automaton A/QB is usually
denoted by A/ B, and it is called the Rees factor automaton of A with respect
to B. We say that an automaton A is an extension of an automaton B by
an automaton C' if B is a subautomaton of A and the Rees factor automaton
A/ B is isomorphic to C. In other words, the automaton C can be viewed
as an automaton originated from A by contraction of B into a single state,
the trap of C.

Let an automaton A be an extension of an automaton B. If A/B is a
nilpotent automaton (the definition of a nilpotent automaton can be found
in Section 2.1), then we say that A is a nilpotent extension of B. On the
other hand, if there exists a homomorphism ¢ of A onto B such that ap = a,
for every a € B, then we say that A is a retractive extension of B and ¢
is called a retraction of A onto B. A congruence 6 on A is said to be a
13-congruence il the restriction of 8 to B is the equality rclation on B, that
is 8N Vg = Ap, and if the equality relation A4 is the only B-congruence
on A, then A is saild to be a dense exlension of B.

An automaton having only one state is called trivial. The smallest non-
trivial subautomaton of an automaton A, if it exists, is called the core of
A. Let H be a subset of the states of an automaton A and let # be an
equivalence relation on A. If H is the union of some family of #-classes,
then we say that it is saturated by 8, or that @ salurates H. On the other
hand, for /I the relation 7, on A defined by:

(a,b)emy, & (Vue X™)(aue H & bue H),

is a congruence on A. It is the greatest congruence on A which saturates H
and it is called the principal congruence on A determined by H. A subset
il of the statles of an automaton A is called disjunctive in A il 7, = Ay,
whereas an element a@ € A is called a disjunctive element of Aif the singleton
{a} is a disjunctive subset of A.

For undefined notions and notations we refer to the books by Bogdanovic
and Ciri¢ [2], Burris and Sankappanavar [7], Gécseg and Pcik [22], Gritzer
[32], Howie [35], Lallement [46], Madarasz and Crvenkovié[47], and Salii[73].

1.3 Varieties and generalized varieties of automata

Let (G be a non-empty set whose elements are called variables. By a term of
type X over G we mean any word over the set G U X of the form gu, with
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g € G and u € X ™. The set of all terms of type X over GG, denoted by T(G),
is an automaton with the input alphabet X and the transitions defined by
(gu)r = g(uz), for gu € T(G) and ¢ € X. This automaton is called the
term automaton over G. Any pair (s, t) of terms from 7'(G), usually written
as the formal equality s = ¢, is called an (automaton) identity over G or
over T(G). If the terms s and ¢ contain the same variable, i.e. if the identity
s = t has the form gu = gv, with ¢ € ¢ and w,v € X*, then it is called a
reqgular identity. Otherwise, if s and ¢ contain distinct variables, i.e. if the
identity s = ¢ has the form gu = hv, with g,h € G, g # h, and u,v € X*,
then it is called a nonregular or irregular identity.

We say that an automaton A satisfies the identity s =t over T(G), and
we write A |= s = t, if the pair (s,t) of terms belong to the kernel of any
homomorphism of T(G) into A, i.e. if s¢ = tp, for any homomorphism ¢
of T(G) into A. In other words, A | gu = gv, with ¢ € G and u,v € X*,
if and only if au = av, for any a € A, and A | gu = hv, with g,h € G,
g # h, and u,v € X*, if and only if au = bv, for all a,b € A. Evidently,
when we work with identities satisfied on any automaton, it is enough to
work with the two-element set G = {g, h} of variables, and this will be done
throughout the paper.

If ¥ is a set of identities over T(G), we say that an automaton A satisfies
¥, and we write A = ¥, if it satisfies every identity from X. The class of all
automata that satisfy ¥ is denoted by [X]. If ¥ is represented as ¥ = {s; =
tile € 1}, then we write [s; = ¢;|i¢ € I] for [¥], and if T = {1,2,...,n},
then we write {s; = t1,...,8, = t,]. A class K of automata is called a
variety if K = [¥], for some set of identities ¥.. As it is known, varieties can
be characterized as classes closed under subautomata, homomorphic images
and direct products, or equivalently, as classes closed under homomorphisms
and subdirect products. If K = [¥], then we say that K is the variety defined
_(or represented) by the set of identities ¥. Varieties that can be represented
by sets of regular identities are called regular varieties, and varieties in
which some nonregular identity is satisfied are called nonregular or irregular
varieties. .

Let ¥ be a set of identities over T((G), where G = {g,h}. If ¥ can be
written as ¥ = {Sz‘ = ti}ieﬁ where (I,=<) is a directed quasi-ordered set,
then we say that X is a directed set of identities. In this case we also say
that an antomaton A of type X ultimately satisfies ¥, if there exists k € I
such that A |= s; = t;, for each 1 > &, and we write A |5, ¥. The class of
all automata ultimately satisfying ¥ is denoted by [X], or [s; = #; |4 € []4.
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We say that a class K of automata is ultimately defined by a directed set of
identities ¥ if K = [X],. In the case when I = N with the usual ordering
of natural numbers, that is 3 = {sn = t”}neN is a sequence of identities,
we write [s, = 1, | n € Ny or simply [s, = t,]., and for K = [s,, = t,,], we
say that it is wltirnately defined by a sequence {.s,,, = t”}neN of identities.
A family of varieties is called a directed family of varieties if it is a directed
partially ordered set with respect to the inclusion of sets.

Classes that are ultimately defined by directed sets of identities are char-
acterized by the following well-known result.

Theorem 1.3.1. ([1]) The following conditions for a class K of automata
are equivalent:

(i) K is closed under homomorphic images, subautomata, finite direct pro-
ducts and arbilrary direct powers;
(ii) K is the union of a directed family of varieties;
(iii) K is ullimately defined by some directed set of identities.

A class of automata satisfying anyone of the equivalent conditions of the
previous theorcm is called a generalized variety of automata. On the other
hand, a class of finite automata satisfying anyone of the equivalent conditions
of the next well-known theorem is called a pseudovariety of automata.

Theorem 1.3.2. ([1], [18]) The following conditions for a class K of finite
automata are equivalent:

(1) K 1is closed under homomorphic images, subautomata and finite direct
products;
(ii) K is the class of all finite automata from some generalized variety;

If the input alphabet X of the considered automata is finile, then the above
two conditions are equivalent to the following one:

(i) K is ultimately defined by some sequence of identities.

The sets of all varieties of automata and all generalized varieties of au-
tomata, partially ordered by the set inclusion, are complete lattices called
the lattice of varielies and the lattice of generalized varieties of antomata,
respectively. The meets in both of these lattices coincide with the set in-
tersection, and the smallest element in both of them is the variety O of all
automata having only one state.
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2. Directability, its specializations and generaliza-
tions

2.1 Directable automata and their specializations

In this section we give the definitions of directable automata and its impor-
tant special types and introduce the notations for the classes consisting of
these autormnata and for certain languages associated to them. We also give
some historical comments concerning the considered classes of automata.

For a given word u € X, an automaton A is called u-directable if au =
bu, for all a,b € A, and in that case u is called a directing word of A.
Furthermore, A is said to be directable if there exists a word v € X~* such
that A is u-directable. In other words, the directing word u directs the states
of the automaton A into a single state that will be denoted by d,, and called
a u-neck of A. A state d € A is called a neck of A if there exists u € X~
such that d is a u-neck of A.

There are two main ways to specialize the notion of a directable automa-
ton. First, for a given number & € N9, an automaton A is called k-definite
if each word from X 2% is a directing word of A, and A is said to be defi-
nite if there exists £ € N© such that A is k-definite. The smallest number
k € NO for which A is k-definite is called the degree of definiteness of A. In
particular, the 1-definite automata are called reset automata.

On the other hand, if v € X* such that A is u-directable and has a trap
ag, then qg is both the unique trap and the unique neck of A. In this case
u directs the states of A into the trap ag, thus, A is called trap-u-direclable
and u is called a trap-directing word of A. An antomaton A is said to be
trap-directable if there exists a word u € X~ such that A is trap-u-directable. .

Now we can give a common specialization of the notions of definite and
trap-directable automata. Namely, for a given number k£ € N°, an automa-
ton A is called k-nilpotent if each word from X2* is a trap-directing word
of A, or equivalently, if A is k-definite and has a trap. Furhermore, A is said
to be nilpotent if there exists a number k& € NO such that A is k-nilpotent.
The smallest number k£ € N? for which A is k-nilpotent is called the degree
of nilpotency of A.

To denote the classes of automata consisting of the above defined au-
tomata and the sets of words associated to an automaton A we use the
notations given by Table 2.1.1.
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notation | class of automata notation class of automata

Dir,, u-directable Dir directable

TDir, trap-u-directable TDir trap-directable

Def, k-definite Def definite

Nilp, k-nilpotent Nilp nilpotent

notation | set of words notation set of words

DW(A) | directing words of A || TDW(A) | trap-directing words of A

Table 2.1.1.
It is obvious that
Dir = U Dir,, Def = U Defk‘
(1) u€X* keNO
TDir = || TDir, Nilp = [ Nilp,
ugX* keNO

Directable automata were defined and studied first by J. Cerny in [9],
1964, and by P. H. Starke in [78], 1969, whereas the definite automata
appeared even several years earlier. They were studied first as automata
corresponding to the so-called definite languages, by S. C. Kleene in [44],
1956, and M. Perles, M. O. Rabin and E. Shamir in [54], 1963. Nilpotent
automata were first studied by L. N. Shevrin in [77], 1962, and afterwards in
the book of F. Gécseg and 1. Pedk [22], 1972. Ounly the trap-directable au-
tomata were introduced recently, by T. Petkovié, M. Ciri¢ and S. Bogdanovié
in [56], where they were studied under the name one-trapped automata. All
those automata were a subject of interest of many other authors, and we
shall mention the papers by S. Bogdanovi¢, M. Ciri¢, B. Imreh, T. Petkovié
and M. Steinby [4], J. Cerny, A. Piricka and B. Rosenauerové [10], M. Ciri¢,
B. Immreh and M. Steinby [15], B. Imreh [36, 37}, B. Imreh and M. Steinby
[39], M. Ito and J. Duske [41], J. E. Pin [58, 59], T. Petkovi¢, M. Ciri¢ and
S. Bogdanovié¢ [56], T. Petkovi¢ [55], I. Rystsov [66]-[72], M. Steinby [79],
and others.

In some sources, various other names for directable automata and direct-
ing words were used. For example, J. E. Pin used in [58, 59] the names “syn-
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chronizable automata” and “synchronizing words”, M. Ito and J. Duske in
[11] used the name “cofinal automata”, whereas the names “reset automata”
and “reset words” were used by I. Rystsov. In [48] definite automata were
studied under the name “local automata”. Note again that the name “reset
automaton” is used here as a synonym for “1-deflinite automaton”. We also
repeat that the name “one-trapped automaton”, used in [56], is changed
here into “trap-directable automaton”.

2.2 Generalizations of directability

For a given word u € X *, an automaton A is called generalized u-directable if
auvy = au for every @ € A and v € X*, and in this case u is called a general-
ized directing word of A. Furthermore, A is said to be generalized directable
if there exists a word u € X * such that A is generalized u-directable. II, for a
given number k € N0 every word from X 2* is a generalized directing word
of A, then A is called generalized k-definite, and A is said to be generalized
definite if there exists k € N9 such that A is generalized k-definite.

In a similar way the notions of a trap-directable automaton and a nilpo-
tent automaton can be generalized. Namely, for a given word » € X*, an
automaton is called u-trapped if au € Tr(A), for all @ € A. In this case u
is called a trapping word of A, and A is said to be trapped if there exists a
word u € X* such that A is u-trapped. If, for a given number k£ € N?, cvery
word from X 2% is a trapping word of A, then A is called reverse k-definite,
and A is said to be reverse definite if there exists k& € N? such that A is
reverse k-definite.

It is evident that, for some © € X*, an automaton A is trap-u-directable
if and only if it is u-directable and u-trapped, and for k € N?, we have that
A is k-nilpotent if and only if it is k-definite and reverse k-definite.

To denote the just defined classes of automata and sets of words asso-

ciated to an automaton A, we use the notations given in Tables 2.2.1 and
2.2.2.

It is evident that

GDir = | ] GDir, GDef = | | GDef;

(2) ueX* keNO
Trap = U Trap, RDef = U RDef,

ueX* keNO

Reverse definite automata appeared first in the paper by J. A. Brzo-



Directable automata and their generalizations: A survey 41

notation | class of automata notation | class of automata

GDir, generalized u-directable || GDir generalized directable

GDef; | generalized k-definite GDef generalized definite

Trap,, u-trapped Trap trapped
RDef; reverse k-definite RDef reverse definite

Table 2.2.1.

notation |set of words

GDW (A) | generalized directing words of A4
TW(A) |trapping words of A

Table 2.2.2.

zowski [5], 1963, and in the book by A. Ginzburg [23], 1966, whilc generalized
definite automata were first defined also by A. Ginzburg in the mentioned
book. They were also studied by M. Steinby in [79], M. Cirié, B. Imreh and
M. Steinby in [15] and others. The remaining types of automata, general-
ized directable and trapped automata, were introduced and studied first in
a recent paper by T. Petkovié, M. Ciri¢ and S. Bogdanovié [56]. The notion
“trapped automaton” was used by A. Nagy in [49] for automata which are
I-nilpotent in our terminology.

Another way to generalize the notions of directability, trap-directability,
definiteness and nilpotency is to use two operators L : K — L(K) and
CL : K — CL(K) on classes of automata defined as follows: If K is an
arbitrary class of antomata, then L{K') denotes the class of all automata
whose every monogenic subautomaton belongs to &, and C'L( K') denotes the
class of all automata whose every finitely generated subautomaton belongs to
K. The automata from L(K') are said to belong locally to I, or that they are
locally K -automata, whereas the automata from C LK) are said to belong
complelely locally to K, or that they are completely locally K -automata. The
first of these two operators was originally used by M. Steinby in [81], 1994,
while the second one was introduced by S. Bogdanovié, M. Ciri¢, B. Imreh,
T'. Petkovi¢ and M. Steinby in [4]. The definitions that will be given in the
further text are taken from the second of these papers and the paper by T.
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Petkovi¢, M. Ciri¢ and S. Bogdanovié [56], but they are slightly modified.
For a given word » € X* and a number k¥ € NO, in the first column of

Table 2.2.3 we give definitions of several new classes of automata, whereas

in the second one we give the names for automata belonging to the corre-

sponding classes.

definition

name

LDir, = L(Diry)

locally u-directable

LTDir, = L(TDir,)

locally trap-u-directable

LDefk = L(Defk)

locally k-definite

locally k-nilpotent

LDir = L(Dir)

locally directable

LTDir = L(TDir)

locally trap-directable

LDef = L(Def)

locally definite

LNilp = L(Nilp)

locally nilpotent

ULDir = U LDir,
ueX*

uniformly locally directable

ULTDir = | | LTDir,
ueX*

uniformly locally trap-directable

ULDef = U LDef,

uniformly locally definite

keNO
ULNilp= | | LNilp,
keNO

uniformly locally nilpotent

Table 2.2.3.

Note again that the terminology used by T. Petkovié, M. Ciri¢ and S.
Bogdanovi¢ in [56] differ§ slightly from the one used in this paper. Namely,
the automata whose name in [56] had the prefix “locally”, in this paper have
the prefix “uniformly locally”, while the prefix “locally” is reserved here for
another classes of automata.

If, for a given word v € X*, an automaton A is locally u-directable, then
w 1s called a locally directing word of A, and if it is locally trap-u-directed,
then w is called a locally trap-directing word of A. The notations for the sets
consisting of such words are given in Table 2.2.4.
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notation set of words

| LDW(A) locally directing words of A
LTDW(A) | locally trap-directing words of A

Table 2.2.4.

2.3 Algebraic properties of the classes

The subject under discussion in this section is the classes defined in the
preceeding two sections. It will be shown that these classes have some
very interesting algebraic properties. For the classes having subscripts in
their notations we prove that they are varieties of automata, we give their
representations through automatoun identities and we explain the mutual re-
lationships between the classes with various subscripts. For the remaining
classes we show that they are pairwise different generalized varieties of au-
tomata, and we give their inclusion diagram and the inclusion diagram for
the corresponding pseudovarieties of automata.

The proofs of the presented results can be found in [{56], [55] and [4].

The first thecorem treats the classes that are varieties.

Theorem 2.3.1. lor an arbitrary word v € X* and an arbitrary number
k € N the classes listed below are varielies of automata with the given
representations:

Dir, = [gu = hu];

TDir, = [guz = hu l x € X] ;

Trap, = [guz = gu l z € X|;

GDir, = [guwu = qu { w € X*} ;

LDir, = [gwu = gu ‘ w € X*];

LTDir, = [gwuz: = gu ‘ weEX* 1€ X];
Def; = [gu = hu l = XZk];

RDef, = {guz = gu | ue X2k z e X];
Nilp, = [gur = hu | v € X2F, z € X|;
GDef, = [guwu = qu , we X2k we X*];
LDef, = [gmu =gu ‘ we X2k z € X],‘
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LNilp, = [ga:u:gu,guz =gu | uwe X2k z EX].

We note that the varieties Dir,, TDir,, Def, and Nilp, are nonreg-
ular, and all other varieties from Theorem 2.3.1 are regular. The next two
theorems explain the mutual relationships between some of these varieties.

Theorem 2.3.2. Let u,v € X™ be arbitrary words and let E be an arbi-
trary element of the set {Dir, Trap, TDir, GDir, LDir,LTDir}. Then the
following conditions hold:

(a) E, CE, if and only if u is a subword of v;

(b) E, = E, if and only if u = v;

(C) Eu U Ev - Euv;’

Moreover, for the empty word e we have that

. O, for E € {Dir, TDir}
| D. for Ee {Trap, GDir,LDir, LTDir}

Theorem 2.3.3. Let E be any element of the sel {Def,RDef7 Nilp,
GDef,LDef,LNilp}. Then

EccE C...CE; CE C...E.
Moreover,

. O, for E € {Def Nilp}
"1 D, jor E€ {RDef, GDef, LDef, LNilp}

By Theorems 2.3.2 and 2.3.3 it follows that the classes having no sub-
scripts in their notations are directed unions of the corresponding varieties,
that is they are generalized varieties of automata. The following theorem
gives some more properties of these classes.

Theorem 2.3.4. The classes listed in Figure 2.3.1 are pairwise different
generalized varieties of automata and the figure represents lheir inclusion
diagram. [urthermore, they form a semilattice under the set intersection.
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Figure 2.3.1.

As far as the corresponding pseudovarieties of automata are concerned,
the situation slightly differs, as the next theorem shows.

Theorem 2.3.5. The classes listed in Figure 2.3.2 are pairwise different
pscudovarieties of automata and the figure represents their inclusion dia-
gram. Furthermore, they form a semilattice under the set intersection.

In other words, there are no finite automata in the classes

LDir \ ULDir, LTDir \ ULTDir, LDef \ ULDef and LNilp \ ULNilp.

-

Figure 2.52.
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3. Structural and other properties

3.1 Local closure operators

In Section 2.2 two operators L : & — L(K)and CL : K — CL(K) on
classes of automata were used to define some new classes of automata. In
the general case, these operators are isotone and meet-preserving operators
on the partially ordered set of all classes of automata, but they are not
closure operators. However, their properties are much better when they are
applied on varieties and generalized varieties of automata, and the main goal
of this section is to present the results that describe these properties.

First we give the following result.

Theorem 3.1.1. ([4]) The operators L and CL are closure operators both
on the latlice of varieties and on the lattice of generalized varieties of au-
tomala.

Furthermore, CL(V') = V, for every variety of automata V.

Hence, I and C'L arc closure operators on the lattices of varieties and
generalized varieties of automata, and it is interesting to study the varieties
and generalized varieties closed under the operators I and C' L. On the other
hand, it is also interesting to investigate the properties of the variety L(V')
associated to a variety V' in terms of the properties of V', and the properties
of generalized varieties L(K) and CL(K), assigned to a generalized variety
K, in terms of the properties of K.

In the case of both varieties and the case of generalized varieties it will
be shown that the properties of L(V), i.e. of L(K) and CL(K), depend on
the possible regularity or nonregularity of V and K. That is why we give
first some information about regular and nonregular varieties of automadta,
and later we introduce the notions of regular and nonregular generalized
varieties.

Recall that a variety of automata is called regular if it is defined by a set
of regular identities. Otherwise, i.e. if some nonregular identity is satisfied
on it, it is called nonregular or irregular. As it is known, the notion of a
regular variety is also defined for arbitrary algebras. It is first introduced
by J. Plonka in [60, 61], and after that it was a subject of interest of many
universal algebraists. For more information about regular and nonregular
varieties we refer to the cited papers by J. Plonka and E. Graczynska, espe-
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cially to the survey paper [28] and the papers [62, 64] and [27], concerning
unary algebras.

Let us first describe the main properties of regular varieties of automata.

Theorem 3.1.2. ([60,61,43,42,65]) Let V be a variety of automata. Then
the following conditions are equivalent:

(i) V s a regular variety;
(i) VoD =V,
(iii) DCV;
(iv) D, e V.

On the other hand, nonregular varieties are characterized as follows.

Theorem 3.1.3. Let V be a variety of automata. Then the following con-
ditions are equivalent:

(i) V s an trregular variety;
(i) V C Dir,, for some word u € X*;
(iii) DNV = O;
(iv) DZ V;
(v) D2 ¢ V.

Note that the condition (ii) of Theorem 3.1.3 is especially interesting,
hecause il emphasizes the role of directable automata in studying regular
and nonregular varieties of automata.

For an arbitrary variety of automata V', there exists the smallest regular
variety R(V') containing V', called the regularization of V. Evidently, one
obtains R(V') as the intersection of all regular varieties containing V', or
as the variety determined by the set of all regular identities satisfied in V.
The regularization operator R : V +— R(V') is a closure operator on the
lattice of varieties of automata and R-closed elements in it are exactly the
regular varieties. The next theorem shows that the local closure operator
I, coincides with the regularization operator £ on the lattice of varieties of
autemata. »nd gives several other characterizations of the varietity L(V')
assi ned - 1 variety 'V,

Theorver - .1.:. ([62, 64, 1)) Let V be an arbitrary variety of automata.
The i
L(Vi=VoD=R(V)=DVV.
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Recall that V o D is the class consisting of all direct sums of automata
from V', and DV V denotes the join of the varieties D and V in the lattice
of varieties of automata. Therefore, the previous theorem also describes the
structure of automata from L(V') in terms of direct sums and the structure
of automata from the variety V. It also shows that a variety of automata
V is L-closed if and only if it is regular.

An interesting question is the following: If a variety of automata V
determined by a set of identities ¥ is given, how cean one find a set of
identities (with a number of elements as small as possible) determining the
variety L(V'), that is, R(V')? An algorithm for finding such set of identities
was given by J. Plonka in [62] (see also E. Graczyniska [27]), whereas another
one was given by S. Bogdanovi¢, M. Ciri¢, B. Imreh, T. Petkovié and M.
Steinby in [4].

When we redirect one’s attention from the action of the operators L and
CL on varieties to their action on generalized varieties, many differences
appear, but the regularity and the nonregularity of generalized varieties
play still a crucial role. The definitions of regular and nonregular generalized
varieties, introduced in [4], are given in the further text.

Theorem 3.1.5. ([4]) Let K be a generalized variety of automata. Then
the follounng conditions are equivalent:

(i) K s ulitimately defined by a directed set of reqular identities;

(ii) K is the union of a directed family of regular varieties of automata;
(iii) D C K;
(iv) Dy € K.

A generalized variety of automata satisfying anyone of the equivalent
conditions of Theorem 3.1.5 is called regular. Otherwise it is called nonreg-
ular or trreqular. Nonregular generalized varieties are characterized by the
following theorem.

Theorem 3.1.6. ([4]) Let K be a generalized variety of automata. Then
the following conditions are equivalent:

(i) K is a nonregular generalized variety of automata,
(ii) Any dirccted set of identities which ultimately defines K contains a
nonregular identity;
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(iii) Any directed set of identities which ultimately defines K contains a
cofinal subset of nonregular identities;
(iv) K C Dir;
(v) DN K = 0O;
(vi) DZ K;
(vil) Dy ¢ K.

The equivalence of the conditions (i) and (iv) is especially interesting
and it can be also stated in the following way.

Theorem 3.1.7. ([4]) Nonregular generalized varieties of automata form
the principal ideal of the lattice of generalized varieties of automata generated
by the generalized variety Dir of directable automata.

Now we are ready to describe the properties of the operators L and CL
on generalized varieties of automata.

Theorem 3.1.8. ([4]) Let K be a generalized variety of automata. Then

(a) K 1s regular if and only if CL(K) = L(K).
(b) K is nonregular if and only if CL(K) = L(K)N Conn. In this case

L(K)=CL(K)oD = CL(K o D).

Recall that the class denoted by Conn that appears in the previous
theorem is the class of all connected automata.

In contrast to varieties of automata, which are regular if and only if they
are L-closed, regular generalized varieties of automata are not necessarily
L-closed. Before we give an example that confirms this claim, we state
the following theorem that characterizes all L-closed generalized varieties of
automata.

Theorem 3.1.9. ([4]) Let K be a generalized variety of automata. Then

L(K)=K & KoD=K.

Therefore, a generalized variety of automata is L-closed if and only if it
is closed under direct sums. Since the generalized variety Trap of trapped
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automata is not closed under infinite direct sums, it is an example of a
regular generalized variety of automata which is not L-closed.

Note also that when a generalized variety K is represented as the union
of a directed family {V;|i € I} of varieties, the generalized variety L(K) is
not necessarily the union of varieties L(V;). For example, the generalized
variety Dir of directable automata is a directed union of a family {Dir, |z €
X*}, but the union of a directed family of varieties {L(Dir,)|u € X~}
is exactly the generalized variety ULDir, which is a proper subclass of
LDir = L(Dir), as was shown by Theorem 2.3.4.

We shall finish the section giving several remarks concerning the action
of the operators . and C'L on pseudovarieties of automata. If £ is a class of
finite automata, the classes L(K) and CL(K) do not necessarily consist of
finite automata, and when we work with classes of finite automata we have to
combine the operators L and C'L and the operator K — K, which assigns to

“any class of automata the class K of all finite members of K. In other words,
we have to modify the operator L by introducing an operator L : K — L(K)
on classes of finite automata by: L(K) = L(K), for K C Fin. The operator
L thus defined preserves the finiteness of the members of classes, so it is
a closure operator on the lattice of pseudovarieties of automata, and its
properties are very similar to the properties of the operator L on varieties of
automata. Evidently, CL(P) = P, for each pseudovariety of automata P,
and thus, it does not make sense to do a similar modification of the operator

CL.

3.2 The structure and transition semigroups

From the general results presented in the previous section we can deduce the
theorems that describe the structure of many automata considered in Section
2.2, such as the automata belonging to the varieties of locally u-directable,
locally trap-u-directable, locally k-definite and locally &-nilpotent automata,
and the automata belonging to the generalized varieties of locally directable,
locally trap-directable, locally definite and locally nilpotent automata. IFor
example, for any v € X*, locally u-directable automata can be described as
direct sums of wu-directable automata, whereas locally directable automata
are characterized as direct sums of completely locally directable automata.

The main aim of this section is to describe the structure of other au-
tomata treated in Sections 2.1 and 2.2. This will be done using various
decomposition and composition techniques, such as direct sum decomposi-
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tions, extensions and retractive extensions, subdirect decompositions and
parallel compositions of automata. On the other hand, we also characterize
these automata through certain properties of their transition semigroups.

First, we give a theorem that describes generalized directable automata.

Theorem 3.2.1. ([56]) The following conditions on an autornaton A are
equivalent:

(1) S(A) has a bi-zero;
(i1) A is an extension of a locally directable automaton by a trap-directable
automaton;
(iii) A is a generalized directable automaton.

As we have seen before, locally directable automata are characterized
as direct sums of completely locally directable automata, and they are not
necessarily direct sums of directable automata. On the other hand, the
automata which are direct sums of directable automata are not necessarily
uniformly locally directable, as the following theorem shows.

Theorem 3.2.2. ([56]) The following conditions on an autormaton A are
equivalent:

(i) S(A) has a right zero;

(ii) A is a direct sum of directable automata with the same directing words;

(ii1) A is a uniformly locally directable automaton.
If A is a finite automaton, then the condition (ii) can be replaced by
(ii’) A is a direct sum of directable automata.
Therefore, we can note that the class of automata which are direct sums

of directable automata lies between the classes of locally directable and
uniformly locally directable automata.

The next theorem that we present describes the structure of trapped
automata.

Theorem 3.2.3. ([56]) The following conditions on an automaton A are
equivalent:

(i) S(A) has a left zero;
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(ii) A is an extension of a discrete automaton by a trap-directable automa-
ton;
(iii) A is a trapped automaton.

An especially interesting theorem is the following one which shows that
the structure of uniformly locally trap-directable automata is very rich.

Theorem 3.2.4. ([56]) The following conditions on an automaton A are
equivalent:

(i) S(A) has a zero;

(ii) A is a retractive extension of a discrete automaton by a trap-directable
automaton;

(iii) A is a direct sum of trap-directable automata with the same trapping
word;

(iv) A s a subdirect product of a discrete and a trap-directable automaton;

(v) A is a parallel composition of a discrete and a trap-directable automa-
ton;

(vi) A 1s a uniformly locally trap-directable automaton;

If A is a finite automaton, then the condition (iii) can be replaced by

(iii’) A is a direct sum of trap-directable automata.

The next type of automata whose structure will be described are gener-
alized definite automata.

Theorem 3.2.5. ([56]) The following conditions on an automaton A are
equivalent:

(i) S(A) is a nilpotent extension of a rectangular band;
(ii) A s a nilpotent extension of a locally definite automaton;
(iii) (3m,n € N)(Vu € X2™)(Vv € X2")(Va € A)(Vp,q € X*) aupv =
auqu;
(iv) A is a generalized definite automaton.

Note that the condition (iii) of the previous theorem is the original def-
inition of a generalized definite automaton given by A. Ginzburg in [23].

In a similar way as for uniformly locally directable and uniformly locally
trap-directable automata, we give the characterization of the structure of
uniformly locally definite automata.
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Theorem 3.2.6. ([56]) The following conditions on an automaton A are
equivalent:

(i) S(A) is a nilpotent extension of a right zero band;
(ii) A ts a direct sum of definite automata with bounded degrees of defi-
niteness;
(iii) A @s a uniformly locally definite automaton.

If A is a finite automaton, then the condition (ii) can be replaced by the
Jollowing one:

(ii’) A is a direct sum of definite automala.

The automata whose every monogenic subautomaton is a reset automa-
ton are called locally reset automata. Therefore, as a special case of Theorem
3.2.6 we obtain the following theorem.

Theorem 3.2.7. ([56]) The following conditions on an automaton A are
equivalent:

(i) S(A) is a right zero band;
(ii) A s a direct sum of reset automata;
(iii) A ts a locally reset automaton.

The following theorem, that can be deduced from the theorem character-
izing trapped automata, describes the structure and transition semigroups
of reverse definite automata.

Theorem 3.2.8. ([56]) The following conditions on an automaton A are
equivalent:

(i) S(A) is a nilpotent extension of a left zero band;
(ii) A is a nilpotent extension of a discrete automaton;
(iii) A is a reverse definite automaton.

The last theorem of the section describes the structure of uniformly
locally nilpotent automata. The equivalence of the conditions (i) and (iii)
was proved by L. N. Shevrin in [77] (see also the book by F. Gécseg and I.
Pedk [22]), whereas the equivalence of all other conditions was proved by T.
Petkovié, M. Ciri¢ and S. Bogdanovié in [56].
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Theorem 3.2.9. ([56],[77], [22]) The following conditions on an automaton
A are equivalent:

(i) S(A) is a nilpotent semigroup;
(ii) A is a retractive nilpotent extension of a discrete automaton;
(iii) A is a direct sum of nilpotent automata with bounded degrees of nilpo-
tency;
(iv) A is a subdirect product of a discrete and a nilpotent automaton;
(v) A is a parallel composition of a discrete and a nilpotent automaton;
(vi) A is a uniformly locally nilpotent automaton.

If A is a finite automaton, then the condition (iii) can be replaced by

(iii’) A is a direct sum of nilpotent automata.

3.3 Characteristic semigroups of directable automata

In the previous section we saw that much information about an automa-
ton can be obtained from information concerning its transition semigroup.
Recall that the transition semigroup S(A) of an arbitrary automaton A is
defined as the subsemigroup of the full transformation semigroup on the set
of states of A consisting of the mappings of the form u®, where u € X .
On the other hand, we mentioned that it can be also defined as the factor
semigroup of the free semigroup X+ with respect to the Myhill congruence
pa on X+ that corresponds to the automaton A. But, we can observe that
the Myhill congruence p4 of A is defined by regular identities satisfied on
A, that is to say, for u,v € X we have that

(u,v) Epa & A= gu=gv.

Therefore, if an automaton A satisfies some nonregular identity, i.e. if it
is directable, then the transition semigroup S(A) of A does not give enough
information about A. Motivated by this fact, T. Petkovi¢, M. Ciri¢ and §.
Bogdanovi¢ introduced in [57] the notion of a characteristic semigroup of a
directable automaton, defined in terms of nonregular identities satisfied on
it. Namely, if A is a directable automaton, then a binary relation 4 on X+
defined by

(u,v) €04 & u=v or AEgu=ho

is a congruence relation on X T, and the factor semigroup X * /64, denoted by
C(A), is called the characteristic semigroup of A. An equivalent definition of
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the congruence #4 can be given using the following theorem that determines
some conditions under which an automaton satisfies a nonregular identity.

Theorem 3.3.1. ([57]) A nonregular identity gu = hv is satisfied on an
automaton A if and only if u,v € DW(A) and d, = d, in A.

For a directable automaton A let g4 denote the Rees congruence on X+
that corresponds to the ideal DW(A) of X*. Then the congruence 4 can
be expressed through g4 and the Myhill congruence p4 as follows.

Theorem 3.3.2. ([57]) Let A be any directable automaton. Then
0a=04aNpa.

By the previous theorem it follows immediately that the characteristic
semigroup C(A) is a subdirect product of the semigroup X*/p4 and the
transition semigroup S(A) of A.

As it is known, every semigroup is isomorphic to the transition semi-
group of some automaton, and it is interesting to state and consider the
following question: Is every semigroup the characteristic semigroup of some
directable automaton? We shall show that the answer is negative, but we
shall determine some necessary and sufficient conditions for a semigroup to
be the characteristic semigroup of some directable automaton.

In order to describe such semigroups, T. Petkovié, M. Ciri¢ and S. Bog-
danovi¢ introduced in [57] the notion of a 0-free semigroup as follows. Let
S be a semigroup with the zero 0 and let it be generated by a set Y. We
say that S is a 0-free semigroup over Y if every nonzero element of S can
be uniquely represented as the product of some elements from Y.

In the introductory section we mentioned that the input alphabet of the
considered automata is fixed throughout the whole paper and it is denoted
by X. The cardinality of this alphabet will be denoted by . A semigroup
S is said to be k-generated if it has a generating set of the cardinality not
greater than .

Now we can state the theorem that describes characteristic semigroups
of directable automata.

Theorem 3.3.3. ([57]) Let S be a k-generated semigroup. Then the follow-
ing conditions on S are equivalent:
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(i) S is a characteristic semigroup of some directable automaton;

(ii) S is a factor semigroup of the free semigroup X+ with respect to a
congruence relation 8 on Xt such that each nontrivial 8-class is a left
ideal of X¥;

(i) S is an ideal extension of a right zero band by a 0-free semigroup.

Similarly, we characterize semigroups that are characteristic semigroups
of trap-directable, definite and nilpotent automata. This is done by the next
three theorems.

Theorem 3.3.4. ([57]) Let S be a k-generated semigroup. Then the follow-
ing conditions on S are equivalent:

(i) S is a characteristic semigroup of some trap-directable automaton;
(ii) S is a Rees factor semigroup of the free semigroup X+;
(iii) S is a 0-free semigroup.

Theorem 3.3.5. ([57]) Let S be a k-generated semigroup. Then S is a
characteristic semigroup of some definite automaton if and only if S is an
ideal extension of a right zero band by a nilpotent 0-free semigroup.

Theorem 3.3.6. ([57]) Let S be a k-generated semigroup. Then S is a
characteristic semigroup of some nilpotent automaton if and only if S is a
nilpotent 0-free semigroup.

3.4 Subdirect irreducibility

The direct products and subdirect decompositions of automata are defined
as usual. This kind of compositions can be interpreted as parallel connec-
tion of automata. The first investigation in this line was done by Yoeli [84]
who characterized the finite subdirectly irreducible autonomous automata
(automata with one input sign). Later this result was generalized for the infi-
nite case by Wenzel [83]. A wider class, the class of commutative automata
was studied in [20] and [21], where the subdirectly irreducible automata
were characterized. For further special classes of finite automata such as
nilpotent, definite, reverse definite, generalized definite, and transitive, the
subdirectly irreducible automata were described in the papers [15], [36], {37],
[76]. In [15], the description of subdirectly irreducible automata is achieved



Directable automata and their generalizations: A survey 57

by considering certain characteristic congruences. These results are valid for
the infinite case, too, and we recall them here.

A congruence 6 on an automaton A is called elementary if there are two
distinct states a,b € A such that § = As U {(a,b),(b,a)}. The set of all
elementary congruences on A is denoted by Con.(A).

Let A be an automaton and k& € N°. Let us define the relation py on A
as follows. For any a,b e A,

apeb & (Yue XF)au = bu.

The relation p; was used already in [54], and the family of these relations
was introduced in [79]. Using the notion of an elementary congruence and
the relation p;, we have the following assertion.

Theorem 3.4.1. ([15]) A nontrivial definite automaton A is subdirectly ir-
reducible if and only if Con.(A) = {p1}.

For any automaton A, the subsets Ax, k € N, of the state set are defined
inductively as follows:

Ap={a € Alaz =a forall z € X},
Ary1={a€ Alaz € Ag forallz € X} (k> 0).

Moreover, if Ag # (, then for each k € N°, A, is a subautomaton of A, and
we denote by o the Rees congruence that corresponds to Ag. Investigat-
ing these congruences, we have the following description of the subdirectly
irreducible reverse definite automata.

Theorem 3.4.2. ([15]) A nontrivial reverse definite automaton A is subdi-
rectly irreducible if and only if either

(1) Cone(A) ={o0}, or |

(2) Cong(A) = {o1}.

Moreover, if (1) holds, then |Aog| = 2 and A 1s not nilpotent, and if (2) holds,
then |Ao|l = 1 and A is nilpotent.

By Theorem 3.4.2 we obtain the following description of the subdirectly
irreducible nilpotent automata.
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Theorem 3.4.3. ([15]) A nilpotent automaton A with |A| > 2 is subdirectly
irreducible if and only if Con.(A) = {o1}.

Regarding the subdirectly irreducible generalized definite automata, the
following characterization is valid.

Theorem 3.4.4. ([15]) A generalized definite automaton A with at least
three states is subdirectly irreducible if and only if either

(1) Con.(4) = {m}, or
(2) Con(A) =A{o0}.

Extensions, kernels and cores of automata and their influence on the
subdirect irreducibility are studied in [3]. Combining some earlier charac-
terizations with the results of [3], we can conclude the following statements
in terms of these notions.

Theorem 3.4.5. Let A be a nilpotent automaton with the unique trap ag.
Then the following conditions are equivalent:

(i) A is subdirectly irreducible;

(ii) A salisfies the following two conditions:
(a) there exists the greatest element ay in the partially ordered set

(A\ {ao}, <);

(b) for arbitrary a,b € A\ {ag,a1} there exists u € X* such that
ay # bu;
(iii) A has a two-element core and ag is a disjunctive element;
(iv) A has a disjunctive element different than ag;

(v) A is a dense extension of a two-element nilpotent automaton.

Theorem 3.4.6. A definite automaton A is subdirectly irreducible if and
only if it satisfies one of the following twe conditions:

(1) A is a subdirectly irreducible nilpotent automaton;

(2) A is a dense nilpotent extension of a subdirectly irreducible strongly
connected automaton.

Theorem 3.4.7. A reverse definite automaton A is subdirectly irreducible
if and only if it satisfies one of the following two conditions:
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(1) A is a subdirectly irreducible nilpotent automaton;

(2) A is a dense nilpotent extension of a two-element discrete automaton.

Theorem 3.4.8. A generalized definite autormnaton A is subdirectly irredu-
cible if and only if it satisfies one of the following conditions:

(1) A is a subdirectly irreducible nilpotent automaton;

(2) A is a dense nilpotent extension of a subdirectly irreducible strongly
connected automaton;

(3) A is a dense nilpotent extension of a two-element discrete automaton;

(4) A is a dense nilpotent extension of a trap-eztension of a subdirectly
irreducible strongly connected automaton.

3.5 Directing words

Throughout this section, by an automaton we always mean a finite automa-
ton.

Regarding the directable automata, the main challenge from the very
beginning has been Cerny’s Conjecture [9] which states that any n-state
(n > 1) directable automaton has a directing word of length (n — 1)? or
less. The bound suggested by the conjecture is the lowest possible, but the
best known upper bounds are of order O(n3), and the conjecture remained
one of the open problems of the automata theory. On the other hand, for
some special classes of automata even better and accurate bounds have been
presented (cf. [39],[58],(59], (66]-[72]).

From the practical point of view, it is important to know whether an
automaton A having n states with |X| = m is directable or not. It can be
decided by constructing the power-set automaton. In this case, one should
consider almost 2" sets and form Awz, z € X, for all sets Aw. Ito and
Duske {41] suggested that the directability of an n-state automaton A can
be tested by applying an input word ¢ which contains all words over X
of length & as subwords, where k£ denotes the maximum of the lengths of
the shortest directing words of n-state directable automata. It is easy to
see that A is directable if and only if |A¢|] = 1. They show how one can
construct such a word ¢, but the mere length m* 4+ k — 1 of the word renders
the test unpractical even under small values of n and m. Supposing that
Cerny’s Conjecture holds, which is the best we can hope for, the length of
the test word will be of the order O(m*). In [39], a more effective procedure
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is suggested for solving this decidability problem which is presented here.
The time complexity of this algorithm is O(m - n?).

Let A be an arbitrary finite automaton. For any k£ € N9, the relation
£a(k) of k-mergeability on A is defined so that for a,b € A,

(a,b) € £4(k) © (Gwe X5 aw = bw.

Two states @ and b are mergeable if they are k-mergeable for some k € N,
We denote 4 = U, o €a(k). Tt is well-known (cf. [78]) that an automaton
is directable if and only if all pairs of its states are mergeable.

As far as the computation of {4 is concerned, the following observations
are important:

(1) €4(0) = Ay,
(2) éa(k) = €a(k—1)U{(a,b)|(Az € X)(az,bz) € £a(k — 1)}, for k > 0,

(3) If Ea(k) = Ea(k — 1), for some k > 0, then {4(k) = Ea(k+1)=...=
€a,

(4) Aa = €a(0) C €a(1) C ... C Lalk) = €a(k + 1) = &4 for some k,
where 0 < k < (g) '

The observations above suggest that the directability of A can be tested
by computing successively £4(0), £4(1), £4(2), ... until £4(k) = €a(k — 1).
To do this effectively, we use the inverse transition table of A instead of the
transition table itself. Also, we do not form explicitly each {4(k) although
they appear in the sequence of computed relations.

The algorithm employs two data structures, a Boolean n X n-matrix M
and a list NewPair of pairs of states. For the sake of simplicity, we assume
that A = {1,2,...,n}. Then MJi,j] = 1 means that the pair ¢,7 (€ A) is
known to be mergeable. Since it suffices to consider just the pairs (¢, ),
where 1 < i < 7 < n, we actually need just the upper part of M. A pair
appears in NewPair when i and j have found to be mergeable, but this
fact has not yet been used for finding further mergeable pairs. The inverted
transition table

I =(Ifa,z])acn zex

is defined by I{a,z] = {i € A|iz = a}, for any a € A, z € X. Now, we have
the following procedure.

Procedure 1.
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Step 1. (Initialize M and NewPair) M[i,j] := 0 for all 1 < i < j < n, and
NewPair := ¢ (the cmpty list).

Step 2. Form the inverted transition table 1.

Step 3. Find all pairs (a,z) (€ A x X) for which {I[a,z]| > 1. For cvery
such (a,z) consider each pair ,7 € I[a,z] with ¢ < 7. If M[¢, 5] = 0,
let MJz,7]:= 1 and append (1, ) to NewPair.

Step 4. Until NewPair = ¢ do the following. Delete the first pair from
NewPair; suppose it is (a,b). From I find all pairs (¢,7), 7 < j, such
that for some z € X, ¢ € I[a,z] and j € I[b,z], or i € I[b,z] and
J € I[a,z]. If M[¢, 7] = 0, let M[¢, 4] := 1 and append (3, j) to NewPair.

Step 5. If M[i,j] = 1 whenever 1 < ¢ < j < n, then A is directable,
otherwise not.

It can be seen (ef. [39]) that every automaton A has a unique minimal
congruence denoted by p4 such that A/p4 is directable. It is an interesting
question how can one determine it. For computing p4, we consider the
nonmergeable pairs of states.

I'or any automaton A, let G4 = (V, E) be the directed graph defined
as follows. The vertex set V. = {{a,b}|a,b € A,(a,b) & €4} consists
of all unordered pairs of nonmergeable states of A. The edge set is I/ =
{({a,b},{az,bz})|{a,b} € V,z € X}. Note that {az,bz} € V if {a,b} €V
and z € X. Let T denote the subset of V' which is the union of (the vertex
sets of ) all strongly connected components of G4 from which no edges lead
outside the component (¢f. [16]). Then the following assertion is valid (see

[:;ﬁ)]).

Theorem 3.5.1. The congruence p 4 is equal to the transitive closure of the
relation T4 = Ag U {(a,b)|{a,b} € T}.

Using this obscrvation, one can determine p4 in O(m - n? 4+ n3) time by
the following algorithm.

Procedure 2.

Step 1. Compute €4 using Procedure 1.
Step 2. Torm the graph G4 = (V, I7); the vertex sct is obtained from &4.

Step 3. Compute the strongly connected components [orming the set T us-
ing the algorithm of [16].
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Step 4. Form the relation 74 and compute its transitive closure 73°. Then
TR = PA-
A

A natural generalization of the directability is the directability of the
nondeterministic automata. For nondeterministic automata, directability
can be defined in several meaningful ways. In [40], the following three no-
tions of directability are introduced.

An input word w of a nondeterministic automaton A is

(1) Di-directing, if the set of states aw in which A may be after reading
w consists of the same single state ¢ whatever the initial state a is;

(2) D2-directing, if the set aw is independent of the state a, for all a € A,

(3) D3-directing, if there exists a state ¢ which appears in all sets aw,
a € A.

The D1-directability of complete nondeterministic automata (az # @,
for all @ € A and z € X) was already studied by Burkhard [6]. He gave
an exact exponential bound for the length of minimum-length D1-directing
words of complete nondeterministic automata. In [26] it was shown that
neither for D1- nor for D3-directing words the bound can be polynomial for
general nondeterministic automata. On the other hand, Carpi (8] has found
O(n3) bounds for D1-directing words of unambiguous automata and for
synchronizing pairs of maximal rational codes recognized by such automata.
In [40], lower and upper bounds are derived for the lengths of the shortest
D1-, D2- and D3-directing words.

In Chapter 2 we defined the languages DW(A), TDW(A), LDW(A),
LTDW(A), GDW(A) and TW(A) associated to an automaton A. It is
interesting to investigate the conditions under which a language in X* can
be represented as one of these languages. This problem was considered by
Imreh and Ito in [38] and one of their results we can reformulate as follows.

Theorem 3.5.2. ([38]) Let L C X* be a non-empty language. Then there
exrists a finite automaton A such that L is equal to one of the languages

DW(A), TDW(A), LDW(A), LTDW(A), GDW(A) and TW(A)
if and only if L is recognizable and X*LX™ = L.

In other words, the condition X*LX* = L means that L is an ideal of X™*.
The automaton A associated with the given language L can be constructed
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from the recognizer accepting L. Note also that if we omit the requirements
that A is finite and L is recognizable, then Theorem 3.5.2 is still valid.

In a similar way, one can define languages consisting of Di-directing

words of nondeterministic automata (¢ = 1,2,3). These languages and the
languages that correspond to deterministic automata were compared also in

(38].
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