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Abstract

Certain type of layer problem described by the second order dif-
ferential equations with the small parameter multiplying the highest
derivative will be considered. The solution inside the layer, as well as
the solution out of the layer, will be approximated by two different
truncated orthogonal series. The character of the layer and the de-

- gree of the spectral approximation of the inner solution will determine
the domain decomposition, constructed by the use of the appropriate
resemblance function.

Numerical results will be compared to those obtained earlier by the
author, where the reduced solution was used to approximate the exact
solution out of the layer.
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1. Introduction
We shall consider the selfadjoint singularly perturbed problem
(1) Ley = —€’y"(2) + g(z)y(z) = h(z) 0<z <1

(2) y(0) =4, y(1)=B,
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where the function g(z) satisfies the condition
(3) g(z)> K*>0, KeR.

It is known that under the assumption (3) the selfadjoint problem has the
unique solution y(z) € C2]0, 1]. In general, the solution displays two bound-
ary layers of order O(¢). If we denote by ygr(z) the solution of the reduced
problem

9(2)yr(z) = h(z), 0<z <1,

then, if
(4) yr(0) # A
the boundary layer occures at ¢ = 0, and if

yr(1) # B
we have the boundary layer at the endpoint z = 1.

The problem (1),(2) represents mathematical model of the large number
of phenomena in sciences such as conduction and diffusion in fluid dynamics,
theory of semiconductors and catalytic processes in chemistry and biology.
It is of great interest to describe the behavior of the exact solution of these
problems, especially inside the layers.

Standard numerical methods give unsatisfactory results, so that various
special procedures such as special grids, introduction of relaxation parame-
ters, and special discretizations were constructed.

Standard spectral approximation also fails when applied to singularly
perturbed problems. In several papers (see e.g. [2]) the author has devel-
oped the modification of standard spectral approximation, which assumes
the division of the basic interval [0,1] by the special procedure in such a
way that the length of the layer intervals is addapted to the truncated or-
thogonal series which is used to approximate the exact solution inside the
layers. Out of the layers the reduced solution yr(z) = ﬁ% was used to
approximate the exact solution. This procedure has given very accurate re-
sults for small values of the perturbation parameter, even when low degree
orthogonal polynomials were used.

The error of that approximation depends on the error at the division
point, which is pretty large when ¢ is not very small and the degree of the
truncated orthogonal series is low. This paper gives an improvement in such
cases.
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In the first part of the paper the problem (1),(2) will be transformed in
such a way that we divide the exact solution in three pieces: left and right
layer solutions (inner solution) and central solution (outer solution).

In the second part of the paper the procedure for the appropriate division
will be described and the spectral approximation to both the inner and outer
solution will be constructed.

In the third part of the paper a numerical example illustrating the ad-
vantage of the presented method, will be considered.

2. Transformation of the problem

Let us represent the exact solution in the form

wi(z) 0<z< 2
(5) Y(z) =4 u(z) zo<z<1l~2
u(z) 11—z <2<,

where u;(z) and u,(z) are the left and right layer solutions. They are de-
termined by the boundary value problems

(6) Low = —2u](2) + g(2)w(z) = h(z), 0<z <z,
() w(0) = A4, w(zo) = ue(2o).

and

(8) Leu, = —2u(z) + g(2)u (z) = h(z), l-2z1<z<1,
9) (1 — 1) = ue(1 - 21), ur(1) = B.

The central solution u.(z) satisfies the differential equation

(10) Leu, = —e%ull(2) + g(2)us(z) = h(z), zo<z<1—14

and the continuity conditions at the endpoints, given in (7) and (9)
us(zo) = wi(2zo), (1l — z1) = ur(1 — z1).

Here zq,z; € (0, %) denote the values that are going to be determined in the
next section in such a way that the layer solutions can be approximated in
the best possible way by the truncated orthogonal series.



A N.Adzié

3. Spectral approximation

The idea is to perform the domain decomposition, using the division points
zo and 1 — z;, in such a way that both the inner solutions wui(z), u,(z)
and outer solution u.(z) can be satisfactorily represented in the form of
truncated low-degree orthogonal series, due to some orthogonal polynomial
basis.

The main problem is how to determine the values zq and z,. Numerical
examples show that a very small change of these values may cause the error
of the spectral approximation increases hundred times, or even more.

For the construction of these values we shall take into account the as-
ymptotic behavior of the exact solution. The procedure will be carried out
for the left layer solution, and we shall state the appropriate results for the
right layer solution.

As the layer length is of the order O(¢), we shall construct the division
point z¢ in the form z¢ = ce. The parameter ¢ is determined by the special
procedure, in such a way that it depends on the degree n of the spectral
approximation for the layer solution u;(z), which is represented in the form
of the truncated orthogonal series

n

(11) un(2) = 3 'ax Ty (o).

k=0

Here T} (z) denote the Chebyshev polynomials of the first kind upon [0, z],

and the notation ‘a; means that the summation involves %ao instead of aq.

Instead of the Chebyshev polynomials we can use any other orthogonal
polynomial basis.

The procedure for determining the division point zq bases on the intro-
duction of the resemblance function for the layer solution w;(z) and, simi-
lary to the procedure described in [1], it is given by the following definition,
lemma and theorem:

Definition 1. The resemblance function for the left layer solution is the
polynomial p,(z) of the degree n > 2, such that

1. pa(0) = A and p.(z0) = yr(0),
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2. zg is the stationary point for p,(z),
3. pn(z) is concave if A > yr(0) and convez if A < ygr(0).

Lemma 1 The resemblance function for the left layer solution is given by

(12) a(®) = yr(0) + (A - 3a(0)) (1 - —) nz 2.

Proof. We have to verify the conditions from Definition 1.

1. .
Pn(0) = yr(0) + (A — yr(0)) (1 - %) =A
and )
Pr(2o) = yr(0) + (A - yr(0)) (1‘ - i—Z) = yr(0).
2.

o () = — A= ¥r(0) (1 ) i)H.

Zo Zo
If the left layer exists, according to (4), A — yr(0) # 0, and we have
that p},(z) = 0 only for z = z¢, so z¢ is the stationary point.

n—2
oy = MU (2
so that
sgnp),(z) = sgn(4 - yr(0)).
If A < yr(0) we see that pli(z) < 0, which means that p,(z) is convex,
and if A > yr(0) we see that p!(z) > 0, which means that p,(z) is
concave.

In order to determine the division point o we shall ask that the resem-
blance function has to satisfy the differential equation at the layer point
z = 0. This will give us

Theorem 1. The value ¢ that determines the division point zo = c¢ is given
by

(13) c= ,/ﬁg;(g—)l).
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Proof. If we introduce (12) into the differential equation (6), at the point
z = 0 we obtain
gn(n —1)
—e*————=(A - yr(0)) + g(0)A = A(0).

Whit respect to h(0) = g(0)yr(0), the solution of the above equation for c,
¢ > 0 will give us (13).

The existence of the square rooth in (13) is provided by the assumption
(3)-

The same procedure for the right layer solution gives us that the value
z1 = de in the expression for the division point 1 — z; is determined by

_ (n(n—-1)
(14) d—‘/—_—g(l) .

Once the division points zg and 1 — z; are determined, we introduce the
streaching variables

2 2 — 2 2z —
122 g =2 _2Az—20)

Zo Ty =1'($0+$1)_ ’

which transform the layer subintervals [0, zg] and [1 — zy,1] and the central
subinterval [zg,1 — ;] into [-1,1].

Thus, transforming (6)-(10), we come to the problems

(15) Liw= —%w"(t) + Gi()w(t) = Hi(t), -1 <t <1,

(16) w(-1)= 4, w(1)=2v(-1),

(17) L= -#v"(ﬂ + G (t)v(t) = He(t), -1 <t <1,
(18) v(=1)=w(1), o(1)=2(-1),

(19) Lz= —;—2z"(t) + G (D)1 = Hy(1), ~1<t<1,

(20) 2(—=1) = (1), z(-1)= B.

In these equations we have used the notation

it =5 (), = (2250,
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Gutt) = g (Lo =2t D1 2203,
i = (U202 D2 2m),
G:()=g (%) , H.(t)=h (‘”l(t__zl”_?) _

The obtained problems can now be solved by the use of standard spectral
technique, approximating w(¢) v(t) and 2(t) by

n n ) n

(21) wn(t) = Z 'aka(t), ’U.n(t) = Z Ikak(t), Zn(t) = Z 'cka(t).

k=0 k=0 k=0

Ti(t) denote the classical Chebyshev polynomials of the first kind upon
[—1,1].

The coefficients ar, by and ¢, £ = 0,1,...,n, can be determined by
collocation method. Thus, we come to the following theorem:

Theorem 2. The coefficients ag, by and cx, k = 0,1,...,n represent the
solution of the system of 3n + 3 linear equations

(22>Z'( SO L) + GBI Tt = Hilt) = Loy

(23) Z (—1)Fax = 4, Z ay = Z (—1)"by,
k=0
4¢%9(0)g(1) T, , Nh .
Z 9 = e2n(n ~ 1)(g(0)  g()) 1+ 1)+ Clt)Trlt))be = Helty),
(24) j=0,...,n
49(1)
(25)2 (- T (t) + Gr(t)T(t;))er = He(t;), = 1,...,n~ 1

n . n
(26) Z ek = "0, D k=
k=0 k=0 k=0
where .
Jm .
t; :cos;, J=1...,n-1

are the Gauss-Lobatto nodes.
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Proof. The first n — 1 equations (22) are obtained approximating w(t) in
(15) by the truncated Chebyshev series wy,(¢) defined in (21) and making
use of (13). From the request that the obtained equality has to be satisfied
at the Gauss-Lobatto nodes we come to (22).

The next two equations (23) are obtained directly from the boundary
conditions (16), approximating w(t) by wy,(t) with respect to Tx(—-1) =
(—=1)* and Tx(1) = 1.

The equations (24) are obtained by approximating v(t) by v,(t), defined
in (21), in the differential equation (17), making use of (13) and (14), and
collocating the obtained equality, not only at the Gauss-Lobatto nodes, but
at the endpoints —1 and 1, which are obtained for j = 0 and 7 = n. This
has given us the next n + 1 equations.

Finaly, the n — 1 equations (25) are obtained by approximating z(t)
in the differential equation (19) by the truncated Chebyshev series z,(t),

defined in (21), making use of (14) and collocating the obtained equality at
the Gauss-Lobatto nodes.

The last two equations (26) are obtained by approximating z(t) by z,(t)
in the boundary conditions (20).

Let us remark that the boundary conditions (18) imply the second equa-
tion in (23) and the first equation in (26).

The collocation of the central solution at the endpoints is of the vital
- importance for the accuracy of the proposed method because it enables the
accurate boundary conditions at the division points.

4. Numerical example

As a numerical example we shall consider the boundary layer problem, from

[4]

(27) —e2y"(z) + y(z) = — cos? 1z — 2(em)2cos 27z, 0 < & < 1,
(28) y(0) =0, y(1)=0.
Here, the reduced solution is ygr(z) = — cos? 7z, so we have boundary

layers at both endpoints. The results are given only for the left layer, and
for the right layer they are identical.
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For the numerical results we have tested several values for ¢ and the
low-degree truncated orthogonal series with n=4. The layer subinterval,
according to (13) is [0, zo] = [0, 2v/3¢].

The error inside the layer is evaluated by the method presented in this
paper and compared to the error obtained by the previously constructed
method, where the reduced solution was used. The results are given in the
following Table:

€ 2-2 2—4 2-8
presented method 0.014 | 0.03128 | 0.031301112
use of reduced solution | 0.042 | 0.03130 | 0.031301113

If £ is smaller both methods give the results of the same accuracy.
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