ON THE CONVERGENCE OG HALLEY-LIKE METHOD

Snažana Ilić

Philosophical Faculty, University of Niš Ćirila i Metodija 2, 18000 Niš, Yugoslavia

Djordje Herceg

Institute of Mathematics, University of Novi Sad Trg Dositeja Obradovića 4, 21000 Novi Sad, Yugoslavia

Miodrag Petković

Faculty of Electronic Engineering, University of Niš Beogradska 14, 18000 Niš, Yugoslavia

Abstract

The theory of point estimation treating the initial conditions for the safe convergence of Halley-like method for the simultaneous determination of polynomial zeros is considered. Applying a general approach which makes use of corrections, the convergence conditions for this method are stated. These conditions are computationally verifiable: they depend only on the coefficients of a polynomial and initial approximations to the zeros.

AMS Mathematics Subject Classification (1991): 65H05. Key words and phrases: Halley-like method, point estimation, zeros of polynomials, safe convergence.

1. Introduction

The construction of initial conditions which provide a safe convergence of the considered numerical algorithm is one of the most important problems in solving algebraic equations. These conditions should be stated in such a way that they depend only on attainable data, for example, on the coefficients of a given polynomial and initial approximations $\mathbf{z}^{(0)}$. Theory of point estimation, which deals with the mentioned problems, introduces approximate zeros as initial points which provide a safe convergence of the considered iterative methods for the simultaneous approximations of all polynomial zeros. A number of results on this subject has been presented in [2]–[6], [7], [8]–[10].

In this paper we consider the monic algebraic polynomials of the form

$$P(z) = z^{n} + a_{n-1}z^{n-1} + \dots + a_{1}z + a_{0} \quad (a_{i} \in \mathcal{C})$$

which have only simple zeros. Most of iterative methods for the simultaneous approximation of simple zeros of a polynomial can be expressed in the form

(1)
$$z_i^{(m+1)} = z_i^{(m)} - C_i(z_1^{(m)}, \dots, z_n^{(m)}) \quad (i \in I_n; \ m = 0, 1, \dots),$$

where $I_n = \{1, ..., n\}$ is the index set and $z_1^{(m)}, ..., z_n^{(m)}$ are some distinct approximations to simple zeros $\zeta_1, ..., \zeta_n$ respectively, obtained in the mth iterative step. The term

$$C_i^{(m)} = C_i(z_1^{(m)}, \dots, z_n^{(m)})$$

is called the *iterative correction*. For simplicity, we will sometimes omit the iteration index m and denote the quantities in the latter (m+1)-st iteration by an additional symbol $\hat{ }$ ("hat").

Let us introduce the real function g by

$$g(\gamma) = \frac{1 + \gamma - \gamma^2}{1 - \gamma}, \ \gamma \in (0, 1).$$

The following convergence theorem is proved in [4]:

Theorem 1. Let C_i be the iterative correction term of the form $C_i(z) = P(z)/F(z)$ with $F(z) \neq 0$ for $z = \zeta_i$ and $z = z_i^{(m)}$ $(i \in I_n; m = 0, 1, ...)$. If for each $i, j \in I_n$ and m = 0, 1, ... the following inequalities

(i)
$$|C_i^{(m+1)}| < \gamma |C_i^{(m)}| \ (\gamma < 1),$$

$$(ii) |z_i^{(0)} - z_i^{(0)}| > g(\gamma)(|C_i^{(0)}| + |C_i^{(0)}|) (i \neq j),$$

are satisfied under some initial conditions, then the iterative process (1) is convergent.

Let us note that the class of iterative methods considered in Theorem 1 is rather wide, and most frequently includes the methods used for finding polynomial zeros, simultaneously.

The initial conditions in the case of polynomials should be a function of the polynomial coefficients $\mathbf{a}=(a_0,\ldots,a_{n-1})$, its degree n and initial approximations $z_1^{(0)},\ldots,z_n^{(0)}$ to the zeros ζ_1,\ldots,ζ_n of P. For $m=0,1,\ldots$ let

$$d^{(m)} = \min_{\substack{i,j \in I_n \\ i \neq i}} |z_i^{(m)} - z_j^{(m)}|$$

be the minimal distance between approximations obtained in the mth iteration, and let

$$W_i^{(m)} = \frac{P(z_i^{(m)})}{\prod\limits_{\substack{j=1\\j\neq i}}^{n} (z_i^{(m)} - z_j^{(m)})}, \quad w^{(m)} = \max_{1 \le j \le n} |W_j^{(m)}|.$$

As in the papers [2]–[5], [7], [8], [10], we will restrict initial conditions to the form of the inequality

$$(2) w^{(0)} < c(n)d^{(0)},$$

where c(n) is a quantity which depends only on the polynomial degree n. The motivation and discussion about initial conditions of the form (2) have been given in [5]. Throughout this paper we will always assume that the polynomial degree n is ≥ 3 .

2. Halley-like method

Let us introduce the denotations

$$G_{k,i} = \sum_{i \neq i} \frac{W_j}{(z_i - z_j)^k} \ (k = 1, 2), \quad t_i = \frac{W_i G_{2,i}}{(1 + G_{1,i})^2}, \quad q = \frac{n - 1}{4n^2}.$$

Ellis and Watson have proposed in [1] the following iterative method for the simultaneous determination of all simple zeros of a polynomial P:

(3)
$$\hat{z}_i = z_i - \frac{W_i}{(1 + G_{1,i})(1 + t_i)} \quad (i \in I_n).$$

This formula can also be derived by applying the well known Halley method to the function

$$h_i(z) = W_i + (z - z_i) \Big(1 + \sum_{j \neq i} \frac{W_j}{z - z_j} \Big) \Big(= \frac{P(z)}{\prod_{j \neq i} (z - z_j)} \Big).$$

For this reason, the iterative method (3) is referred to as *Halley-like method*. Let us note that the iterative formula (3) is a special case of a one-parameter family of simultaneous methods

(4)
$$\hat{z}_i = z_i - \frac{(\alpha+1)W_i}{(1+G_{1,i})(\alpha+\sqrt{1+2(\alpha+1)t_i})} \quad (i \in I_n),$$

which is obtained for $\alpha = -1$ (applying a limiting operation) (see [6]). It has been proved in [6] that the order of convergence of the family of iterative method (4) is four.

3. Some necessary lemmas

In what follows we apply Theorem 1 and an initial condition of the form (2) to state the convergence theorem for the Halley-like simultaneous method (3). Before establishing the main results, we give two necessary lemmas.

Lemma 1. Let z_1, \ldots, z_n be distinct approximations to the zeros ζ_1, \ldots, ζ_n of a polynomial P of the degree n, and let $\hat{z}_1, \ldots, \hat{z}_n$ be the new respective approximations obtained by the iterative method (3). If the inequality

$$(5) w = \max_{1 \le i \le n} |W_i| < \frac{d}{3n}$$

holds, then for $i, j \in I_n$ we have

$$(i)$$
 $\frac{4}{3} > |1 + G_{1,i}| > \frac{2}{3};$

(ii)
$$|G_{2,i}| \leq \frac{(n-1)w}{d^2};$$

(iii)
$$|t_i| < q \le \frac{1}{18};$$

$$(iv)$$
 $|\hat{z}_i - z_i| = |C_i| < \frac{8}{5}|W_i| < \frac{8d}{15n}.$

Proof. According to the definition of the minimal distance d and the inequality (5), we have

$$\sum_{j \neq i} rac{|W_j|}{|z_i - z_j|} \leq rac{(n-1)w}{d}$$
 where a is the property of a and a

so that we estimate

$$\begin{aligned} |1+G_{1,i}| &\geq 1 - \sum_{j \neq i} \frac{|W_i|}{|z_i - z_j|} \geq 1 - \frac{(n-1)w}{d} > 1 - \frac{1}{3} = \frac{2}{3}, \\ |1+G_{1,i}| &\leq 1 + \sum_{j \neq i} \frac{|W_i|}{|z_i - z_j|} \leq 1 + \frac{(n-1)w}{d} < 1 + \frac{1}{3} = \frac{4}{3}, \\ |G_{2,i}| &\leq \sum_{j \neq i} \frac{|W_i|}{|z_i - z_j|^2} \leq \frac{(n-1)w}{d^2}. \end{aligned}$$

Thus, the assertions (i) and (ii) of Lemma 1 are proved.

Using (i), (ii) and (5) we prove (iii):

$$|t_i| = \left| \frac{W_i G_{2,i}}{(1 + G_{1,i})^2} \right| < \left(\frac{3}{2} \right)^2 \frac{(n-1)w^2}{d^2} < \frac{n-1}{4n^2} = q \le \frac{1}{18}.$$

From (3) we have

$$\begin{aligned} |\hat{z}_{i} - z_{i}| &= |C_{i}| = \left| \frac{W_{i}}{(1 + G_{1,i})(1 + t_{i})} \right| \leq \left| \frac{W_{i}}{1 + G_{1,i}} \right| \frac{1}{1 - |t_{i}|} \\ &< \frac{|W_{i}|}{\frac{2}{3}} \cdot \frac{1}{1 - \frac{1}{18}} < \frac{8}{5} |W_{i}| < \frac{8d}{15n}, \end{aligned}$$

which proves (iv) of Lemma 1.

Lemma 2. Under the conditions of Lemma 1 the following inequalities are valid:

$$(i) |\widehat{W}_i| < \frac{2}{9}|W_i|;$$

$$(ii) \,\, \hat{w} < \frac{\hat{d}}{3n}.$$

Proof. Using Lagrangean interpolation, as in [5] we derive the following relation:

$$(\widehat{\mathbf{6V}}_i = \frac{P(\hat{z}_i)}{\prod\limits_{j \neq i} (\hat{z}_i - \hat{z}_j)} = (\hat{z}_i - z_i) \Big(\frac{W_i}{\hat{z}_i - z_i} + 1 + \sum_{j \neq i} \frac{W_j}{\hat{z}_i - z_j} \Big) \prod_{j \neq i} \Big(1 + \frac{\hat{z}_j - z_j}{\hat{z}_i - \hat{z}_j} \Big).$$

By applying (iv) of Lemma 1, we have

$$\begin{array}{lll} (7_{ji}^* - z_j| & \geq & |z_i - z_j| - |\hat{z}_i - z_i| > d - \frac{8d}{15n} = \frac{15n - 8}{15n} d, \\ (\$_{ji}^* - \hat{z}_j| & \geq & |z_i - z_j| - |\hat{z}_i - z_i| - |\hat{z}_j - z_j| > d - \frac{16d}{15n} = \frac{15n - 16}{15n} d. \end{array}$$

From the last inequality, and taking into account the definition of the minimal distance we find

(9)
$$\hat{d} > \frac{15n - 16}{15n}d \quad \text{or} \quad d < \frac{15n}{15n - 16}\hat{d}.$$

From (3) we obtain

$$\frac{W_i}{\hat{z}_i - z_i} = -1 - G_{1,i} - t_i (1 + G_{1,i}) = -1 - \sum_{i \neq i} \frac{W_j}{z_i - z_j} - \frac{W_i G_{2,i}}{1 + G_{1,i}},$$

so that

$$\frac{W_i}{\hat{z}_i - z_i} + 1 + \sum_{j \neq i} \frac{W_j}{\hat{z}_i - z_j} = -(\hat{z}_i - z_i) \sum_{j \neq i} \frac{W_j}{(z_i - z_j)(\hat{z}_i - z_j)} - \frac{W_i G_{2,i}}{1 + G_{1,i}}.$$

Hence

$$(10)\frac{W_i}{\hat{z}_i - z_i} + 1 + \sum_{j \neq i} \frac{W_j}{\hat{z}_i - z_j} \Big| \le |\hat{z}_i - z_i| \sum_{j \neq i} \frac{|W_j|}{|z_i - z_j||\hat{z}_i - z_j|} + \Big| \frac{W_i G_{2,i}}{1 + G_{1,i}} \Big|.$$

Using the above estimates (7) and (8) for $|\hat{z}_i - z_j|$ and $|\hat{z}_i - \hat{z}_j|$, and the inequalities (5) and (iv) of Lemma 1, we estimate

$$\left| (\hat{z}_i - z_i) \sum_{j \neq i} \frac{W_j}{(z_i - z_j)(\hat{z}_i - z_j)} \right| \leq \left| \hat{z}_i - z_i \right| \sum_{j \neq i} \frac{|W_j|}{|z_i - z_j||\hat{z}_i - z_j|} \\
< \frac{8(n-1)}{3n(15n-8)}.$$

According to (i)-(ii) of Lemma 1 and (5) we obtain

(12)
$$\left| \frac{W_i G_{2,i}}{1 + G_{1,i}} \right| < \frac{n-1}{6n^2}.$$

From (10) we get by (11) and (12)

(13)
$$\left| \frac{W_i}{\hat{z}_i - z_i} + 1 + \sum_{j \neq i} \frac{W_j}{\hat{z}_i - z_j} \right| < \frac{8(n-1)}{3n(15n-8)} + \frac{n-1}{6n^2}$$

and

$$\left| \prod_{j \neq i} \left(1 + \frac{\hat{z}_j - z_j}{\hat{z}_i - \hat{z}_j} \right) \right| \leq \prod_{j \neq i} \left(1 + \frac{|\hat{z}_j - z_j|}{|\hat{z}_i - \hat{z}_j|} \right) < \left(1 + \frac{\frac{8d}{15n}}{\frac{(15n - 16)d}{15n}} \right)^{n - 1}$$

$$= \left(1 + \frac{8}{15n - 1} \right)^{n - 1}.$$

Using (iv) of Lemma 1, (13) and (14), from (6) we obtain

$$\begin{aligned} |\widehat{W}_{i}| &\leq |\widehat{z}_{i} - z_{i}| \left| \frac{W_{i}}{\widehat{z}_{i} - z_{i}} + 1 + \sum_{j \neq i} \frac{W_{j}}{\widehat{z}_{i} - z_{j}} \right| \left| \prod_{j \neq i} \left(1 + \frac{\widehat{z}_{j} - z_{j}}{\widehat{z}_{i} - \widehat{z}_{j}} \right) \right| \\ &< \frac{8}{5} |W_{i}| \left[\frac{8(n-1)}{3n(15n-8)} + \frac{n-1}{6n^{2}} \right] \left(1 + \frac{8}{15n-16} \right)^{n-1}, \end{aligned}$$

that is, (15)

$$|\widehat{W}_i| < f(n)|W_i|,$$

where

$$f(n) = \frac{8}{5} \left[\frac{8(n-1)}{3n(15n-8)} + \frac{n-1}{6n^2} \right] \left(1 + \frac{8}{15n-16} \right)^{n-1}.$$

The function f is monotonically decreasing for $n \geq 3$, so that we have

$$f(n) \le f(3) = 0.2216... < \frac{2}{9}$$
 for all $n \ge 3$.

Therefore, from (15) it follows $|\widehat{W}_i| < \frac{2}{9}|W_i|$ and the assertion (i) of Lemma 2 is proved. Using this inequality and the inequalities (5) and (9) we prove the assertion (ii):

$$\hat{w} < \frac{2}{9}w < \frac{2}{9} \cdot \frac{d}{3n} < \frac{2}{9} \cdot \frac{1}{3n} \cdot \frac{15n}{15n - 16} \hat{d} < \frac{\hat{d}}{3n}$$
.

4. The convergence theorem

Now we give the main result concerning the convergence of the Halley-like method (3).

Theorem 2. The Halley-like method (3) is convergent under the condition

$$(16) w^{(0)} < \frac{d^{(0)}}{3n}.$$

Proof. In Lemma 2 (assertion (ii)) we have proved the implication

$$w < \frac{d}{3n} \Rightarrow \hat{w} < \frac{\hat{d}}{3n}.$$

Similarly, we prove by induction that the condition (16) implies the inequality $w^{(m)} < d^{(m)}/3n$ for each $m = 1, 2, \ldots$. Therefore, all assertions of Lemmas 1 and 2 hold for each $m = 1, 2, \ldots$ if the initial condition (16) is valid. In particular, the following inequalities

$$|W_i^{(m+1)}| < \frac{2}{9}|W_i^{(m)}|$$

and

(18)
$$|C_i^{(m)}| = |z_i^{(m+1)} - z_i^{(m)}| < \frac{8}{5} |W_i^{(m)}|$$

hold for $i \in I_n$ and $m = 0, 1, \ldots$

From the iterative formula (3) we see that the corrections $C_i^{(m)}$ are expressed by

(19)
$$C_i^{(m)} = \frac{W_i^{(m)}}{(1 + G_{1,i}^{(m)})(1 + t_i^{(m)})},$$

where

$$G_{k,i}^{(m)} = \sum_{j \neq i} \frac{W_i^{(m)}}{(z_i^{(m)} - z_j^{(m)})^k}, \ (k = 1, 2), \quad t_i^{(m)} = \frac{W_i^{(m)} G_{2,i}^{(m)}}{(1 + G_{1,i}^{(m)})^2}.$$

Now we prove that the sequences $\{|C_i^{(m)}|\}$ $(i \in I_n)$ are monotonically decreasing.

Omitting the iteration index for simplicity, from (19) we find by (17) and (18)

$$\begin{aligned} |\widehat{C}_i| &< \frac{8}{5} |\widehat{W}_i| < \frac{8}{5} \cdot \frac{2}{9} |W_i| = \frac{16}{45} |W_i| \\ &= \frac{16}{45} \left| \frac{W_i}{(1 + G_{1,i})(1 + t_i)} \right| |(1 + G_{1,i})(1 + t_i)|, \end{aligned}$$

so that

$$|\widehat{C}_i| < \frac{16}{45} |C_i| |y_i|,$$

where we put

$$y_i = (1 + G_{1,i})(1 + t_i).$$

Hence, by (i) and (iii) of Lemma 1,

$$|y_i| < |1 + G_{1,i}|(1 + |t_i|) < \frac{4}{3}(1 + \frac{1}{18}) = \frac{38}{27}.$$

Now from (20) we get

$$|\widehat{C}_i| < \frac{16}{45}|C_i||y_i| < \frac{2}{5} \cdot \frac{38}{27}|C_i| < 0.51|C_i|.$$

Therefore, the constant γ which appears in Theorem 1 is equal to $\gamma = 0.51$. In this way we have proved the inequality

$$|C_i^{(m+1)}| < 0.51|C_i^{(m)}|,$$

which holds for each i = 1, ..., n and m = 0, 1, ...

The quantity $g(\gamma)$ appearing in (ii) of Theorem 1 is equal to $g(0.51) \approx 2.55$. It remains to prove the disjunctivity of the inclusion disks

$$S_1 = \{z_1^{(0)}; 2.55 | C_1^{(0)} | \}, \dots, S_n = \{z_n^{(0)}; 2.55 | C_n^{(0)} | \}$$

(assertion (ii) of Theorem 1). By virtue of (iv) of Lemma 1 we have $|C_i^{(0)}| < \frac{8}{5}w^{(0)}$, wherefrom

$$d^{(0)} > (3n)w^{(0)} > \frac{5}{8}3n|C_i| \ge \frac{15n}{16}(|C_i^{(0)}| + |C_j^{(0)}|)$$
$$> g(0.51)(|C_i^{(0)}| + |C_j^{(0)}|).$$

This means that

$$|z_i^{(0)} - z_j^{(0)}| \ge d^{(0)} > g(0.51)(|C_i^{(0)}| + |C_j^{(0)}|) = \operatorname{rad} S_i + \operatorname{rad} S_j.$$

Therefore, the inclusion disks S_1, \ldots, S_n are disjoint, which completes the proof of Theorem 2. \square

References

- [1] Ellis, G.H., Watson, L.T., A parallel algorithm for simple roots of polynomials, Comput. Math. Appl. 2 (1984), 107–121.
- [2] Petković, M.S., On initial conditions for the convergence of simultaneous root finding methods, Computing 57 (1996), 163-177.
- [3] Petković, M.S., Carstensen, C., Trajković, M., Weierstrass' formula and zero-finding methods, Numer. Math. 69 (1995), 353–372.
- [4] Petković, M.S., Herceg, Dj., Point estimation and safe convergence of root-finding simultaneous methods, Scientific Review 21-22 (1996), 117-130.
- [5] Petković, M.S., Herceg, Dj., Ilić, S., Point estimation and some applications to iterative methods, BIT (to appear).
- [6] Petković, M.S., Ilić, S., Tričković, S., A family of simultaneous zero-finding methods, Comput. Math. Appl. (to appear).
- [7] Prešić, M., A convergence theorem for a method for simultaneous determination of all zeros of a polynomial, Publication de l'Institute Mathématique 28 (1980), 159–168.
- [8] Zhao, F., Wang, D., The theory of Smale's point estimation and the convergence of Durand-Kerner program (in Chinese), Math. Numer. Sinica 15 (1993), 196–206.
- [9] Wang, X., Han, D., On dominating sequence method in the point estimate and Smale's theorem, Scientia Sinica Ser. A (1989), 905-913.
- [10] Wang, D., Zhao, F., The theory of Smale's point estimation and its application, J. Comput. Appl. Math. 60 (1995), 253-269.