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Abstract

In this work we use the interpolation theory to prove some con-
vergence rate estimates for finite differences schemes. We consider
the Dirichlet boundary value problem for a second order linear elliptic
equation with variable coefficients in the unite square. We assume that
the solution of the problem and the coefficients of equation belong to
the corresponding Sobolev spaces.
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1. Introduction

For a class of finite difference schemes (FDS) for elliptic boundary value
problems (BVP), the estimates of the convergence rates consistent with the
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smoothness of data, are of the major interest, i.e.
-k
(1) v = vllwi) < CR T lullwg@)y, sk

Here u = u(z) denotes the solution of the BVP, v denotes the solution of
the corresponding FDS, h is discretisation parameter, W}(w) denotes the
discrete Sobolev space, and C' is a positive generic constant, independent of
h and u.

Standard technique for derivation of such estimates (see [8],[9],[12]) is
based on the Bramble-Hilbert lemma [2]. In this paper we present an al-
ternative technique, based on the theory of interpolation of Banach spaces.
Estimate (1) for a similar problem was derived in [7], by the same technique,
fork=1,2 and k <s<k+2.

2. Interpolation of Banach Spaces H;, B; and W;

Let Ag and A; be two Banach spaces, linearly and continuosly embedded in
a topological linear space A. Two such spaces are called interpolation pair
{Ag, A1}. Consider also spaces AgN A; and Ag+ A; with the corresponding
norms (see [2],{13]).

Let us consider the so-called complex interpolation method [13]. We can
define the following sets of complex numbers: § = {2 € C : 0 < R(2) < 1}
and § = {z € C: 0 < R(z) < 1}. For the given interpolation pair {Ap, A1}
we introduce the set M(Ag, A1) of continuous functions f : § — Ao + A,
analytic in .S, which satisfy the following conditions:

(6) sup [[f(2)| 40+4, < 00,

zES
(30) f(G+it)e A;, 7=0,1, te R,

(i#1) the mappings t — f(j + i), 7 = 0, 1, are continuous on ¢, and

(i) 1fllm(o,41) = maX{Sup £ ()l ao,sup (I F(1 + it)llAl} < 0.
tER tER

For 0 < 6 < 1 with {Ao, A1]s we denote the set of elements a € Ag + A4
which satisfy the conditions:

(7) there exists a function f € M(Ag, A1) such that f(8) = a, and

(%) |lallia0, 4100 = 1 Fll m(a0,41) < 00

inf
JEM(Ap,A1), F(8)=a
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Defined that way, the space [Ag, 4,]s is an interpolation space.

The following assertion holds for bilinear operators [13]:

Lemma 1. Let 49 C Ay, Bo C By, Co CCy andlet L : Ay x By — (4
be a continuous bilinear form whose restriction on Ag x By is a continuous
mapping with values in Cy. Then L is a continuous mapping from [Ag, A1]gx
[Bo, B1]o into [Co,C1)e, and

a
“L”[A01A1]BX[BOvBl]B_"[COI “LHA()XB()—PCOH ”A1 xB1—Cy*

As an example of interpolation function spaces let us consider the spaces
of the Bessel potentials H, the Besov spaces Bp,, and the Sobolev spaces
W (see [1], [2] and [13]). The spaces H, and B, are spaces of distributions.
For 1 < p < oo the Sobolev spaces W are deﬁned in the following manner:

| H:(R™), s=0,1,2,..
s ny _ P ’ y Ly &y
(2) Wy (R") = { B;,(R"), 0 < s# integer

with the norm defined as

1/p
I fllwg = (Zlfl + | fl ) ;

k<s
where
ifp
(I‘ll Rf lD"f(x)l”dz) ; r=0,1,2,..
flw =y " 1o
D f(z)—D* » .

(| [;[ ]Rj; Rj; | |rj—r(ylz‘+7>(rjl(rzll))| d:cdy) »  0<r #integer.

Here @ = (,...,ay) is amulti-index, |¢| = a1 +. . +a,, 2 = (21,...,2,) €

R*, |z| = (z1+ ...+ 2,)/2, D* = D$* ... D3 = (8/8z1)* ...(8)0z,)*"
and [r] is the integer part of r. Obviously, W3(R") C Ly(R"), s > 0.

For —co < s <00, 1 <p<oo,e>0and 1 < ¢y < ¢ < oo the following
embeddings hold [13]:

Byte(R™) C By, (R™) C By, (R") C B}

fa'i}

(RB") C Bpoo(R") C By *(E"),

Po

HS*(R™) C H3(R") and
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(3) B rmin(p.2}(R") C Hy(R*) C By a2y (B")-
For —-c <t<s<o0,l<p<g<oo,1<r<ooand s—n/p>t—n/qg
we also have

B:.(R™) C BL,(R") and HZ(R™)C HL(R™).
The following assertion holds [13]:

Lemma 2. For —oo < sg,8; < 00, 1 < pg,p1 <00, 1 <gg<o00,1 < <
oo and 0 < 8 < 1 we have

(4) [Hso(Rn Hsl(Rn)] — H;(Rn) and
(5) [ Biaes (B"), Bilqy (RM)], = Biy(R™),
where
1 1-6 0 1 1—-6 8
5:(1—0)30+51, - = + —, -= —
p Po n q qo Ul

From (4), (5) and (2), for sq, s1 > 0, follows
(6) [W;O(R”),W;I(R”)]o = WS(R™), s=(1-8)so+s1,

if 59, s; and s are all integer, or fractional numbers. For p = 2 from (3)
follows W$(R™) = H3(R™) = B3,(R") and (6) holds without restriction.

The previous results hold for the spaces H;, B,, and W, in a bounded
domain © C R™ which satisfies the cone condition. Here we assume that
s > 0 for H, spaces, and s > 0 for B}, spaces.

3. Boundary Value Problem and its Approximation

Our initial problem will be the Dirichlet BVP for a second-order linear
elliptic equation with variable coefficients in the unit square Q = (0,1)%

(M - ij_l Di(a;jDju)+au=f in &,  w=0 on I'=9Q.

We assume that the generalized solution of the BVP belongs to the Sobolev
space W3(Q), 1 < s < 4, with the right-hand side f(z) belonging to
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W2~2(Q). Consequently, the coefficients of equation (7) must belong to
the corresponding spaces of multipliers [10]

aij € M(W37(Q)), a € M(WE(Q) - Wi3(Q)),
i.e., the sufficient conditions are

ai; € Wi™H(Q), ae Wi %(Q) for 2 < s <4,
ai; € WiT1H(Q), a=ao+ %, Dia; for 1<s<2.
where ap € Layc(Q), a; € W= (Q) and 6 > 0, > 0, p > 2/(s — 1)
We also assume that the corresponding differential operator is strongly
elliptic, i.e. ’
2 2
a;j = aj;, Zi 1 a;;%:Y; = Co Zi=1 y,-z, z €8, c¢op=const>0

and a(z) > 0 in the sense of distributions.

Let @ be the uniform mesh in Q with the step size h, w = @ N Q and
v =wNTI. We define the finite differences v, and vz in the usual manner
[11]): o .
Vg, = (U-H. —v)/h, vz, = (v—v7')/h,

where v*(z) = v(x £ hr;), and 7; is the unit vector on the z; axis.

We approximate BVP with the following FDS:
(8) Lyv=T2TZf in w, v=0 on 7,

where 1 ,
Lhw= -3 [(@v5,)e + (aij05,)z] + (T7T3a)u

and T; is the Steklov smoothing operator on z;, i.e.
1
T f(z) = / f(z + htri) dt = T f(z + hrs) = Tof (e + 0.5h7).
0

Hence, T;T; f = T;T: f and T Dyu = ug,, T Diu = ug;.

The finite-difference scheme (8) is the standard symmetric FDS [11] with
averaged right-hand side and lowest-order coefficient. Note that for s < 3,
a(z) and f(z) may be non-continuous, and consequently, the FDS with non-
averaged data would not be well defined.
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4. Convergence of Finite Difference Scheme

Let u be the solution of BVP (1) and v — the solution of FDS (8). The error
z = u — v satisfies the conditions

2
(9) Lpz = Z Yijz +% in w, z=0 on v,
1,7=1
where
vy = T T2 (a;jDju) ~ (azjuxj) + a+zu+z) . and
¥ = (T{Tia)u - T{T} (au).

Let (v, w)y = (v, W)L, (w) = h* 2 pew v(#)w(2) and ||o||2 = (v, )., denote
the discrete inner product and the discrete Ls-norm on w. We also define
the discrete Sobolev norms

oli3s = 23 ol 1013200 = ||v||w1(w)+z [T
i=1

where w; and wyy are the subsets of @ where the corresponding finite differ-
ences are well defined.

The following assertion holds {5]:

Lemma 3. FDS (8) satisfy a priori estimates
(10) lellwp ) < C =1 Iijllus + 19l and
(11) lzllwz(w) < € T jmt 1iszllo + 19 llo-

Note that (see [7]), we may obtain the following estimates:

(12) Z %15zl < Ch? ma.x “am”Ws 1(Q) flullwe@), 3<s<4,
,7=1

2
(13) 7 l19ijz /e < Ch*™ Zmaxllawllws ve-o) g lullws (), 2< 8 <3,
i,j=1

(14)2 ijllws < CR* ma)tllaull -1t gy lullwya), 2 <8 <3,
,7=1

(15) Z iilles < CRO2 max [laijllys-+e oy lullwg@)y, 1<s<2.
4y=1
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In such a way, the problem of deriving the convergence rate estimates
for FDS (8) is now reduced to estimating the term ||3||,. Let us represent
% in the following manner [8]: for 1 < s < 2 we set ¥ = 9o + 1 + ¢, where

Yo = (TET2a0)u — TETZ(apu) and
VY = (TET2D;a)u — TETE(uDia;), i=1,2;

and for 2 < s < 3 we set ¢ = 95 + b4, where

Y3 = (TET2a)(u — TETEu) and
s = (T{TFa)(T{TFu) — T{ T (au).

The value 19 at the node 2 € w can be represented in the form (note
that u € Wy +t*(Q) and ap € L24.(R)):

(16) o= 512‘ // D(&1,&2)ao(&r, E2)u(zr, z2) — u(€r, &2, )] déadEy

where e = (zy — h,z1 + h) X (22 — h,z2 + h) and

®(&1,62) = (1 - ’61—;$1~I> (1 _ |i2_‘};_$2_|> .

Now, from (16) follows:

C C
o] < EHGOHL'z(e)”u”Lw(e) < E||‘10||Lz(e)“u||Lw(Q)-
From here, summing over the mesh w we obtain for ¢ >0 and oo > 0
(17)  ollw < C llaollz,@)llullzoo (@) < CllaoliLoyc@llullpi+egy-

Transforming u(zq, z2) — u(1, &) in (16) to integral form

T 2
u(z1,22) — w(€1,62) = /; Dyu(m, &) dr + /; Dou(zq, 1) dry
1

2

we obtain g = g1 + o2 where:
o1 = 517 ff le(fl, 52)00(51,52)D1U(T1,€2) drd6id6;  and

Yoz = 75 [/ rfz‘p(&, €2)ao(€1, &2)Dau(xy, T2) dTadb1dEs

¢ &



102 B.Jovanovié,B. Popovi¢

Finally, applying Holder’s inequality, traces theorems [1], and using embed-
. 1+(p~2)/2 .

dings W2 C Wzlp/(p_z) and W2 C sz/(’;_z)) ¥ we obtain

(18) I%olle < Chllaollz,, @) llullwz@)y, €>p =2, p>2.

The mapping (aq,u) — %o is bilinear. From (17) and (18) follows that
is a bounded bilinear operator from Ly4.(©2) x W, 1*(Q) to Ly(w) and from
Loy () x W2(Q) to La(w). Applying Lemma 1, from (17) and (18) it
follows that g is a bounded bilinear operator from [La4.(£2), La4+(2)], %
[WZH'O‘(Q),W%(Q)]H to La(w), with the norm M < C - h%. According to

Lemma 2, (6) and setting § = s — 1, we obtain

(19) 1Yol < Chs—l||ao||L2+E(Q)||U||W2s+a(2—e)(9), 1<s<2

Analogous estimates like (19) hold true for other terms and so we have
(20) ll'wz“w < Chs.—l“ai“W,;“—1+a(2—8)+5(ﬂ)Ilullwg*‘a("’—s)(g)’ I<s<2
@) 9l < Ch ol srtomn g ez, 2< 5 <5

Combining (14), (15) and (17)-(19) we have just proved:

Theorem 1. The FDS (8) converges in the norm of the space W}(w) and
following estimate, consistent with the smoothness of data, holds true

e —vllwy) < Chs_l(mgx||az'j||W2s—1+=(a—s)(Q) +llallys—2+eo- g Mullw (@),
for2 <s5<3, and
||u — U|IW21(w) < Chsul(IHZ_?JX”aij“W;—He(Q) + mZa-X ||ai”W;—1+a(2—s)+6(Q)

+ llaollzoy @)l stac-o gy, for 1<s<2.

Using inequality (see [5]) lzlwzw) < V6/h - |z|W21(w) and embeddings
W2(Q) c W3(Q) and W2(Q) C Wi(Q) we can easily prove

Theorem 2. The FDS (8) converges in the norm of the space W2(w) and
the following estimate, consistent with the smoothness of data, holds true

lle — vllwz) < Chs—Z(mgXllaij||wg-l(n) + llellws -2 llullws@),
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for 3 < s <4, and

lw—vllwz(w) < Chs_z(mi?x||aijl|W;—1+e<a—s)(Q)+IlaHW;—m(s—s)(m)HHHW;(Q)a

for2<s<3.
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