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Abstract

For every n-group (Q, A), n > 3, there is an algebra (Q, {-, ¢, b})
[of the type (2,1, 0)] such that the following statements hold: 1° (Q,-)
is a group; 2° ¢ € Aut(@,-); 3° w(b) = b; 4° for every z € Q
@(z) b =b-z; and 5° for every z} € @ A(27) = z1 - p(z2) - ... -
@™} (zy) - b [:Hosszi-Gluskin Theorem {2-3]]. We say that an algebra

(@, {-,¢,b}) is a Hosszii-Gluskin algebra of order n (n > 3) [briefly:
nHG-algebra) iff the statements 1°-4° hold. In addition, we say that
an nHG-algebra (@, {-, ¢, b}) is associated to an n-group (Q, 4) iff 5°
holds. [in {10}, all nHG-algebras associated to the given n-group
are described]. One of the main results of the paper is the follow-
ing proposition: Letn > 3, and let (Q, A) be an n-group. Further
on, let (@, {:, ¢, b}) be its arbitrary assoeiated nHG-algebra. Then
Con(Q,A) = Con(Q, ) N Con(Q,p). In addition, in the present pa-
per we prove that the congruence lattice of an n-group (Q,A) is a
sublattice of the congruence lattice of the group (@,-) and that it
is isomorphic with the lattice of normal subgroups (H, ) of the group
(Q,-) for which ¢(H) = H. [In [4], Monk and Sioson described the
congruence lattice of the n-group (n > 3), up to an isomorphism, in
the scope of the Post covering group. (:Remark 5.3).] In this paper, we
also prove the following proposition: Let n > 3 and let (Q, A) be an n-
group. Further on, let # be an arbitrary element of the set Con(Q, A).
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Then, for every C; € /6 there is an nHG-algebra (Q, {-, ¢, b}) as-
sociated to the n-group (@, A) such that the following statements hold:
(i) (Ct,*) < (Q,-); (i) (Ct, ) is a l-groupoid; and (iii) (C:, A) is an
n-subgroup of the n-group (@, A) iff b € C;.

AMS Mathematics Subject Classification (1991): 20N15

Key words and phrases: n-groupoids, n-semigroups, n-quasigroups, n-
groups, {i,j}-neutral operations on n-groupoids, inversing operation
on n-group.

1. Preliminaries

1.1. About the expression a]

Let p € N, ¢ € N U {0} and let a be a mapping of the set {i|i € N A1 >
pAi < g} into the set S;0 € S. Then:

Ag, ..., 0q; r<gq
a] stands for ¢ ay; p=gq
empty sequence(=0); p > q.

In some cases, instead of af only, we write: sequence af (sequence a}

over a set S). For example: ... for every sequence aj over a set S .... And

if p < ¢, we usually write: af € S.

If a} is a sequence over a set S, p < ¢ and the equalities @, = ... = aq =
b(€ S) are satisfied, then

al is denoted by b

1.2. About n-groups

1.2.1. Definitions: Let n > 2 and let (@, A) be an n-groupoid. Then: (a)
we say that (Q, A) is an n-semigroup iff for every 1,5 € {1,...,n}, i < j,
the following law holds

A(:l:’i_l,A(:c::"'n_l) 2n— 1) A(z] A(z1+n 1) 2n—1 )

) z+n ) _7+n.
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[: (i, 7)-associative law]; (b) we say that (Q, A) is an n-quasigroup iff for
every i € {1,...,n} and for every al € Q there is exactly one z; € Q such
that the following equality holds

A(a’i"l,zi,a;‘_l) = an; and
(¢) we say that (Q, A) is a Dérnte n-group [briefly: n-group] iff (Q,A) is
an n-semigroup and an n-guasigroup as well.

A notion of an n-group was introduced by W. Dérnte in [1] as a gener-
alization of the notion of a group.

1.2.2. Definition [8]: Let n > 2 and let (Q, A) be an n-groupoid. Further
on, let e be an mapping of the set Q"2 into the set Q. Let also {i,5} C
{1,...,n} andi < j. Then: e is an {i, j }-neutral operation of the n-groupoid
(Q, A) iff the following formula holds

(Vo € Q1 *(Vo € Q) (Alai™, e(af™),a! % 3,0 }) =2

(3

- - _ i
A A z,al 7% e(a? 2),(1.?_12) =z).!

1.2.3. Proposition [8]: Letn > 2, {i,5} C {1,...,n} and i < j. Then in
every n-groupoid there is at most one {1, j}-neutral operation.

1.2.4. Proposition [8): In every n-group, n > 2, there is a {1,n}-neutral
operation.?

1.2.5. Proposition [10]): Let (Q,A) be an n-group, e its {1,n}-neutral

operation and n > 3. Then for every sequence a.?"2 over @ and for every

i1 € {1,...,n — 2} there is ezactly one z; € Q such that the equality
e(a'il._lamiaa?_:}) = ap-2

holds.

1.2.6. Proposition [9]: Let n > 2, and let (Q, A) be an n-group, € its

{1, n}-neutral operation and E a {1,2n — 1}-neutral operation of a (2n —1)-

2 2 on—1ydef 2n—1
group (Q, A), where A(zi"™") = A(A(zl),2;1"). Further on, let f be an

(n — 1)-ary operation in Q) defined in the following way

— def - -
7(a?%,0) e (a2, 0,07 7).

'For n = 2, e(a7 ™) [= e(#)] = e € Q is a neutral element of the groupoid (@, A).
*There are n-groups without {i,j}-neutral operations with {i,j} # {1,#n} [:[11]}. In
[11], n-groups with {¢, j}-neutral operations, for {¢,j} # {1,n} are described.



94 Janez USan

Then, also the following laws hold in the algebra (Q,{A, f,e}) [of the type
(nan -Ln- 2)]

A(f(a{' z,a),a’l"'2,a) = e(a’l"'2) and

A(a‘a al ] f(a‘l —2: a‘)) = e<a?_2)'3

1.2.7. Remark: As well as Proposition 1.2.4 and Proposition 1.2.6, for
n > 2. e. g. the following proposition holds [13]: If the following laws hold
in the algebra (Q, {4, ,e}) of the type (n,n —1,n —2)

A(A(D), 227" = Az, Al ), 23550,
A(z,a}%,e(a}"?)) = z and

A(aaal 25‘(0'1 70')—1) = e(a'l 2),

then (Q, A) is an n-group. For n = 2 this is the well known characterizations
of n-groups.

1.3. On Hosszi-Gluskin algebras

1.3.1. Proposition (Hosszi-Gluskin Theorem) [2-3]: For every n-
group (Q, A), n > 3, there is an algebra (Q, {-, ¢, b}) such that the following
statements hold: 1° (Q,-) is a group; £ ¢ € Aut(Q,-); & @(b) = b; §°
for every z € Q, " H(z) - b = b-z; and 5° for every z7 € Q, A(z}) =
z1-p(z2) . gV N (Ea) - b |
1.3.2. Definitions [10]: We say that an algebra (Q,{:, @, b}) is a Hosszi-
Gluskin algebra of order n (n > 3) [briefly: nHG-algebra] iff 1°-4° from 1.3.1
holds. In addition, we say that an nHG-algebra (Q,{-, ¢, b}) is associated
to the n-group (Q, A) iff 5 from 1.3.1 hold.

1.3.3. Proposition [10}: Let n > 3, let (Q, A) be an n-group, and e its
{1,n}-neutral operation. Further on, let c’l‘_2 be an arbitrary sequence over
Q and let for every z,y € Q

de -
(1) Big-ny(,9) Az, %0

SForn =2, fis the mversmg operation in the group (Q, 4). In addltlon for n = 2:
a7 = f(a)] = E(a); a}"* =9, l 1 Insbme papers, the authors writes (a7~ % a)~! instead
of f(a?72,a). ' .
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2 ey (@) Z Ale(2), 2,&72) and

f—M
(3) been-a) = A(e(2) ).

Then, the following statements hold

(i) (Q, {B(C?_z),cp(ci.-z),b(c,;_z)}) 18 an nHG-algebra associated to the n-
group (Q, A); an

(i) CAdéf{(Q, {B(c;'-z)"P(c’;'z)’b(c’l‘—z)}” c’l“2 is a sequence over Q} is
the set of all nHG-algebras associated to the n-group (Q, A).

1.4. On congruences in an m-groupoid

1.4.1. Definition: Let (Q, F) be an m-groupoid and m € N. Let also 6 be
an equivalence relation in the set Q. Then, 8 is a congruence relation on
the m-groupoid (Q, F) iff the following holds

(Vaj eQT (Vb eQT /\ a;fb;) = F(al")0F (bT")).

=1

1.4.2. Proposition: 8 is a congruence on an m-groupoid (Q, F) iff the
following holds '

(Va € Q)(Vb € Q)(Ve; € Q)T!

m . .
(A (afb = F(d™t a, " 1BF(EY, a,d™ 1)),
i=1

1.4.3. Definition: A congruence relation 8 on an m-groupoid (Q, F) is
said to be normal iff the following holds

(Va € Q)(Vb € Q)(Ve; € Q)T!
(A (F(E L a,dP)OF (), a,c™1) = afb)).5
=1

3

tA(e(ep™?),. .., e(ef™)).
SNormal congruences on quasngroups (m= 2) are described e. g- in [5] [p.54}.
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1.4.4. Proposition [12]: Let n > 2, let (Q, A) be an n-group, e its {1,n}-
neutral operation [:1.2.4], f its inversing operation [:1.2.6], and 6 a con-
gruence on the groupoid (Q, A) [6 € Con(Q, A)]. Then: (a) 8 is a normal
congruence of the n-groupoid (Q, A); (b) for n > 3 8 is a normal congruence
of the (n — 2)-groupoid (Q,e); and (c) 8 is a congruence of the (n — 1)-
groupoid (Q, f).5

2. Construction of a lattice on a given nHG-algebra

2.1. Proposition: Let (Q,{:,p,b}) bé an nHG-algebra [:1.3.2]. Further
on, let

(1) LY (H|(H,) <(Q,))} and

= d
(2) L H|(H,) (@) A p(H) = H.
Then (L,®,N)? is a sublattice of the (modular) lattice (L,®,N).

Proof. 1) (L,®,N) is the well known modular lattice of normal subgroups
of the group (Q, ).

2) Since ¢ € Aut(Q,-) and by the definition of the operation ® we
conclude that (L, ®) is a groupoid.

3) By the definition of the set L [:(2)] and by the definition of the set
@(H) [footnote 8)] we conclude that for every z € Q and for every Hy, H> €
L the following series of equivalences hold

plz) Ep(H1NHy) &z HiNH,
s rzeH AzeH, A
& ¢(z) € p(H1) A p(z) € (Hs)
< (r) € Hi Ap(z) € Hy
< p(z) € HiN Hy,

8For n = 2, 6 is a normal congruence of the 1-groupoid (@, f) [:(Q,™!)).
"(H,-) < (Q,-): (H,-) is a normal subgroup of the group (Q, -).
d
So(H) {p(z)|s € H} [¢(z) € p(H) & = € Hiz € Q).
Hy @ Ho¥Y{z|z = hy -ha Ahy € Hy A ha A H2); Hy, Hy € P(Q). Hy N H is the
intersection of the sets H; and H,.
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i. e., that the following equivalence
o(z) € p(H1 N Hy) & ¢(z) € Hy N Hy,
whence, since ¢ is a permutation of the set Q, we conclude that the set L

is closed also under the operation N.

4) Finally, by the Propositions from 1)-3), we conclude that (L,o, N) is
a sublattice of the modular lattice (L, ®,N). '

2.2. Example: Let ({1,2,3,4},-) be the Klein’s group: Tab. 1.

11121314
11112134
2121143
3(314(1}2
4141312]1
Tab. 1.

Further on, let ¢ be the permutation of the set {1,2,3,4} defined in the
following way
def (1 2 3 4
= ( 1243 )

Then, ({1,2,3,4},{-,¢,2}) is a 3HG-algebra. In addition, the following
holds:

L= {{1}1{152}7{1a3}a{1a4},{1,2,3,4}} [(1) from 21] a,nd
f‘ = {{1}’{1’2}’{1a273:4}} [(2) from 21],

P({1,31) = {14} # {13}, 9({L,4}) = {1,3} # {1,4}. Lattices (L,®,n)
and (L, ®,N) (:2.1] are represented in Diag. 1 and Diag. 2.

2.3. Remark: If (Q, {-,¢,b}) is an nHG-algebra and ¢ an inner automor-
phism of the group (Q,-), then (L,®,N) = (L,®,N). However, there are
nHG-algebras (Q, {-,¢,b}) such that ¢ is not an inner automorphism of the
group (Q,) and (L,®,n) = (L,®,N). E. g.: Let (Q,-) be a commutative
group, ! an inversing operation in (Q,-) and let there is at least one x € Q
such that ! # x. Further on, let o ="', b = e, where e is the neutral

element of the group (Q,-). Then (Q,{-,¢,b}) is a 3HG-algebra and L = L
[:2.1].
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{1,2,3,4} {1,2,3,4}
L3} t{L2 >{1L4 1,2
{1} {1}
Diag. 1 Diag. 2

3. An auxiliary proposition

3.1. Proposition: Let (Q,{-,,b}) be an nHG-algebra and let ~! be an
inversing operation in the group (Q,-). Further on, let (H, ) <(Q,-). Then
the following statements are equivalent: :

(i) (VzeQ)(VyeQ)z-y '€ H= p(z-y™?) € H);
(i) (VzeQ)(VyeQ)(z-y ' €H &z -y ') € H); and
(i45) @(H) = H.

Proof.
(i)e (ii):
Let (i) holds. Then, since (Q, {-,,b}) is an nHG-algebra, [:1.3.2], and

since (H,-) is a normal subgroup of the group (@,-) and since ~! is an in-
versing operation in (@, -), we conclude that for every z,y € Q the following
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series of implications holds N
plz-y HeH s " sy ) eH=>
e (z-0) (g b)) EH= "N z-b)- " Ny b)) € H =
¢ (2 b) (" Ny b)) TEH S (bo7) (bry)TteH
b-(z-y7 )b l€eH=b-(z -y 1) b7l €bHbV ! =
z-y ' €H,
i. e., that the following statement holds
(1) (Vze Q)(Vy e Q)(pz-y™ ) e H=z -y ' € H).
Since the conjunction of the statements (1) and (i) is equivalent with the
statement (ii), the equivalence (i) < (ii) holds.
(ii)= (iii):
Let (ii) holds. Then, for every z € Q the following equivalence holds
z € H & ¢(z) € H,
whence, since for every z € Q
p(z) € p(H) & z € H,
we conclude that for every z € @ the following equivalence holds
| p(z) € p(H) & ¢(z) € H.
Whence, since ¢ is a permutation of the set (), we conclude that
o(H) = H.
(iti)=> (ii):
Let (iii) holds. Then, for every z,y € Q the following equivalence holds
oz -y™') € p(H) & p(z-y™') € H,
whence, since for every z,y € Q@
pe-y ™) e p(H) e -y € H,
we conclude that the statement (ii) holds.

Wo(z-y') € H & o(z)- (o(y) ' € H.
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4. On the set of all congruences of the given n-group
(n=3)

4.1. Theorem: Let n > 3, let (Q, A) be an n-group and let (Q, {-,y,b})
be an arbitrary nHG-algebra associated to the n-group (Q,A). Then, the
following equality holds

on(Q, A) = Con(Q,") N Con(Q, ¢)."!

Proof. 1) =

Let e be a {1,n}-neutral operation of an n-group (Q, A) [:1.2.4] and let
c’l‘"2 be an arbitrary sequence over the set Q. Further on, for every z,y € Q
the following hold

(1) -y A, G2, y),
2) () Ae(cj?),2,¢7?) and
(3) b A(e(cf72)).

Then (Q, {-, ¢, b}) is an nHG-algebra associated to the n-group (Q, A) [:1.3.
3]. In addition, for every (Q, {-,¢,b}) € C4 there is a sequence ¢~ 2 over Q
such that for all z,y € @ (1)-(3) [:1.3.3]. Further on, if 8 € Con(Q, A) [:1.4],
since (1) and (2) hold for all z,y € Q, we conclude that for all z,y,Z,§ € Q
the following sequence of implications holds
0% = A(z, ci‘"z, y)8A(Z, c;‘_z, y)
=z -y0%- y
y05 = A(z,c” 2,9)0A(z, - 29
=z-yfz-y
262 = A(e(c}?), 2,6 2)0A((} ), 5,6 7Y)
= p(2)0p(Z),
11 € Con(Q, A) = 8 € Con(Q,e) A8 € Con(Q,” ) [:1.4.4].
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whence we conclude that for an arbitrary (Q, {:, ¢, b}) € C4 and for arbitrary
8 € P(Q?), the following implication holds

8 € Con(Q, A) = 8 € Con(Q,") A8 € Con(Q, v).

2) &<

Let (Q, {-, ¥, b}) be an arbitrary algebra from the set C4 [:1.3.3]. Further
on, let # be an arbitrary element of the set P(Q?) such that the following
conjunction holds

0 € Con(Q, ) AB € Con(Q,p).

Since 0 € Con(Q, -), the following statement holds:

(a) for every i € {1,...,m}, m € N\ {1}, for every sequence a]* over
the set @ and for all =,z € Q the following implication holds

i-1 m—1 i—1 m—1
76T = (H aj) -z - (H aj)a(H a;)- - (H a;)2.
ij=1 j= i=1 j=i

Since 6 € Con(Q, ), the following statement holds:

(b) for every t € N U {0} and for all z,Z € Q the following implication
holds
70z = ()84 (Z).

Finally, by (a), (b) and by the assumption that (Q,{-,¢,b}) € C4 [:1.3.3],
we conclude that for every i € {1,...,n}, for every zT € Q and for every
zT € @ the following series of implications holds

z:0T; = <p"‘1(a:,-)9<p"'1(:t,~)

= (;1;111 ¢ (z5)) - Ha) - ( ﬁ @ (z5)) b6

J=i+l
(L) 1@ - ([T ¢ Ha) b
ji=1 J=i+l

= A(mi—l) z; $£"+1)0A(z‘i—1’ i, $?+1).

p~—1
127] ajd—i-',e, where e is the neutral element of the group (Q,-), and p € N.

I=p
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4.2. Remark: Let ({1,2,3,4},{,¢,2}) S3HG-algebra from Ezample 2.2.
Equivalence relations 61 — 65 in {1,2,3,4} defined as follows, belong to the
set Con({1,2,3,4},-):

def

{1,2,3,4}/6, %/ {{1,3}, {2, 4}};

{1,2,3,4}/6, {{1,4},{2,3}};

{1,2,3,4)/6,% {{1,2},{3,4}};

{1,2,3,4}/6, € {{1}, {2}, {3}, {4}} and
def

{la 2, 3,4}/05 = {{1, 2, 3a4}}

As well as 63 — 05, equivalence relations 65 and 07 in {1,2,3,4} defined as
Jollows, belong to the set Con({1,2,3,4},¢):

{1,2,3,4} /66" {{1},{2,3,4}} and
{1,2,3,4}/07“2’{{2},{1,3,4}}.
The set Con(Q, A), where
A Y 21 p(z2) - 73 -2 [.-1.3),

- by Theorem 4.1 is the set {03,04,605}.
In the Theory of groups (n = 2) the following proposition is well known:

4.3. Proposition: Let (Q,-) be a group and let ~! be its inversing opera-
tion. Further on, let

LY (H|(H,) 4(Q,)} [:(1) from 2.1].

Then, there is exactly one bijection F of the set Con(Q,-) onto the set
L such that for every 8 € Con(Q,-) the following statement holds

(Vz € Q)(Vy € Q)(zby & z -y~ € F(8)).
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For n > 3 the following proposition holds:

4.4. Theorem: Let n > 3, let (Q,A) be an n-group and (Q, {-, ¢, b}) its
arbitrary associated nHG-algebra. Further on, let

LY H|(H,") € (Q,") Ap(H) = H} [:(2) from 2.1].

In addition, let ~! be the inversing operation in the group (Q,-). Then there
is exactly one bijection F of the set Con(Q, A) onto the set L such that
for every 6 € Con(Q, A) the following statement holds

(Vz € Q)(Vy € Q)(zby & = -y~ € F(9)).
Proof. By Theorem 4.1, using Proposition 4.3 and Proposition 3.1, we con-
clude that for every 8 € Con(Q,-) the following equivalence holds
6 € Con(Q,A) & 0 € Con(Q,-) N p(F(8)) = F(0),

where F is uniquely determined bijection of the set Con(Q, ) onto the
set L such that for every 8 € Con(Q,-) the following statement holds

(Vz € Q)(Yy € Q)(afy & z -y~ € F(6))
[:Proposition 4.3]. Whence, by the following conventions

F(8) € FCon(Q, A)H9 € Con(Q, A) and

F(6) € FCon(Q,)H6 € con(Q, ),
we conclude that for every 8 € Con(Q,-) the following equivalence holds
F(6) € FCon(Q, A) & F(0) € FCon(Q,-) A oF(6) = F(8),

whence, by the definition of the set L [and the set L}, we conclude that for
every 8 € Con(Q,-) the following equivalence holds

F(0) € FCon(Q,A) & F(®) e L
FCon(Q,-) = L], i.e., that the following equality holds
FCon(Q, A) = L.
Restriction F of the bijection F : Con(Q,-) = L defined by
F(8) = F(6) for every 8 € Con(Q, A),

is thus a uniquely determined bijection of the set Con(Q, A) onto the
set L such that for every 6 € Con(Q, A) the following statement holds

(vz € Q)(Vy € Q)(zby & z -y~ € F(9)).
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5. On the lattice of congruences of an n-group

By Proposition 2.1, Proposition 4.3 and by Theorem 4.4, we conclude that
the following proposition holds:

5.1. Theorem: Let n > 3, let (Q, A) be an n-group and let (Q,{-, ¢,b})
bci its arbitrary associated nHG-algebra. Further on, let (L,©,N) and
(L,®,N) be the lattices from Proposition 2.1, and

F:Con(Q,) = L and
F:Con(Q,A) = L
bijections described in the proof of Theorem 4.4. In addition let

8 < 6, F-1(F(6,)® F(6,)) and

6, ~ 6,2 F-L(F(6;) N F(B2)).

Then: (i) (Con(Q,-), ~ , ~ ) is a modular lattice’®; (ii) (Con(Q, A), ~ ,
~ ) is a sublattice of the lattice (Con(Q,-), ~ , —~ ); (i) F is an iso-
morphism of the lattice (Con(Q,-), ~ , —~ ) to the lattice (L,®,N); and
(iv) F is an isomorphism of the lattice (Con(Q, A), ~ , —~ ) to the lattice
(L,o,n).

5.2. Remark: For all 6,,602 € Con(Q,-) the following equalities hold

01 e 02=01002 and
6, —~ 63 =6, N8y,

where
61 0 6,2 {(z,1)(32 € Q)((z,2) € 61 A (2,9) € 62)} and

6110, {(z,y)|(z, ) € 61 A (,1) € 65).

[The sketch of the proof of the proposition (V6; € Con(Q,-)) (V82 €
Con(Q,-)) 6; =~ 03 =60100,: a) (Vz € Q)Fz € Q) z-27' € F(); b)

13Well known modular lattice of congruences of the group (Q, ).
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(Ve € Q)(Vy € Q) (Hz €Q)(z-z7' e F(O)) Az -y~' € F(6h) © F(62) =
z-y leF(@);c)r -y LeFO)OF@:) < (32€Q) (z-27 € F(61) A
z-y~! € F(6,)); ) and d) (z,y) €61 = O & (¢,y) € FTH(F(6L) O F(6)) &
2.yl € F(F-\(F(8) © F(8) ¢ (32 € Q)(z- 2~ € F(@y) Az-y' €
F(8s)) & (32 € Q)((z,2) €01 A (2,y) € 62) & (z,y) € 61 06,]

5.3. Remark: For every n-group (Q,A), n > 3, there is a group (Q,-)
and its normal subgroup (H,-) such that: 1) Q € Q/H; 2) the factor-group
(Q/H,Q) [of the group (Q,-) over H] is a finite cyclic group; and 3) for
every =¥ € Q, A(z?) = z1 ... zn [: Post’s coset theorem, 1940; for
ezample [6,7]]. In [4], Monk and Sioson described the lattice of congruences
of the n-group (@, A), n > 3, up to an isomorphism, by means of the lattice
of normal subgroups of the group (H,-) which are at the same time subgroup

of the group (Q, ).

6. A connection of congruence classes of the given
congruence of an n-group with its associated
nHG-algebras

1. Theorem: Let n > 3 and let (Q, A) be an n-group. Further on, let 0
be an arbitrary element of the set Con(Q, A). Then, for every C; € Q/6
there is an nHG-algebra (Q, {, p,b}) associated to the n-group (Q, A) such
that the following statements hold:

(i) (Cu,) < (@)
(i) (Cy, ) is a 1-groupoid; and 7
(1ii) (Cy, A) is an n-subgroup of the n-group (Q, A) iff b € C;.
Proof. 1° Let e be a {1,n}-neutral operation of the n-group (Q, 4) [:1.2.4,

1.2.2]. Further on, let # be an arbitrary congruence of the n-group (Q, A)

[0 € Con(Q, A)] and let C; [t € Q] be an arbitrary class from the set Q/6.

Then, by Proposition 1.2.5, we conclude that there is a sequence c’l"2 over

Q@ such that
(0) e(c]™ H=1t

Further, assume that the sequence c}~2 over @ satisfies (0). Then, by Propo-
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sition 1.3.3, the algebra (Q, {-,,b}) defined with

(1) z -y Az, &%, y);
(2) w(x)d-f:fA(e(c?"z),z,c’f*% [= A(t,z,c’f‘z)]; and
(3) v A(e ) [= A®)]

is an nHG-algebra associated to the n-group (Q, A).
2° (C4,-) is a subgroup of the group (Q, )
Indeed:

By (1) from 1° and by the definition of the {1, n}-neutral operation of an
n-groupoid [:1.2.2], we conclude that e(c?™?) is the neutral elément of the
group (Q, -), whence, by (0) [from 1°], we conclude that the neutral element
e(c?™?2) of the group (Q,-) belongs to C, i. e., that

(4) e(c]™?) € Gy

Further on, if f is an inversing operation in the n-group (Q, A) [:1.2.6], then
the unary operation ~! in @, defined with

5) = s

1
is an inversing operation in the group (Q, -). In addition, for every § € P(Q?)
the following implication holds

(6) 0 € Con(Q,A) =60 € Con(Q, f)

(:{12); 1.4.4]. Finally, using the statements connected with (1) [from 1°] and
connected with (4)-(6), and also by Proposition 1.2.6, we conclude that for
every z,y € @ the following series of implications holds

—2,92),

T € Ci Ay € C; =ze(ct2) A ybe(ct™?)
=f(c}™2,2)0f (172, e(c}7?)) A ybe(c}?)
S A (2, 2), &% YA (7, (el 2), b2, e(c2)
S A(F (2, 2), &2, y)Be(?)
=z1. yfe(c}” )
=z 1.y ey,



Congruences of n-group and of associated Hosszd-Gluskin algebras 107

whence we conclude that (Cy,-) is a subgroup of the group (Q,-).
3° (Cf—7 ) < (Qa )
Indeed:

Let a be an arbitrary element from @ and let = be an arbitrary element
from C;. Then, by Proposition 1.4.4, Proposition 1.2.6, (1) [from 1°] and
(5) [from 2°], we conclude that the following series of equivalences holds

z€Cy <« ze(cf™?)
@A(a c’l“Q, z)0A(a,ct %, e(cF2))

A(a,ct™ z ) a
A(A(a, iz ),C'f"z,f(C'f‘2 a))0A(a, ;™% f(cI 7%, a))
(A(a' cl a )vc?—2’f( ))oe( n—2)

sa-z-a”l e,

4° (Cy, ) is a 1-groupoid.
Indeed:

By Proposition 1.4.4, (2) from 1°, by the fact that ¢ € Aut(Q,-), and
also since e(c?~2) is the neutral element of the group (Q, -) [:1°], we conclude
that for every z € Q the following series of equivalences holds

z €C;y & zbe(cl™ )
& A( (&%), 3,3 2)0A(e(c}2), (e} 2), &42)
p(2)0(e(cr2)
& p(z)0e(c}?))
& p(z) € Cy
whence we conclude that the statement (ii) holds.

5° Since (Q, {-, ¢,b}) [deﬁned with (1)- ( ) in 1°] is an nHG-algebra as-
sociated to the n-group (Q, A) [:1.3.3], by (i) and (ii), we conclude that for
every z7 € C; there is y € C; such that the followmg equality holds
Azy) =y-b.

Whence, since C; € @Q/6, 8 € Con(Q, A) and, by Theorem 4.1, 8 € Con(Q, -),
we conclude that also the statement (iii) holds.
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