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1. Introduction

Natural deduction and sequent systems of the simply typed lambda calcu-
lus are the subject of our investigation. The usual way of giving the simply
typed lambda calculus A— is with explicit typing (Church version) and with
implicit typing (Curry version). Both ways can be seen as natural deduction
systems, since they consist of elimination and introduction rules for impli-
cation. There is a sequent system formulation of the simply typed lambda
calculus LA— given in Pottinger [6]. It is based on the symmetry of intro-
ducing implication both on the left-hand and right-hand side of the turnstile
in the sequent. These two systems A— and LA— are used in Pottinger [6] in
order to study the correspondence between normalization procedures in the
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natural deduction system of intuitionistic propositional logic, and the cut-
elimination procedures in the sequent system of intuitionistic propositional
logic. The main new feature in LA— is an analogue of the cut rule which
involves, in addition to usual cuts of types (formulae), the cuts of terms as
well, which are actually substitutions of lambda terms. In the sequel we call
this rule term-cut rule as opposed to the cut rule which is a logical rule.

The problem of inhabitation in a type system is whether there exists a
term of a given type in the system considered. By the Curry-Howard corre-
spondence types inhabited in the simply typed lambda calculus.coincide with
the formulae provable in the implicational fragment of intuitionistic logic.
In that sense, terms encode proofs of formulae corresponding to their types.
This correspondence can be extended to intuitionistic logic and simply typed
lambda calculus with pairing, projections and constants for disjunction and
negation.

Strictly speaking, the Curry—Howard correspondence holds only for nat-
ural deduction systems of logic and lambda calculus, since ogly then it is
not just a one-to-one correspondence between provable formulae and inhab-
ited types (formulae-as-types), but is a one-to-one correspondence between
derivations and lambda terms (proofs-as-terms). The latter does not hold
for sequent systems of logic and lambda calculus since one term can encode
different proofs of the same sequent. In this sense the axiomatic system of
logic corresponds to the combinatory logic, but they are out of the scope of
our study.

Section 2 is an overview of the natural deduction system A— and the
sequent system LX— of the simply typed lambda calculus and their equiv-
alence. In Section 3, beside the well known Curry-Howard cotrespondence
between natural deduction systems of logic and lambda calculus, the Curry—
Howard correspondence between the sequent systems.of logic and the lambda
calculus is investigated. The difference between these two links is pointed
out. In Section 4, term-cut elimination for sequent simply typed lambda
calculus is proved, which is an analogue of cut elimination in logic. Section
5 is a discussion about the related work. '
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2. Natural deduction and sequent system of sim-
ply typed lambda calculus

Natural deduction systems consist of elimination and introduction rules for
logical connectives. Untyped lambda calculus can be regarded as a natu-
ral deduction system, where the application and abstraction. correspond to
elimination and introduction rules, respectively. Let V = {z,y,2,z,,...} be
a denumerable set of variables.

The axiom-scheme is

(az) ;
the elimination rule is
(app) M N
pp MN 3}
and the introduction rule is
M
b —_—,
(abs) 1)

Let us recall some basic notions of the simply typed lambda calculus of
the well known A— and of its less familiar formulation LA—.

Terms are usual untyped lambda terms. We use M, N, P, ... as schematic
letters for terms. Types are implicational propositional formulae, where —
is the only type forming operator. We use p,0,7,... as schematic letters for
types. _

The expression M : o, called statement, where M is a term and o is a -
type, links terms and types. M is the subject and o is the predicate of the
statement M : 0. If z is a variable, then z : 7 is a basic statement. A context
(basis) is a set of basic statements, with different term variables. Contexts
are denoted by I'; A, ... and I', A denotes the set-theoretic union of I' and
A. Freedom of variables is defined in the usual way. Substitution M[N/z]
is defined to be the term obtained from the term M by replacing every free
occurrence of the variable z in M by the term N, provided that there is no
free variable y in N such that z falls within a subterm of M of the form
Ay .M.

The standard way of defining ‘the simply typed lambda calculus A— is
by a natural deduction system of elimination and introduction rules. This
refers to both versions, to the Church version and the Curry version of the
simply typed lambda calculus. There is:
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the axiom-scheme
(az) lz:0t z:0;
the eliruination rule

I'M:0 -7 AFN:o
LAFMN 7 ’

(= )

and the introduction rule

Le:obFM:71

(= 1) TFE(Az.M):0— 1

This is the Curry version of the simply typed lambda calculus. The Church
version is also a natural deduction system, which will not be discussed in
detail here.

The sequent simply typed lambda calculus LA— is given by:
the same axiom-scheme

(az) Tyz:0bk z: o0

the left introduction rule

F’'FN:7 Ajz:pbM:o
Ayy:1— p,T'F M[yN/z] :

(= 1) , (y is fresh for I and A);
o

the right introduction rule

PziobkM:7
't(Az.M):0— 7’

(— R)

and the term-cut rule

AFN:¢c Thz:obFM:7T
I'SAFM[N/z]: 7

(term — cut)

As we may notice the term-cut rule involves, beside usual cuts of types, cuts
of terms as well, which are actually substitutions of terms.

Remark. Untyped lambda calculus is a natural deduction system, as we
noticed above. A— is a complete natural deduction system since both terms
and types are introduced as natural deduction systems. In spite of introduc-
ing types in LA— in a sequent system manner, terrs inherit their natural
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deduction origin. Therefore LA— is a mixture of the natural deduction term
system and the sequent type system.

lLet 'y M :ocand 'y M : o denote the derivability of the statement
I'M:oin A— and LA—, respectively. The following theorem shows
the equivalence of the two formulations mentioned, in the sense that the
derivability of a statement in one system implies its derivability in the other
as well, and the other way round,

Theorem 1. For every context I', term M and type o

'ty M:o ifand only if ' M : 0.

Proof. Both directions are proved by induction on the derivation.

(=) The interesting case is when the last rule applied in the natural
deduction system is (— £)

'y P:p—>1 AFNQ:p
I AFNy PQ:T ’

then we have the following derivation in the sequent system

R AR Q:p ziThpxiT
ThoPep—or RS or b

T.AFL PO 7

(<=) If the last step in the sequent system derivation is (— L)

Pk P:7 Ajz:ipbp Q0o
Ayy:7m—p, Tk Q[yP/z]: 0’

then we have the following in the natural deduction system

I'tnNyP:7 y:7opbyy:T—op

E
T,y:T—>pkyyP:p (= E)

and A,y : 7 - p,T'Fy Q[yP/z] : 0 is obtained from A,z : pFy Q : 0 by
substitution. 0O
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3. Curry—Howard N-correspondence and L-corre-
spondence

The two different formulations of the simply typed lambda calculus, A— and
LA— can be regarded as two different formulations of intuitionistic logic,
natural deduction and sequent system, with encodings of natural deduction
and sequent derivations, respectively, denoted explicitly by lambda terms.

The Curry-Howard correspondence establishes the relation between two
completely natural deduction systems: A — and intuitionistic logic. We
shall call it the Curry—Howard N -correspondence The explicit definition of
the Curry-Howard N -correspondence can be found for example in Girard
et al. [2].

1. To the deduction a corresponds z: ax by z : .
2. To the deduction

[0]

T
T

corresponds ' Fy Ae. M : 0 —» 7, if [,z : ¢ by M : 7 corresponds to
the deduction of 7 from o.

3. To the deduction
o 0—T

(M P)

corresponds ') A by MN . 7,if ' -5y M : 0 — 7 corresponds to the
deduction of ¢ — 7 and A bxy N : o corresponds to the deduction of
a.

The Curry-Howard N-correspondence is based on pasting together the
steps in a logical deduction with the steps in the construction of the encoding
lambda term. The following classical result is due to Curry and Howard [4].

Theorem 2. Let o be a type. There is a term M and a context
I ={z1:01,...2,: 0.}

such that
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I'tn M : o iff o is provable (intuitionistically) from the assumptions
Tlye v, 0n.

The problem of inhabitation in a type system is whether there exists a
term of a given type in the system cousidered. By the Curry—Howard N-
correspondence, tvpes inhabited in the simply typed lambda calculus coin-
cide with formulac provable in the implicational fragment of intuitionistic
logic. Apparently, it is a formulac-as-types correspondence. On the other
land, it is a proofs-as-terms correspondence as well, since terms cncode di-
rectly proofs of formulae corresponding to their types, i.e., each step in the
logical deduction changes the term. In this case terms are treated as “good
book-keeping devices”(Pottinger [6]) of proofs, whereas the type of the term
obtained is exactly the formula proved.

The situation changes with sequent systems since terms remain book-
keeping devices, but not so neat anymore. The Curry-Howard 1.-correspond-
ence between the sequent calculus formulation of intuitionistic logic and the
simply typed lambda calculus can be given in the following way.

1. To the derivation of the sequent o b « corresponds z : a by o : «

2. To the derivation of the sequent in the conclusion

I'eEr Alpko
At —=pI"kFo

(= 1)

corresponds

Ayy:1—p, Tty M[yN/z]: 0o,

ifUk;, N:7 and A,z :pbtp M : 0 correspond to the premisses and
if y is fresh for T and A . (The contexts I' and A are obtained from
IV and A’, respectively, by creating basic statements z : ¢ from every
formula of T" and A’, taking into account that all term variables of a
context have to be different.)

3. To the derivation of the sequent in the conclusion

IV obr

"bFo—r

(= R)

corresponds [' by, (Az.M):0 — 7,if I',o : ¢ b, M : 7 corresponds
to the derivation of the sequent in the premiss. (The context T is
obtained from I' as in the previous case.)
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4. To the derivation of the sequent in the conclusion

ANbto IMobr
I AF T

corresponds I', A by, M{N/z]):7,if Abpy N:oandT,z:0b; M : 7
correspond to the derivations of the premisses, respectively.

The previous theorem holds for the L-correspondence as well, in the
sense that the inhabited types coincide with provable formulae.

Theorem 3. Let g be a type. There is a term M and a context
F={zy:01,...24 : 0.}
such that

[k M o iff o is provable (intuitionistically) from the assumptions
O1y-..,0p.

Hence the L-correspondence preserves formulae-as-types, but it does not
- preserve proofs-as-terms. For example, z : @ F = : a corresponds to both

proofs
aba and 2o @Fe

ok a
One of the reasons for this can be found in the application of the term-cut
rule of LA—. Obviously, there are cases of the term-cut rule application
which do not change the term from the premiss. These cases are when the
term N is a variable, say z, i.e., the left premiss in the (term-cut) rule is
z:0F z:0. Let us recall that, in logic, (cut)-applications in which the
left premiss is of the form o I ¢ are called trivial. The other reason is the
interchangeability of the rules (— R) and (term — cut) which does not offend
the structure of the term.

Therefore, the Curry—Howard L-correspondence pastes together the st-
eps in a logical derivation with the steps in the construction of the encoding
lambda term ignoring:

— trivial term-cut applications,

— the order in which abstractions in (— R) and substitutions in (ferm —
cut) are applied. ’
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— the order in which substitutions in (— L) and substitutions in (term —
cut) are applied.

— the order in which abstractions in (— &) and substitutions in (— L)
are applied.

This mismatch between proofs in the sequent system of intuitionistic
logic and their encoding terms in LA— arises from the fact that the consid-
ered logic is a sequent system, whereas the term part of LA— which encodes
the proofs is natural deduction, as we noticed in the previous remark. Nev-
ertheless, the L-correspondence is one-to-one between provable formulae in
the sequent system of logic and inhabited types in LA— since the type part
of LA— is a sequent system as well.

4. Term-cut elimination

We shall show for sequent lambda calculus LA— an analogue of the cut elim-
ination property in the usual manner (see Lambek [5]) by showing that for
each statement derivable by the application of the (term-cut) rule there is a
corresponding statement with the same predicate (type) derivable without
it. The addition that we have here is that the subject (term) of the latter
statement is the normal form of the subject (term) of the former statement.
We say ‘an analogue’, since usually in proving cut elimination we are con-
cerned with formulae (types) only and we do not care formally about the
changes in the proofs (terms). In LA— the proofs are encoded directly by
lambda terms, so these changes, which have not been taken into account up
to now, will become explicit.

For the sake of simplicity, derivability in LA— I' by, M : o will be
denoted by I' v M : o, there is no place for confusion since A — is not
mentioned in the rest of the section.

In order to prove term-cut elimination we need the following usual no-
tions:

- d(y), the number of occurrences of the connective — in ¢;
if I,z : ¢ is a context, then d([,z : p) = d(T') + d(¢p);

— the degree of (term-cut)
AFN:p Tirc:pFM:0o
I'N'AF M[N/z]:0
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is the total number of occurrences of the connective — in the types of

I"and A and in ¢ and o, i.e. it is d(I') + d(@) + d(A) + d(0);

— the main connectives are the connectives appearing in the formula
¢ which is eliminated by (term-cut), and ¢ is called the term-cut-
formula,

- a derivation is called term-cut-free if its inductive construction involves
no applications of (term-cut).

We need the notion of the normal lambda term. For that reason let
us recall the notion of reduction in the lambda calculus. The axiom of
B—reduction is (Az.M)N — M[N/z]. A term is a normal form if there
are no more S—reductions to be performed, i.e., if it does not contain any
subterm of the form (Az.M)N. It is well known that the general shape of a
normal form is Azy...z5.yNy1... N;, where y may, but need not, be one of
the variables z;, 4 € {1,...,k} and moreover the terms N,, j € {1,...,[}
are normal forms.

First, let us notice that the term in the conclusion of any cut-free deriva-
tion is a normal form.

Lemma 1. If there is a term-cut-free derivation of ' M : o, then M is a
normal form.

Proof. Tiasy by induction on a cut-free derivation of T + M : o. The obvious
cases are when the last rule applied is the (az) and (— R). The case (— L)
also ensures that if the terms N and M from its premisses arc normal forms,
then the term M[yN/z] created in the conclusion by the substitution of y N
for each free occurrence of the variable z in M is a normal form, since yN
is a normal form and this substitution cannot create new reductions. O

Now, we can prove the cut elimination property.

Theorem 4. (Term-cut elimination) FEvery derivation of a stalement
't M : o is associated with a term-cut-free derivation of a corresponding
statement '+ N : o, where N is the normal form of M.

Proof. Tt suffices to prove, as usual, that every application of (term-cut)
whose premisses are term-cut-free may be replaced by one or more (term-
cut) applications of smaller degree, provided that the final term in the re-
placed derivation is obtained from the original term by S—reduction. Then
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by iterating this property and applying Lemma 1 we obtain the term-cut
climination theorem. The uniqueness of the normal form N follows by the
well-known Church-Rosser property.

Proof by induction on the degree of (term-cut). If the rules applied
before the application of (term-cut) do not introduce a main conunective,
then the statement is obvious. '

The interesting case is when the rules applied before (term-cut) introduce
a main connective: (— R) and (— L). The following (term-cut) application

Ayy: o1 B P Fzipab Mo T'Fc Qg

AR XyPior =@y Tozip — o, I'F M[zQ/2]: 0
LA T'E MzQ/z)[My.Plz]: o

of degree d(T',T') + d(¢1 — ¢2) + d(A) + d(o) can be replaced by
AyrorF Py TzipgobE Mo

LA y: o0 B M[P/2): 0
U,A T - M[P/2][@Q)y): o

I'EQ: ¢

two applications of (term-cut) of smaller degree d(I') + d(¢2) + d(A,y :
1)+ d(o) and d(T', A) 4+ d(p1) + d(I') + d(0).

Let us notice that the final term in the original derivation and in its
replacement are not the same. The variable z, in the original derivation, is
fresh for the contexts I and I and, therefore, z is not a free variable of the
terms M and ). According to this

M[zQ/2|[Ay.P[z] = M[(Ay.P)Q/z]

in the original derivation. The variable y in the replaced derivation is not a
free variable of M, but it is free for P. Hence

M{P[=)[(Q/y} = M[P[Q/y]/7]

and the latter is obtained from the original term M[(Ay.P)@Q/z] by parallel
B-reduction, M{(Ay.P)Q/z] - M{P[Q/y]/z]. O

5. Discussion

Pure lambda calculus is a natural deduction system. The calculus A —
is a natural deduction term and a natural deduction type system and it
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completely matches the natural deduction system of intuitionistic logic (for-
mulae-as-types, proofs-as-terms). The calculus LA— is a natural deduction
term and a sequent type system and it partly matches the sequent system
of intuitionistic logic (formulae-as-types). The calculus given in Herbelin
[3] is a sequent term and a sequen® type system and it completely matches
the sequent system of intuitionistic logic. The price that is paid for moving
from the natural deduction character which is immanent for the lambda
term system is in the substitution, which becomes explicit and requires a
huge formal system. We gave a comparison of A—» and LA— since they are
usually used as tools for some proof theoretical studies, such as the relation
between normalization and cut elimination in logic. A comprehensive list of
references on this subject is given in Barendregt and Ghilezan [1].
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