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Abstract

A bisemilattice valued fuzzy set generates two collections of level
sets, corresponding to each of two orders existing in a bisemilattice.
Set union of these two collections is considered to be a binary block-
code. Starting with a finite bisemilattice, we present an algorithm
for the construction of a bisemilattice valued fuzzy set which has the
following properties: it has maximal number of levels (i.e., maximal
cardinality of the corresponding block-code) and minimal domain.
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Bisemilattices

A bisemilattice B = (B, A, V) is an algebra of type (2,2), where (B, A)
and (B, V) are commutative and idempotent semigroups, i.e., semilattices.

There are two orderings corfesponding to a bisemilattice (B, A, V):
z<yyifand only if z Vy =y and
z<pyifandonlyifz Ay =z.

Further, z >y y stands for y <y z,‘and z2ay for y < z.

Starting with two orderings, a bisemilattice (B, A, V) can also be consid-
ered as a relational system, as follows. (B, <y, <) is a bisemilattice, if B is
a nonempty set and <y, <a are ordering relations on B, such that (B, <y) is
a join-semilattice (V-semilattice), i.e., the poset in which every two-element
subset has the least upper bound, and (B, <,) is a meet-semilattice (A-
semilattice) in which each two-element subset has the greatest lower bound.

A diagram of a bisemilattice consists of two Hasse diagrams, one for each
ordering. In drawing diagrams, the following convention is used: if z <y ¥
and z <, t, then z is below y, and z below t¢.

Meet-irreducible elements

An element a of a poset (P,<) is said to be meet-irreducible if it is
different from the top element (if it exists in P) and if the following holds:

a =inf{b,c} impliesa =bor a =c.
The notion of a join-irreducible element is introduced dually.

An element of a semilattice is meet-irreducible (join-irreducible) if it is
meet-irreducible (join-irreducible) in the semilattice considered as a poset
(under the induced ordering).

I Every element of a finite meet-semilattice (join-semilattice) is equal to
a meet (join) of some meet-irreducible (join-irreducible) elements.

We say that an element a of a bisemilattice (B, V, A) is meet-irreducible
if it is meet-irreducible in at least one of semilattices (B, V) and (B, A).

We use the notion of a principal filter a1 in a poset (P, <): for a € P,
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at:={z € Pla<z}

Throughout the paper, if (B, V, A) is a bisemilattice, then principal filters
on semilattices (B, V) and (B, A) are considered as sets (not as posets).

Fuzzy sets

The notion of a fuzzy set is well known. We advance some notations and
properties (see (3]). Let P be an ordered structure (real interval, lattice,
poset, etc.) with the order < and A # 0 a set. Then, themap A: A —» P
is a P-fuzzy subset of A (or: a P-fuzzy set on A). For p € P, a level set
(level, p-cut) of A is a (crisp) subset A, of A4, such that z € A, if and only
if A(z) > p. The characteristic function of A, is denoted by A, and is called
the level function of A. As usual,

A(X):={p€ P|p= A(z) for some z € X}.

If A is a P-fuzzy set on X, then binary relation ~ on P, defined by

p = q if and only if A, = A,

is an equivalence relation on P.

II ([7]) If A is a P-fuzzy set on X, then:

a) for any p,q € P, p = q if and only if pt NA(z) = ¢t NA(z);

b) if [p|~ is the =-class to which p belongs, then the relation <, defined
by

[plx < [g]~ of and only if A; C Ap
is an order on P/~;

c) if p= A(z) for some z € X, then p = \/[p|n-

The following two propositions are proved in [6].

III Let A : X — P be a fuzzy set on X, where P is a finite meet-
semilattice. All the p-cuts of A are distinct if and only if the following
hold: at most one meet-irreducible element of P is not in A(X), and such
an element, if it exists, is maximal in P; further on, all meet irreducible
elements from the semilattice P\ {m} also belong to A(X). -



82 » V. Lazarevié, B. Seelja

v Let A : X - P be a fuzzy set on X, where P is a finite join-
semilattice. All the p-cuts of A are distinct if and only if all meet irreducible
elements from the semilattice P different from the greatest element belong

to A(X).

Bisemilattice-Valued Fuzzy Sets

A bisemilattice valued fuzzy set (B-fuzzy set) is introduced in (['3])
as a mapping A : X — B from a nonempty set X to a bisemilattice
B = (B,A,V).

For each p € B, there are two level subsets defined as follows:
A) ={z € X | A(z) >y p} and
A} = {z € X | A(z) 24 p}.
The corresponding level functions are:
A (z) =1 if and only if A(z) >vp and
Z;,\(Z‘) =1 if and only if A(z) >, p.

Thus, for a B-fuzzy set A : X — B, there are two families of level
subsets:

Ay ={A] |pe B}, and A} ={A4A) |pec B}.

Obviously, a bisemilattice valued fuzzy set determines two semilattice
valued fuzzy sets with the same domain and co-domain. Hence, we have the
following properties.

If A: X — B is a bisemilattice valued fuzzy set, then rela.tlons =y and
=, defined on B by

p =y ¢ if and only if A} = AV
p=n q if and only if A) = Ag,
are equivalence relations.

For p € B let [p]x~, and [p]x, be the corresponding equivalence classes.
Then, p = V/V[p]ay and p = \/"\[p]w, are closure operations on bisemilat-
tices (B, <v) and (B, <) respectively.

The following proposition is an immediate consequence of the fact that a
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bisemilattice valued fuzzy set determines two semilattice valued ones. There-
fore, the proof follows by the corresponding proposition in [7].

Proposition 1. Let A be a B-fuzzy set on X. Then:
a) if there is the smallest element (0) in (B,A), then A) = X;

b) if p <v q, then AY C A}, and if p <A q, then A} C A);

c) for everyz € X,
Az) =\V{pe B|A, =1} and A(z) =V {pe B|A, =1} (i, in
both equalities the join on the right exists and is equal to A(z)). O

Results: B-fuzzy Sets and Codes

Let B be a finite bisemilattice and S = {1,...,n}. To every B-fuzzy set on
S there corresponds a binary block-code V' of length n, determined in the
following way.

For p € B, let v;’ ‘= Z...%n, SO that z; ;= Zz(i), t=1,...,n. Let
VYV := {v] | p € B}. Obviously, each v, can be identified with 74—;’ , since
both represent the characteristic function of the p-cut, level set A;’ . There-

fore there is a bijective correspondence between ~y-classes [p]x, of A and
code-words Uz\», . Consequently, relation <y on V'V, defined by

vy <v vy if and only if vy (i) < v;/(3) for every i € {1,...,n},
is a partial order (for example, 11101 <, 00001).

Replacing V by A and repeating the same procedure in an a.nalogous way,
we obtain the set V" := {v} | p € B}, where v} = z,...%, corresponds to
—A
Ay

Let Vi := VY U VA, V is the block-code which corresponds to A. We
recall that by the construction the number of code-words in Vg coincides

with the number of levels of A:

1) [Val = 145 U Ap|.

Example 1.
Semilattice (B, V, A) is given by two diagrams in Figure 1.
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a b c d
c
b \V
(B,A)
(va) d a
Fig. 1

Let -
A= ( b c ¢3i )
be a B-fuzzy set on S = {1,2,3}. Then
Ap =1{0,{1},{2},{2,3}} and Af = {{1},{2},{3},{1,2,3}}.
Hence,
V¥ = {000,100,010,011} and V" = {100,010,001,111}, and thus
V5 = {000,001, 010,100,011,111}. O

In the following we discuss the problem of finding codes of maximal car-
dinality induced by B-fuzzy sets for a given bisemilattice B. We also present
an algorithm for the construction of such fuzzy sets and of the corresponding
codes.

Let (B,V,A) be a bisemilattice. If p € B, then ptV and pt" denote
principal filters generated by p in (B, V) and (B, A), respectively. Recall
that these filters are here considered as sets, without any ordering. Further,
let

FY:={ptY|pe B} and F":={pt"|pe€ B}.
In other words, " and F” are collections of principal filters on (B, V) and
(B, A), respectively.
Lemma 1. |FY| = |F*| = B.

Proof. Obvious, since every p € B generates a filter in each semilattice. O
Recall that for A: S — B,
A(S) ={p€ B|p=A(z) for some z € S}.

Lemma 2. Let A: S — B be a B-fuzey set on S, and p,q € B. If ptV
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NA(S) = gt" NA(S), then the corresponding code-words vy and v} are
equal.

Proof. pt¥ NA(S) = ¢t" NA(S) if and only if for every r € B
r € pt¥ NA(S) « r € ¢t" NA(S) if and only if for every z € S
A(z) >y p « A(z) > q if and only if for every z € S

x € Ay «— z € A} if and only if for every z € S
Z:(x) =1 :4_2(:1:) =1 if and only if

V o A
Vp = Vg O

Corollary 1. Let A: S — B be a bisemilattice valued fuzzy set and p,q €
B. If ptV=qt" then v = v;. O

If V5 is the binary block-code which corresponds to B-fuzzy set A, then
obviously |V¢| < |FY U F*|. By III and IV, a bisemilattice valued fuzzy
set A has the foregoing number of different levels (code-words of V5), if all
meet-irreducible element from the bisemilattice B are in A(S). It is easy to
construct a B-fuzzy set which fulfills this condition: A could be the mapping
of the set S onto B. However, our aim is to obtain a fuzzy set whose co-
domain is a minimal extension of the collection of meet-irreducible elements
of B. Hence, the domain of such fuzzy set would be the smallest possible,
in other words the length of the corresponding code would be minimal.

In the following we present an algorithm for the construction of a B-fuzzy
set, B being a fixed finite bisemilattice, with maximal number |7V U F"| of
levels (code-words) and minimal domain.

ALGORITHM

Let (B,V,A) be a given fixed finite bisemilattice and J = {ai,...,an} the
set of its meet-irreducible ¢lements.

1. Further, let § = {1,...,n} (note that n = |J|) and A a bijection
from S to J. Obviously, A is a B-fuzzy set on S with distinct levels (by I1I
and IV). If the number of levels is maximal, i.e., if |Vz| = [FY U F"|, then
the procedure is over.
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2. If the number of levels of 4 is less than |FV U F"|, then we construct
a new B-fuzzy set in the following way. Let

(FYY = P\ (Y AFD, (FNY = PO\ (FY N FD).
Further, divide each ideal from (FV) and from (F")' in two parts; the first

with meet-irreducible elements or the empty set, and the second with all
other elements of that ideal or the empty set, as follows:

(FV)5 = {(es,0) les=fNJcgUc=§f, for some f € (F¥)'};
(FN, :={(ds,d) | dj =gNJ,dyUd=g, for some g € (F)'}.
3. Now we form a table, first row of which consists of pairs from (FV)’,.

4. To form the second row, we look for the members of (F7)’; which
have the same first part as some elements from the first row, and put them
in the same column. In all other columns of the second row we put the sign
*.

Hence, after two rows, columns of the table are either of the form (cy, ¢),
(c7,d) and *, or they have elements (cs,c) and *. Note that elements from
(F); in the second row of the table are uniquely determined, since by
proposition I, distinct filters could not have the same set of meet-irreducible
elements.

Let s;r be the number of signs * in the second row. Then the number
of different levels for the fuzzy set A, which is a bijection from § to J, is by
the above construction

(2) [Vl = |1FY N FMN+ 2811 + ((FY)5| = s11)-

By the assumption in 1., this number is less than |F¥UF"|, and we proceed
to the following step.

5. The third row of the table repeats signs * in the same columns as in
the second row, and in the remaining columns we put symmetric differences
(A) of the second coordinate of pairs situated above (in the same column):
(er1,¢) and (cy,d) are followed by cAd. If more than one column have equal
sets in this row, then we underline all but one of them. Denote by K the
set-union of singletons of the third row. Each column having an element in
K is also underlined. Let £;7; be the number of underlined columns in the
third row.
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6. If |JUK|=m and §; = {1,...,m}, then a bijection 4; : §; — J;,
J1 = JUK, is a fuzzy set with distinct levels, and the number of these
levels and code-words of V5 is by the construction |V | = |V4| + ¢ty If
this number is equal to |F¥Y U F"|, the procedure is over, otherwise we
proceed to the following step.

7. The row four of the table has signs * in all columns in which the
third row has, and also in columns which were previously underlined. The
remaining columns are equal as in the third row, and by the construction
they all have two or more elements. Denote by L the union of two-element
sets (if any) in this row and underline all columns of the row containing
some element from L. Now, add to J; any element ¢ with maximal number
of appearances in L, and underline all columns of the row containing a; the
union of non-underlined two-columns denote by L;. If there are elements in
L; with more than one appearance, repeat the procedure. Otherwise, add
one element from each non-underlined column to J; U {a}.

The number of levels (code-words) increase, and if it is not maximal,
then the procedure from 7. applies to the last row.

This process continues until maximal number of code-words is obtained.

8. In the co-domain of every fuzzy set obtained by the foregoing proce-
dure, look for maximal elements of the semilattice (B,A) which fulfill the
assumptions of proposition IIT and which are not meet irreducible in (B, V)
(by IV). Then eliminate one of them, provided that this elimination does
not generate equality of distinct filters used in the algorithm.

Any of fuzzy sets obtained in this way is a result of the algorithm.
Example 2.
Bisemilattice (B, V, A) is represented by two diagrams in Fig. 2.
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(B,A) h
Figure 2

Applying the above algorithm, we get the following.
FY = {atV, b1V, eV, itV
A = {aTA’ bTA, CTA, e ,jTA}'

All the above filters are sets and it is easy to see that only two of them
are equal, one in each collection. Namely, dtV= {a,b,d} = at". Hence,

IFYNFA =1
(FYY = {{a},{a,b},{a,c},{a,b,c,e},{a,c, f},{a,b,c,d,e, g},
{a,b,c,e, f,h}, {a,b,c,d, e g,%,5},{a,b,d,i}};
(FN) = {{8},{c}, {d}, {b,c;e, £, 4,5} {c, £, i}, {a,b,¢,d, 5, g},
{a,b,c,d,e, f,g,h,i,7},{bc, 5}, {i}};
J= {b’c’d’f’i};
|FYUFA = 19.
Now, the mapping
- 1 23 45
A= ( b cd f 1 )
is a B-fuzzy set with distinct levels. It is easy to check that the number of
these levels, i.e., the code-words of the corresponding block-code is given by
[Val =
The table described by the algorithm is given in the following.

Y (mi {a}) ({b ) {a}) ({T}: {a}) ({b) c},{a,e}) ({Ca f}: {a}) b: c,d}, ra'y €, 9
1 * ({ b1, 0) * ({b,c},{j}) * b,c,d}, {a, 9,7
11 * {a} * {a,e,35} * {e. 5}
IV * * * * * {e,j}

]

s |




Constructing maximal block-codes by bisemilattice valued fuzzy sets 89

({b’ c7 f}!{a, e, h}) ({b’ c!d7 i}’{a? e’g’j}) ({b) d)i}’{a})
- * * [V = 16
* * * |V71| =18
B * * * : IVKg;)] =19

The number of code-words |V;| = 16, can be checked by formula (2).

Since there is one singleton ({a}) in the third row, i.e., K = {a}, it
follows that J; = JU K = {a,b,¢,d, f,i}, and the fuzzy set

- 1 23456
Al—(abcdfi)

has 18 distinct levels, code-words of V7 (step 6. of the algorithm).

Finally, there is one two-element set {e,j} in the fourth row. By step
7., there are two possibilities for a fuzzy set with 19 levels:

— 1 23 456 7 —n 1 23456 7
A2—(abcdefi) a'ndA2_(a,bcdfz'j)'

Maximal number of code-words is 19. Since there is no maximal element
in (B, A) fulfilling assumption of proposition III, the procedure is over. O

Maximal number of code-words is always reached by the algorithm. In-
deed, this number is obtained at least when all elements from B are used.
We prove that the obtained code has minimal length.

Proposition 2. For a fized finite bisemilattice B, the code V3 obtained
by the above algorithm has minimal length in the set of all mazimal codes
corresponding to B-fuzzy sets.

Proof. The co-domain A(S) of a B-fuzzy set A : § — B with distinct levels
contains:

- all meet-irreducible elements from B with exception of one maximal if
it satisfies particular conditions (by proposition III);

- for any ptY and qT_A, elements which are not meet-irreducible, such
that ptY NA(S) # ¢t NA(S) (by Lemma 2).

The co-domain of a fuzzy set obtained by the algorithm is by the construc-
tion contained in a co-domain of every fuzzy set which satisfies the above
conditions. Since it is a bijection, its domain and thus the length of the
corresponding code is minimal O
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