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FIXED POINTS IN TWO METRIC SPACES
Y. J. Cho!, S. M. Kang!, S. S. Kim?

Abstract. We give some fixed point theorems in two complete metric
spaces. Thus we improve and extend some results due to D. Delbesco, B.
Fisher and V. Popa.
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In [4], to give a unified approach for contraction mappings, D. Delbosco con-
sidered the set F of all continuous functions g : [0, +00)3 — [0, +o00) satisfying
the following conditions:

(g'l) g(ls 17 1) =h< 17

(g-2) If u,v € [0,+oc) are such that v < g(v,v,u) or v < g(u,v,v) or
u < g(v,u,v), then u < hv,
and proved the following:

Theorem A. Let (X,d) be a complete metric space. If S and T are two map-
pings from X into itself, satisfying the following conditions:

(A) d(SI¢ Ty) < g(d(:v, y)’ d(l" S'L‘), d(y: Ty))

forall xz,y € X, where g € F, then S and T have a unique common fized point
in X.

Some authors proved many kinds of fixed point theorems for contractive type
mappings and expansive mappings by using Delbosco’s set ([1]-[3], 7], [8], [10]).
On the other hand, in [5] and [6], B. Fisher proved some fixed point theorems
in two complete metric spaces as follows:

Theorem B. Let (X,d) and (Y, e) be complete metric spaces. If T is a mapping
from X into Y and S is a mapping from Y into X, satisfying the following

conditions:
(B) e(Tz,TSy) < c-max{d(z, Sy), e(y, Tx),e(y, TSy)},
(©) d(Sy,STz) < c- max{e(y, Tx),d(z, Sy), e(x, STx)}

for all z,y € X, where 0 < ¢ < 1, then ST have a unique fized point z in X
[ and TS has a unique fired point w in'Y. Further, Tz = w and Sw = z.
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Recently, in [9], V. Popa extended and improved the results of B. Fisher and
Theorem A. In this paper, motivated by Delbosco’s set and V. Popa’s result, we
introduce a new class G of all functions g : [0, +00)® — [0, +00) satisfying some
conditions and prove some fixed point theorems in two complete metric spaces
by using our class. Our results also extend and improve the results of B. Fisher
[5], (6] and V. Popa [9].

Let G be the set of all continuous functions g : [0, +00)% — [0, +00) satisfying
the following conditions:

(g,_l) g(oa 070) = Oa
(g-2) If u,v € [0,+c0) be such that u? < g(uw,0,0) or «? < g(0, uv,0) or
u? < ¢g(0,0,uv), then u < cv for some 0 < ¢ < 1.

"Example 1. (1) If we define a function g : [0, +00)3 — [0, +00) by

g(u,v,w) = ¢ max{u,v, w}

for all u, v, w € [0, +00), where 0 < ¢ < 1, then g € G.
(2) If we define a function g : [0, +00)* — [0, +-00) by

g(u, v, w) = ¢ - max{uv, ww, vw}

for all u,v, w € [0,+00), where 0 < ¢ < 1, then g € G.
(3) If we define a function g : [0, +00)® — [0, +00) by

- g(u,v,w) = auv + buw + cvw

for all u, v, w € [0, 4+00), where a,b, c € |0, +00), then g € G.
(4) If we define a functions g : [0, +o0)3 — [0, +00) by

g(u, v, w) = (au® + bv* + cwk){"

for all u, v, w € [0, +00), where k >1,0<a,bc <1, then g € G.

Now, we give our theorems as follows:

Theorem 1. Let (X,d) and (Y,e) be two complete metric spaces. If T is a
mapping from X into Y and S is a mapping from Y into X satisfying the
following conditions:

(D) e?(Tz, TSy) < g(d(x, Sy)e(y, Txx),d(z, Sy)e(y, T'Sy),
ey, T=)e(y, TSy)),

()  d2(Sy,STa)< gle(y, Tr)d(z, Sv), e(y, Ta)d(z, ST),
d(z, Sy)d(z, STx))

forallz € X andy € Y, where g € G, then ST has a unique fized point z € X
and TS has a unique fired point w € Y. Further, Tz = w and Sw = =.
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Proof. Let zp be an arbitrary point in X. Define two sequences {z,,} and {y,}
in X and Y, respectively, as follows:

Tn = (ST)"%, Yn = T(ST)H—I:CU
for n =1,2,---. By (D), we have

d*(zn, Tnt1) = d2((ST) w0, (ST)™* ' 20)
= d2(S(T(ST)" o), (ST)(ST)™x0)
= d?(Syn,STx,)
( (JnyTl‘n) ("mSyn) (’( naTIn) (711 STyn)
d(Tna Syn)d(a Py ST:Ln))
Zg(e(yn7y11+l) (aT“ n) ( na.’/n-}-l) (711, n+l)
d(mm :’J'n)d(mna mn-{—l))
= 9(01 e(yny yn-{—l)d(zn, In-}-l): 0)

Thus, by (g’-1), we have

(F) d(-”:nsxn-f-l) < Ce(ynyyn-f-l)
for some 0 < ¢; < 1. Similarly, by (D),

€ (Un, Yn+1) = (T(ST)" "o, T(ST)"zo)

= eX(T(ST)" '9), TS(T(ST)"™ o))

= 62(T1:n—1aTSyn)

< 9(d(@n, Syn)e(¥n, TTn—1), &(Tn-1, Syn)e(yn, TSYn),
d(yny Tmn—l)e(yny Tsyn))

= g(d(ﬂ:n—ly xn)e(yn; yn)y d(xn—l » xn)e(yn, yn+1):
d(yny yn)e(yn7 yn+l))

- 9(0, d(xn—la 11711)6(11117 yn+l)7 O)

. Thus, by (g'-2), we have

(G) e(yn; 'yn-{—l) < Czd(-’vn_l, :l,‘n)

for some 0 < ¢ < 1. Therefore, by (F) and (G),

d(xnyzn—i-l) < cle(yn,yn—}-l)
< creod(Tn_1,2n)
< e

< (e1¢2)™d(x0, 1),

which implies that {z,} is a Cauchy sequence in (X,d) since 0 < ¢jcp < 1
and so, since (X, d) is complete, it converges to a point z in X. Similarly, the
sequence {y,} is also a Cauchy sequence in (¥,e) with the limit w. By (D)
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again, we have

e2(Tz,yns1) = €2(Tz,TSy,)
< g(d(2, Syn)e(yn, Tz),d(2, Syn)e(yn, TSy»),
(H) e(yn,TZ)e(ymTSyn))
= g(d(z, xn)e(yny Tz)7 d(27 l'n)e(yn., yn+l):
€(ym Tl)e(yn, yn+l))'

Letting n — oo in (H), by (g’-1), it follows that
e2(Tz,w) < ¢(0,0,0) =0
and so, e(Tz,w) =0, i.e., Tz = w. On the other hand, by (E) we have

d(Sw, Tny1) = d?(Sw, (ST)" xg)
= d%(Sw, STz,)
1) < gle(w, Tx,)d(z,,, Sw), e{w, Tx,)d(2,, STx,),
d(z,,, Sw)d(z,, STx,))
= gle(w, Yn+1)d(Tn, Sw), e(W, Yn+1)d(Tn, Tnt1)-
d(zp, SwW)d(Ty, Tnt1))-

Letting n — oo in (I), by (g’-1), we have
d*(Sw, z) < ¢(0,0,0) =0

and so, d(Sw,z) = 0, i.e., Sw = 2. Therefore, we have STz = Sw = z and
TSw = Tz = w, which means that the point z is a fixed point of ST and the
point w is a fixed point of T'S.

To prove the uniqueness of the fixed point z, let z’ be the second fixed point
of ST. By (D}, we have

d*(z,2') —dQ(STz STz)
< g(e(T7,Tz)d(z,ST="},
e(T2',Tz)d(z, STz) d(z,STZ")d(z,5Tz))
g(e (TZ T2)d(z,£),0,0),

which, by (g'-2), implies that
(J) d(Z',2) < c3e(T7,Tz)
for some 0 < ¢3 < 1. Similarly, by (D), we have
e*(Tz,T2") =e*(T7,TSTz)
< g(d(2/,STz)e(Tz,Tz2'),d(z',STz)e(Tz,TSTz),

e(Tz,T2)e(Tz,TST?z))
= g(d(zl, z)e(Tz,Tz'), 0, 0)
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Thus, by (g'-2), it follows that
(K) e(Tz,T2') < cud(2, 2)
for some 0 < ¢4 < 1. Therefore, by (J} and (K),

d(z,2') < cze(Tz,T2') < czeqd(z, 2'),

which implies that d(z,2’) = 0, i.e.,, z = 2/, since 0 < c3cy < 1 and so the
uniqueness of the fixed point z of ST follows. Similarly, the point w is also a
unique fixed point of T'S. On the other hand, if there exists a positive integer n
such that d(,, n4+1) = 0 or €(yn, Yn+1) = 0, then the theorem is evident, This
completes the proof. ' a

As immediate consequences of Theorem 1, we have the following:

Corollary 2. [9] Let (X,d) and (Y, e) be two complete metric spaces. If T is
a mapping from X into Y and S is a mapping from Y into X satisfying the
following conditions:

(L) e?(Tz,TSy) < ¢y max{d(x,Sy)e(y, Tx),d(z, Sy)e(y, TSy),
e(y, Tx)e(y, TSy)},

(M) d?(Sy,STz) < co-max{e(y, Tx)d(x,Sy), e(y, Tx)d(z, STx),
d(z, Sy)d(z, STz)}

forallr € X andy € Y, where0 < ¢1, cg < 1, then ST has a unique fired point
in X and TS has a unique fized point w in' Y. Further, Tz = w and Sw = z.

Proof. Define a function g : [0, +00)® — [0, +00) by
g(u, v, w) = ¢ - max{uv, uw, vw}

for all u,v,w € [0,+00), where 0 < ¢ < 1. Then, from Example 1 (2) follows
that g € G and, by Theorem 1, the corollary follows. ]

Corollary 3. Let (X,d) and (Y,e) be two complete metric spaces. If T is a
mapping from X into Y and S is a mapping from Y into X satisfying the
following conditions:

(N) e2(Tz,TSy) < ayd(z,Sy)e(y,Tx) + brd(x, Sy)e(y, T Sx)
+Cle(y1Tx)e(vaSy)a
(0) d*(Sy,8Tz) < age(y,Tz)d(z,Sy) + bad(z, STx)e(y, Tx)

+e3d(x, Sy)d(z, STx)

for allz € X and y € Y, where a1,a2,b1,ba,¢1,02 € [0, +00) with (a1 + b1 +
c1)(ag + by + c2) < 1, then ST has a unique fized point z in X and T'S has a
unique fired point w in Y. Further, Tz = w and Sw = 2.
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Proof. Define a function g : [0, +00)3 — [0, +00) by
g(u, v, w) = auv + buw + cvw

for all u,v,w € [0, +00), where a,b,c € [0,+00). Then, from Example 1 (3),
follows that ¢ € G and, by Theorem 1, the corollary follows. O

Corollary 4. Let (X,d) and (Y, €) be two complete metric spaces. If T is a
mapping from X into Y and S is a mapping from Y into X satisfying the
following conditions:

(P) e2(Tz, TSy) < a1d?*(z, Sy) + bie*(y, Tx) + c1e*(y, T Sy),
(Q) d*(Sy,STz) < aze’(y,Tx) + bod?(x, Sy) + cod?(x, STx)

for all z € X and y € Y, where 0 < ay1,a9,b1,b,¢1,¢0 < 1, then ST has a
unigue fized point z in X and TS has a unigue fixzed point w in'Y. Further,
Tz=w and Sw = z.

Proof. Define a function g : [0, +00)3 — [0, +00) by
g(u, v, w) = au? + bw? + cw?

for all u, v, w € [0, +00), where 0 < a,b,¢ < 1. Then g € G and, by Theorem 1,
the corollary follows. 0

If (X,d) and (Y, €) are the same metric spaces, then by Theorem 1, we have
the following:

Theorem 5. Let (X,d) be a complete metric space. If S and T are mappings
from X into itself satisfying the following conditions:

(R) d*(Tz,TSy) < g(d(z, Sy)d(y, Tx),d(x, Sy)d(y,TSy).
' d(y, Tz)d(y, T'Sy)), _
(S) d?(Sy,STz) < g(d(y, Tz)d(x, Sy),d(y, Tz)d(y, STx),
d(z, Sy)d(xz, STx))

for all z,y € X, where g € G, then ST has a unique fized point z in X and TS
has a unique fired point w in X. Further, Tz = w and Sw = z and. if z = w,
then z is the unique common fized point of S and T.

Corollary 6. Let (X,d) be a complete metric space. If S and T are mappings
from X into itself satisfying the following conditions:

(T) d*(Tz,TSy) < e - max{d(z, Sy)d(y, T),d(x, Sy)d(y. TSy),
d(y, Tx)d(y, TSy)},

(U) d*(Sy,STz) < c - max{d(y, Tz)d(x, Sy), d(y, Tx)d(y. STx),
d(z, Sy)d(z, STz)}

for all z,y € X, where 0 < c1,co < 1, then ST has a unique fired point z in X
and TS has a unique fired point w in X. Further, Tz = w and Sw = 2 and, 1f
z = w, then z is the unique common fired point of S and T'.
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