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Abstract

The theory of point estimation treating the initial conditions for the
safe convergence of Halley-like method for the simultaneous determi-
nation of polynomial zeros is considered. Applying a general approach
which makes use of corrections, the convergence conditions for this
method are stated. These conditions are computationally verifiable:
they depend only on the coefficients of a polynomial and initial appro-
ximations to the zeros.
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1. Introduction

The construction of initial conditions which provide a safe convergence of
the considered numerical algorithm is one of the most important problems in
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solving algebraic equations. These conditions should be stated in such a way
that they depend only on attainable data, for example, on the coefficients
of a given polynomial and initial approximations z(®). Theory of point esti-
mation, which deals with the mentioned problems, introduces approzimate
zeros as initial points which provide a safe convergence of the considered
iterative methods for the simultaneous approximations of all polynomial ze-
ros. A number of results on this subject has been presented in [2]-[6], [7],
[8]-[10].

In this paper we consider the monic algebraic polynomials of the form
P(2)=2"+ap 2" '+ - -+a1z+ay (a; €C)

which have only simple zeros. Most of iterative methods for the simultaneous
approximation of simple zeros of a polynomial can be expressed in the form

(1) z§m+1) = zi(m) — C,-(zgm), a2y (fely; m=0,1,..),
where I, = {1,...,n} is the index set and z§m), e 2™ are some distinct

approximations to simple zeros (3,...,(, respectively, obtained in the mth
iterative step. The term

cl™ = cy({™,. .., ™)

is called the iterative correction. For simplicity, we will sometimes omit the
iteration index m and denote the quantities in the latter (m+ 1)-st iteration
by an additional symbol = (“hat”).

Let us introduce the real function g by

l+v-7°

1_ ,76(0’1)

9(7) =

The following convergence theorem is proved in [4]:

Theorem 1. Let C; be the iterative correction term of the form Ci(z) =
P(z)/F(z) with F(2) # 0 for z = (; and z = zz(m) (i€lpy; m=0,1,...). If
for each i,j € I, and m = 0,1,... the following inequalities

(i) [C™] < 41ct™] (v < 1),

(i) 12{% = 2 > g(NUCO +169) (& # 4),
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are satisfied under some initial conditions, then the iterative process (1) is
convergent.

Let us note that the class of iterative methods considered in Theorem 1
is rather wide, and most frequently includes the methods used for finding
polynomial zeros, simultaneously.

The initial conditions in the case of polynomials should be a function

of the polynomial coefficients a = (ag,...,an-1), its degree n and initial
approximations z( ) ,z.,(lo) to the zeros {4,...,(n of P. For m = 0,1,...
let
d™) = min |z ™ _ z(-m)l
1,J€In J
J#e

be the minimal distance between approximations obtained in the mth iter-
ation, and let

w™ = max |W(m)]
1<5<n

TG -2

As in the papers [2]-[5], [7], [8], [10], we will restrict initial conditions to the
form of the inequality
(2) w® < e(n)d®,

where ¢(n) is a quantity which depends only on the polynomial degree n.
The motivation and discussion about initial conditions of the form (2) have
been given in [5]. Throughout this paper we will always assume that the
polynomial degree n is > 3.

2. Halley-like method

Let us introduce the denotations

I’ViGgi n-—1
E k=1,2 = ———, = —5.
oy (2 — Zj)k ( ), (1 + lei)z 4n?
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Ellis and Watson have proposed. in {1] the following iterative method for
the simultaneous determination of all simple zeros of a polynomial P :
Wi
(1+G11)(1+t)

(3) o A=A (i€ 1)

This formulc. can a.lso be der1ved by applymg the well known Halley method
to the function

- | z';z | __PE
hz() W+( ‘(lﬂ_;z—%)( H(Z—Zj))

J#

For this reason, the iterative method (3) is referred to as Halley-like method.
Let us note that the iterative formula (3) is a special case of a one-parameter
family of simultaneous methods

' (e + W
(1+Gii)a+ V1+2(a+ 1))

(4) Gi=— (i € I),
which is obtained for & = —1 (applying a limiting operation) (see [6]). It

has been proved in'[6] that the order of convergence of the family of iterative
method (4) is four.

3. Some necessary lemmas

In what follows we apply Theorem:1 and an initial condition of the form (2)
to state the convergence, theorem for the Halley-like simultaneous method
(3). Before estabhshmg the mam results we give two necessary lemmas

Lemma 1. Let zly,[. . ',, zn be distinct approzimations to the zeros (q,.. .,Cn.
of a polynomial P of the degree n, and let 21,...,2, be the new respective
approzimations obtained by the iterative method (3). If the inequality
(5) Wil < & |
w = 1max —
1<i<n 3n

holds, then for i,j € I, we have

N

. 4 . 2
(7) 3> |1+ Gyl >3



On the convergence of Halley-like method

.. (n— 1w
(#1) |Ga2;] < g

1
(113) |tij<q < I

8d
- s _ ol = 0] < &I < 22
(Zv) |zl zll |CI| < 5' z| < 15n

65

Proof. According to the definition of the minimal distance d and the in-

equality (5), we have

s Wil (=1

i#e |Z,‘ - zjl h d
so that we estimate
(n— 1w 1 2
Cril 2 (n-lw , 1 2
1+ Gril 21~ gm—m T R
|Wi;| (n—-Dw 1 4
1+ G <1 <1422
4Gl <143 <14 373
J#t ' :
W; (n— Dw
Gl < Z 2 = 2
Pt Iz,, z]| d
Thus, the assertions (i) and (ii) of Lemma 1 are proved.
Using (i), (ii) and (5) we prove (iii):
WGy 2(n—-Dw? n-1 1
=g < —.
|(1+G1 )2| ( D) T <G =953
From (3) we have
: W, S
-zl = |G = el
Wil 1 8 . 8d:.-
< T < gl <,
2 1L SET S s

which proves (iv) of Lemma 1. O

Lemma 2. Under the conditions of Lemma 1 the following inequalities are

valid:
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(1) Wil < 2wil;

o o~ d
(1) W < 3
Proof. Using Lagrangean interpolation, as in [5] we derive the following

relation:

— P(%) . Z; — z;
i = o = iz 1 1 25,
INERED ( iz ; z)]l;[,( Zi—2j>
I#e
By applying (iv) of Lemma 1, we have
8d 15n — 8
(15— 2l 2 fzi—z| = |4 - z,|>d—15—n= Tom d,
. . . 16d 15n — 16
-2 2 la-gl-la-al-15 -4l >d- 0= ——d

From the last inequality, and taking into account the definition of the min-
imal distance we find

. 1hn —16 15n
d>——""d d < ———d.
(9) > 15n or < 15n — 16d
From (3) we obtain
w. W. WG,
= 1- G- (14 Gry) =1~ b
5z 1, ( + 1,) Zzi—zj 14+ G,
JF
so that
W, W, i W; WG,
L . P T e
(- 2 ;zr% ;(%“Zi)(z"‘zﬁ) L+ Gy
Hence

Wil WGy,
< 1.
| % ~ z'lz|z1—zj|]zt—zj| 14+ Gy

(10%+1+Z
e i#i

Using the above estimates (7) and (8) for |2 — z;| and |2 — 25|, and the
inequalities (5) and (iv) of Lemma 1, we estimate
i — z) = < JE -zl %
I( ;(zz‘—%)(zz’—z]‘)‘ | ;I%—Zjllzz'—za'l
8(n—1)
11 P
(11) < 3n(15n—8)
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According to (i)—(ii) of Lemma 1 and (5) we obtain

n—1

(12)

From (10) we get by (11) and (12)
8(n—1) n—1

(13) lz,—zz+1+zz,—zjl 3n(15n—8)+ 6n?
and
Te+222) < M0+ E22)< (1o i)™
g ATED T g JE ] ekt
8 n—1
(14) = (1+15n_1) :

Using (iv) of Lemma 1, (13) and (14), from (6) we obtain

Wi < |5 - Zi,‘

zz—zj)l

8|W|[ 8(n—1) n—l](1+ 8 )n—l,

_z1

< 5Willsas) T e 151 — 16
that is, .
(15) Wil < f(n)|Wil,
where

8r 8(n—1) n-1 8yt
f(n):g[3n(15n—8)+ 6n2 J(1+ 15n—16) '

The function f is monotonically decreasing for n > 3, so that we have
2
f(n) < f(3) =0.2216... < 9 for all n > 3.

Therefore, from (15) it follows |W;| < 2/W;| and the assertion (i) of Lemma
2 is proved. Using this inequality and the inequalities (5) and (9) we prove
the assertion (ii):

poZ.d 2 1t o d
9 3n 3n’

w< 9 3n 15n_16
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4. The convergence theorem

Now we give the main result concerning the convergence of the Halley-like
method (3).

Theorem 2. The Halley-like method (3) is convergent under the condition

40
w®
(16) <3

Proof. In Lemma 2 (assertion (ii)) we have proved the implication

d d
w < zl' =W < 3—7;
Similarly, we prove by induction that the condition (16) implies the inequal-
ity w™ < d(m)/3n for each m = 1,2,... . Therefore, all assertions of
Lemmas 1 and 2 hold for each m = 1,2,... if the initial condition (16) is
valid. In particular, the following inequalities

(17) W) < 2 S
and 8
(18) C] = 17 — ) < W)

hold for i € I,, and m = 0,1, ... .
(m)

From the iterative formula (3) we see that the corrections C;
pressed by

are ex-

Ca+6 )(1+t(’"))
where
(m) W(m)G(m)
6P = 3 —y gy (B=1,2), 7 =
im (7 —2) (1+Gy7)

Now we prove that the sequences {|C£m)|} (¢ € I,,) are monotonically de-
creasing.
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Omitting the iteration index for simplicity, from (19) we find by (17)
and (18)

P 8 2 16
Gl < Smi< ¥ 2w = By
16 W,‘
= — 1+ G+ t)],
so that
(20) Gl < o1y
p T Uil

where we put
vi = (1+G1)(1+ t).
Hence, by (i) and (iii) of Lemma 1,

4 1 38
: 1 i (1 4+ [ 1 = —.
il < L+ G+ 16D < 5 (14 55) = 5
Now from (20) we get
~ 16 2
Cil < —=I|Cillys C; 511Gyl
B < ICillul < 3 - 221G < 0511

Therefore, the constant 4 which appears in Theorem 1 is equal to vy = 0.51.
In this way we have proved the inequality

[c )| < 051(Cf™),
which holds for each ¢ = 1,...,mand m =0,1,... .

The quantity g() appearing in (ii) of Theorem 1 is equal to ¢(0.51) ~
2.55. It remains to prove the disjunctivity of the inclusion disks

Sy = {02550, S = {23255/}

(assertion (ii) of Theorem 1). By virtue of (iv) of Lemma 1 we have ]Ci(o)l <
8w(), wherefrom

4> Bru® > Z3nlC > TEC) + 1)
> g(o.sl)uc,-“’ | +1C)).

This means that
|59 = 2] > d® > g(0.51)(C +C]) = rad S, + rad 5;.

Therefore, the inclusion disks Sy,...,5, are disjoint, which completes the
proof of Theorem 2. O
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