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Abstract

The linear singularly perturbed boundary value problem of the sec-
ond order is considered. The spline difference schemes applied on such
problem give the system of the linear equations with the tridiagonal
matrix of L-form. For small values of the parameter the matrix loses
L-form and the system becomes unstable. At the same time the trun-
cation error goes to infinity when small parameter goes to zero. For
obtaing uniform stability and simple structure of the matrix a fitting
factor of the polynomial form is introduced. Schishkin mesh is used in
order to obtain uniform convergence.
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1. Difference Scheme

Let us consider the following singularly perturbed problem

" Ly = —%" +p(a)y = f(&), s€l=(0,1),

y(0) =a0, y(1) =0y,
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where € € (0,2¢),€0 < 1, is a small perturbation parameter. The functions
p and f are given and we assume

p,f€CHI), p(z)>p*>0.

It is known that the problem (1) has a unique solution y, which in general
displays boundary layers at x=0 and x=1. Under the above assumptions
the exact solution has the form ([1}):

(2) y(z) = v(z) + 9{2),

where '
gV (z)] < M, j=1,2,3,4

. . b b
(@) = Me(e™ s + &~V 8y j=1,234.

p(z) > B% > 0, b = min(B,1). In [4] a difference scheme via cubic spline on
a non-uniform mesh A, '

A:l=zp<z1 <. .<zZp_ 1<z, =1

is derived. The scheme has the form:

(3)
up = Qp, Up = Qy,

where

Ru; = i i1+ ch-uJ- + 'r';'uJ-H

Qfj =g fi-1 + & fi + 4 fin
and ) " 2

- i—1Pj—1 1 + Di+1y 1
5 =~ - SR, vy =~ -

(4) < r;=(1+—f§z~f),%j (1+52),

- hith;_

| 6521’ q] 652’ 9§ = 54—,

h; = z; — zj;; and g; = g(z;). The corresponding matrix has the L — form
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when h?_lpj_l < 6¢? and h?pj_H < 6€2. This is a consequence of the maxi-
mum principle which the problem (1) satisfies. For small ¢ these inequalities
require forbiden small step of the mesh. For the clasical difference scheme
the situation is diferent. The scheme has the form (3)([6]) where

(5) Ty = e ri =

and the matrix has L — form independently of . But the truncation error
for bouth spline and central difference scheme becomes infinity when € goes
to zero. In [6] the central difference scheme (3) (5) is considered and the
Shishkin mesh is used in order to avoid the mentioned dificulties. The
error estimate of the form O(n~2In%n) is proved. In this paper we applay
the Shishkin mesh on a spline approximation for the same purpose. The
stability of the scheme is achieved by introducing the fitting factor near the
second derivative (artifical viskosity). In [8] a spline difference scheme with
fitting factor is derived. The fitting factor has the exponential form which
povide the uniform convergence. The scheme has the form (3) with

( r—__(l_w) 1 r+__(1_ﬁz"’ﬂzi)i
i - 6o;1 hj—1° "3 = 60741/ h;>

h2_1pi\ 1 h2pi\ 1
] T]c-=(1+“'§lj—)7g+(l+—'77)—

(6)

q_.- — hj1 q-}- — hj qq _ h.z'+h1‘—1
\ 17 Goj—1 2 641 1 30;

We wont to obtain the second order of the convergence which is the property
of spline collocation and L-form of the matrix. Because of that by analyse
of truncation error we can see that ¢; should be determined so that r— > 0,
rt* > 0 and o; — e = O(h?) for small €. Thus, o; = h?p;/(6p;), where
p; =1+ O(h?) and p; > 1 satisfies the requirements. The constants in the
asymptotic equalities must be independent of € and h;. In [8] p; is dtermined
so that the truncation error for boundary layer functions vanishes. Here, we
use the simpler fitting factor since the mesh has the special structure which
made it possible for us to avoid difficulties connected with boundary layer
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functions. Our choise is:

g = h?pj/ﬁ, 0<z; < 1/2,
(7)

g = ?_11)]'/6, 1/2 < T <1

Throughout the paper M denotes any positive constant that may take
different values in different formulas, but that are allways independent of &
and discretization mesh.

2. Construction of the mesh

In the literature, several types of special graded meshses have been intro-
duced for singularly perturbed two-point boundary value problems ( see [3],
[2], [5]). The mesh from [5] is piecewise equidistant and consequently much
simpler than the other meshes. We shall use that mesh. Given a positive
integer n divisible by 4. We divide the interval [0, 1] into the three subinter-
valas

0,8, [61-06, [1-o1].

We use equidistant meshes on each of these subintervals, with 1+n/4 points
in each of [0, §] and [1—4, 1], and 1+n/2 points in [§, 1 —4]. Let b = min{g,1}
and § = min{1/4,4b"1elnn}. Let

io = n/4, Tiy = (5, Tn—iy = 1-— (5,

and
hi=ziz1—zi=46n"Y i=1,2, . ig,n—io+1,...,n
and h; = 2(1 — 26)n~! otherwise. ‘
We assume that 6 = 4b~!eInn since in the oposite case the method can
be analysed using standard techniques. Thus we have that

h; =16b7len llnn, i =1,2,..,ip,n —ig+ 1,....,n

and ,
hi=21-20n" Y nl<h <2t i=ig+1,.,n—ig.
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3. Convergence results

We solve problem (1) by using scheme (3),(6 ) (7) on the mesh specifed in
the previous section. Thenr,_; ., < 0and rw_l < 0. The others r;” and r;-L
are equal to zero. In that way the system (3),(6),(7) reduces to the following
simple form:
(w0 = ao,
U; = %Qf,’, 1=1,2,..,i0 — 2,

c . + - .
Tio—1Uig—1 + Tj 1 Uig = Qfip-1,
§ Uy = %in, 1 =10,...,n — %p,

- C . - .
rn_i0+1un—io + rn_i0+1u‘n—zo+1 = Qf‘n—-io+1,

(8) ’U,,;=,’.L9in, i=n—1i+2,.,n—1

\ Unp = O1.

The following theorem holds.
Theorem 1. Let p, f € C*(I), p(z) > B% > 0. Let u; be the solution of
the system (8). Then

ly(z;) — ui| < Mn~2In’n.

Proof. The solution y(z) € C*(I). The estimate of differences e; = y; — u;
we will obtain via the expresion

(9) Re; = 7j(y) = 15(9) + 75(v).
The truncation error 7i(y) = Ry; — Q(Ly); has the form:
7i(y) = $2i+1/hi — paifhic1 + d1i

where

$ai = o, + h?—1( + — —17;/6),

301_ 60,
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hA_ . .
b1 =1+ 22 = (TLi + P24,
i

Ji—-1 a;
bri = ¥ OO /(4 — B, 75 < Os < Tiaa,

where n; = y/(0; — €2). According to the exact solution and the estimate
In:| < MAh? we have

IT:(9)]l < M(en'Inn+n~1),i=1,2,...,n ~ 1.
Further, using |n;| < Mh?¢~2 we have
I:(v)| < Mn~llnn/e,i =1,2,..40 — 1,
|i(v)| < Mnllnn/e,i=n—ig+1,..,n — 1,

I < Mnli=ig+1,...,n—iy— 1.

. h; h 2h?
Since |r{| = |3f' : h;; hs

(8) we obtain that theorem holds for i =1, ...,4g — 2.

i=l| < M/h;_1 from the second group of equations

For index i = ig we have
7i(v) = r{v; — g F; — ¢{F; — ¢ F;,
where F; = —e?v! + p;v;. The corresponding estimate is

e—Iiob/E n—2
<M <M .
|T( )‘ - hi—l hi—l

From the expresion of r{ and fourth group of equations in (8) we obtain
state of the theorem. After that, from the third group of equations (8) we
get estimate for i = iy — 1. Finaly, we proved the state for the first half of
the interval I. The proof for the second half of the interval is the same.

4. Numerical results

In this section we present some numerical experiments using the schemes
described in previous theorem. Our example is taken from [1].
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Example 1.
k n
16 32 64 128 256 512 1024
3 | 1.72(-2) | 6.24(=3) | 2.14(-3) | 7.11(-4) | 2.32(-4) | 7.29(=5) | 2.34(-5) | Emn
1.46 154 1.58 1.62 1.67 Ord
4 | 1.72(=2) | 6.24(3) | 2.14(-3) | 7.10(-4) | 2.32(-4) | 7.32(-5) | 2.4(-5) | En
1.46 | 1.54 1.59 1.61 1.66 Ord
5 | 1.72(-2) | 6.23(=3) | 2.14(-3) | 7.10(-4) | 2.32(—4) | 7.54(—4) | 2.50(-5) | En
1.46 1.54 1.59 1.62 1.62 Ord
6 | 1.72(—2) | 6.24(=3) | 2.14(-3) | 7.10(-4) | 2.32(-4) | 7.53(-5) | 2.63(<5) | En
1.46 1.55 1.59 1.60 1.61 Ord
7 | 1.72(-2) | 6.24(—3) | 2.14(-3) | 7.10(-4) | 2.32(=5) | 7.54(-5) | 2.84(-5) | En
1.46 1.54 159 1.61 1.62 Ord
8 | 1.72(-2) | 6.24(-3) | 2.1a(=3) | 7.17(-4) | 2.31(=5) | 7.53(=5) | 3.19(=5) | En
1.46 | 1.55 1.59 1.59 1.61 Ord
9 | 1.72(-2) | 6.24(<3) | 2.14(-3) | 7.20(-4) | 2.31(-5) | 7.54(=5) | 3.36(-5) | En .
1.46 1.55 1.57 1.64 1.62 Ord
10 | 1.72(=2) | 6.24(=3) | 2.15(-3) | 7.10(—4) | 2.43(—4) | 8.37(=5) | 4.27(~5) | En
1.46 1.54 1.60 1.54 1.54 Ord
11 | 1.72(=2) | 6.24(=3) | 2.15(-3) | 7.10(-4) | 2.48(-4) | 7.54(-5) | 5.56(-5) | En
1.46 1.54 1.60 152 1.71 Ord
12 | 1.72(-2) | 6.24(-3) | 2.13(=3) | 7.24(-4) | 2.52(—4) | 1.03(-4) | 6.87(-5) | En
' 1.46 1.54 1.56 1.52 1.28 Ord
13 1 1.72(=2) | 6.24(=3) | 2.14(-3) | 7.45(—4) | 2.61(-4) | 1.00(-4) -| 9.59(-5) | Fn
1.46 1.54 152 1.51 1.38 Ord
14 | 1.72(-2) | 6.30(—3) | 2.18(—3) | 7.24(-4) | 2.96(-4) | 1.27(-4) | 1.31(-4) | En
1.45 153 1.59 1.29 1.22 Ord
15 | 1.72(=2) | 6.33(=3) | 2.20(-3) | 7.45(—4) | 3.22(-4) | 1.63(-4) | 1.67(-4) | En
1.44 1.52 1.56 1.21 98 Ord
16 | 1.72(-2) | 6.23(-3) | 2.14(-3) | 8.39(~4) | 2.48(—4) | 2.86(—4) | 2.78(-4) | En
1.46 1.54 1.35 1.75 error Ord
17 | 1.72(=2) | 6.33(=3) | 2.14(-3) | 7.33(-4) | 4.57(-4) | 3.64(-4) | 4.21(4) | En
Table 1. Scheme (8).
2 n 2 2 _
—e“y" +y+cos®mz + 2en“cos2rz =0, z€[0,1],

The exact solution has the form

y(z) =

— T—

=1
1+e

1

eec +e ¢

— COS2 ™.
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We denote by E,, the maximum of |y(z;) — u;|,5 = 0(1)n. Here [ug, u1,
... ups1]T is corresponding numerical solution to the system (8)(7). Also,
we define in the usual way the order of convergence Ord for two succesive
values of n with respective errors &, and Fop:

Ord = log £, — log E,,

logng —logn ’

where ny = 2n. Different values of €2 = 2711 ¥ 2=% and n are considered.
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