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Abstract

Real dimension subgroups of finitely presented groups are given
an analytic interpretation in terms of Chen’s iterated path integrals.
Some of the algebraic properties of Chen’s integrals are analogous to
the algebraic properties of Fox derivatives in the free group.
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1. Dimension Subgroups

Dimension subgroups occur naturally in the study of group representations.
Their importance stems also from the role these subgroups play in the con-
struction of the Lie algebra associated with a group, a crucial step in the
introduction of Lie methods into combinatorial group theory. However, for
the purpose of this note, we shall look at the dimension subgroups as related
to representations.
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Consider a representation p of the group G over a field F, that is, a homo-
morphism p : G — Autp(V) where V is a vector space over F. (Throughout
this note we shall assume that the field F is of characteristic 0.) Note that if
p is a representation of G by automorphisms of V', then V naturally acquires
the structure of a module over the group algebra FG, where the module ac-
tion is obtained by exteding the action gm = p(g)(m) by linearity. Actually,
the notion of representation of a group by automorphisms of a vectors space
is equivalent to the notion of module over the group-algebra. We shall use
them interchangeably. If V is a finite-dimensional vector space, then p is
a representation of G by matrices over the field F, and we can talk about
unitriangular representations as one particularly desireable case. (In that
case, G is represented by, say, upper triangular matrices with all entries on
the diagonal equal to 1.) In order to generalize this desireable situation to
the infinite-dimensional case, we observe that if the group is represented
by unitriangular matrices, then the FG-module V must have a series of
submodules

V=Va2Va12...2VW=0

such that the group acts trivially on each of the factors V;/V;_;. The exis-
tence of such a series of submodules is the condition that defines an n-stable
representation. The notion of an n-stable representation is a generalization
of the notion of representation by unitriangular matrices.

One way to study the n-stable representations of a group G is to ob-
serve that in the category of representations of G' (which is equivalent to the
category of FG modules), the class of n-stable representations forms a sub-
category. It is an easy exercise to check that the property of being n-stable
is preserved under module homomorphisms. Furthermore, it is not difficult
to see that this category has a universal object which is in a technical sense
the most general, canonical n-stable representation of the group G: any
n-stable representation of G must factor through the canonical one. The
kernel of the canonical n-stable representation is contained in the kernel of
any n-stable representation. Thus, for example, if we want to know whether
the group G' may be given a faithful n-stable representation, we could (in
principle) compute the kernel of the canonical one and see whether it is triv-
ial. Since the kernel of the generic n-stable representation must be contained
in the kernel of any such representation, the existence of a faithful n-stable
representation is clearly equivalent to the kernel of the canonical one being
trivial. Another way to use the kernel of the generic n-stable representation
is to observe that a representation is n-stable only if its kernel contains the
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kernel of the generic one. We thus have a necessary condition for checking
whether a given representation is n-stable.

Given a group G and field F, the kernel of the canonical n-stable rep-
resentation is called the n-th dimension subgroup of G over F. The n-th
dimension subgroup is denoted by Dy, y(G); or simply D,(G) if the ground
field is clear from the context. The task now becomes to find a more explicit
description of D, p(G).

Consider an n-stable module V over FG, and let A denote the aug-
mentation ideal of the group algebra FG, that is, the kernel of the natural
projection FG —+ F induced by G -+ 1. Thus, A is the ideal generated by
the elements of the form g — 1, where ¢ € G. Now V is stable, so the action
of the group algebra is trivial on each of the quotients V;/V;_,, where V; are
the submodules that witness the stability of V. Thus, for z € V; and g € G,
we have that gm = m modulo V;_;. In other words, (g — 1)V; C V;—;. This
means that the action of FG on the quotient V;/V;_; is trivial if and only if
AV; C V;_;. It follows that

AV c Vn-—l
AV CV, s
A"V CVy,=0.

Hence, if V' is an n-stable module, then V is annihilated by A™. Con-
versely, any module annihilated by A" is n-stable, since we may take the
stable series to be the sequence V; = A" ™'V, i =0,...,n. In this case,

V=Va2Vo12---2W=0

and it is clear that FG acts trivially on each of the quotients V;/V;_1, because
AV; C V;_ is true by definition of the submodules V;.

From these observations, it is an easy exercise to verify that the kernel
of the canonical n-stable representation p is precisely the set of elements g
of G which are such that g — 1 € A®. Thus we have:

Dn(G) =GN (1+A").

This is the group-algebra characterization of the dimension subgroups.
It is also possible to obtain an internal, entirely group-theoretical charac-
terization of the dimension subgroups. Over a field of characterstic 0, this
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characterization is known as Jennings’s theorem. It states that for every
finitely generated group G and any field of characteristic 0, we have:

GN(1+A™MG) =vVm(G)={geG : (ImeN) g™ € v,(G)}.

There are at least two different proofs of this result. One is the original
Jennings’s proof, and the other is outlined in [7] and uses Moran’s theorem
[6] (cf. also [8]). The assumption that the group be finitely generated is not
an important restriction to the generality of the theorem. Indeed, to prove
that Jennings’s theorem is valid for, all groups, it suffices to know that it is
true for all finitely presentable groups. This is the subject of the following
lemma.

Lemma 1. If Jennings’s theorem is true for finitely presentable groups,
then it is true for all groups.

Proof. We shall use the technique of lifting to the free group ring. For the
details of this method we refer to [3]. Let G = F/R be a presentation of the
group G; thus F is free and R is normal in F. Suppose that ¢ € D,(G);
this means that ¢ — 1 € A™(G). This relation lifts to the relation w — 1 €
A™(F) 4+ Apg in the free group ring QF, where A(F') is the augmentation
ideal of QF and Apg is the relative augmenation ideal of R, that is, the
kernel of the natural projection QF — Q(F/R). This involves only finitely
many generators and relators, so it follows that there are finitely generated
subgroups Fy C F and Ry € RN Fp such that w—1 € A"(Fg)—i—ARgo. Since

Fy/ Rg ° js finitely presented and the image of w belongs to D, (Fo/ R(I;") =

\/'yn(FO/R(I;"), it follows that w™ € ’yn(Fo)Rg0 for some m, and hence g™,
being a homomorphic image of w™, belongs to v,(G). Therefore, D,,(G) =

'Yn(G)- O

Thus, dealing with finitely presentable groups is not a restriction at all,
as far Jennings'’s theorem is concerned; and it has certain advantages, inas-
much as it allows us to introduce analytic tools into the study of dimension
subgroups.

The purpose of this note is to provide a further description of dimension
sugroups of finitely presented groups. We shall see that it is possible to
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obtain an analytic interpretation of real dimension subgroups, and that our
interpretation in terms of Chen’s integrals can be tied to the theory of Fox
derivatives in the free group ring.

2. The Analytic Interpretation

To begin with, let us recall the following classical result:

Lemma 2. (¢f. [2], 14.1.) Every finitely presentable group is the funda-
mental group of a smooth compact connected manifold.

Thus, every finitely presented group may be realized as the fundamental
group of a manifold, so that the question we are interested in can be formu-
lated as follows: How do the dimension subgroups relate to the topological
or analytic structure of the manifold?

A straightforward application of Chen’s ‘r; de Rham theorem’ which
identifies the linear functionals on the augmentation quotients of the group-
algebra of the fundamental group of a smooth manifold with certain integra-
tion maps, called iterated path integrals, shows that the n-th real dimension
subgroup consists precisely of those loops that are neglected by all iterated
path integrals of length at most n—1. Although the proof of the actual result
is quite simple, we need to develop some terminology in order to formulate
this characterization of dimension subgroups.

Suppose G is a finitely presentable group and M is a smooth, compact,
connected manifold such that G = n1(M). Consider the set E'(M, A) of
A-valued 1-forms on M, where A is an associative algebra. (We shall want
to specify that A = R later, but the following definition is independent of
such a specification. In particular, it is occasionally convenient to be able to
take A to be an algebra of matrices over reals.) Given a piecewise smooth
path A : [0,1] = M and l-forms wy,...,w, € E'(M,A), an iterated path
integral of length r is defined as

1 1 1
Juwnwnewr = [ /t ---/tr_lfr(t,-)fT_l(tr_l)---fl(tl)dtrdtr_l--.dtl

where fj(tj)dtj = A'wj.
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Let [ wiws- - wr denote the function

A——)/wlwz---wr
A

and let H%(B;(M)) denote the linear span of those functions [wyws...wy,
r < s, which are homotopy functionals (the value of the integral depends
only on the homotopy class of the loop). We can now formulate Chen’s
theorem:

Theorem 3. (K.T. Chen, cf. [1],[4]) Let M be a smooth manifold and let
A denote the augmentation ideal of the group ring Rmy (M). Then
H'(By(M)) = Hom(Rm, (M)/A°*", R).

We are now ready to state the analytic description of real dimension
subgroups.

Theorem 4. Let G be a finitely presentable group and let M be a smooth
manifold such that G = m1(M). Then

Dn(G)={)\€G : /wl---wr=0, 0§r<n,wj€E1(M)}.
by

In other words, the n-th real dimension subgroup of the fundamental group
of a smooth manifold consists of the homotopy classes of loops A such that
every iterated path integral of length less than n vanishes over \.

Proof. The lemma follows immediately from Chen’s theorem and the identity

D,(G) = GnN(1+A™
= GN(1+nN{ker(pp) : ¢ € Hom(RG/A™ ,R)})
where p is the projection p : RG — RG/A™. But, this is clear: for if
9—1 ¢ A", then p(¢g—1) is a non-zero element of the finite dimensional vector

space RG/A™ and hence cannot be annihilated by every linear functional .
O

An application of Jennings’s theorem now yields:
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Corollary 5. Let G = m1(M) be as above. Then the following are equiva-
lent:

1. G 1is torsion-free nilpotent of class < n;
2. G admits -a faithful n-stable representation;

3. For every non-identity element g € G there are I-forms ws,...,w,
(r < n) such that fgwl---wr # 0.

3. Fox Derivatives

Let F' be the free group on the generators {z1,...,zn}. Let RF denote the
free group algebra over the field of reals and e the augmentation map given
by the linear extension of e(w) = 1 (w € F). The standard way to define
the Fox derivatives in the free group algebra is to consider the maps 0; with
the following properties:

1. 6,'(1:]') = 51']‘
2. 0i(uwv) = ud;(v) + e(v)0;(u), for all u,v € F

3. 0; is a linear mapping.

The operators 9; are known as Fox derivatives (for detailed treatment of Fox
derivatives and their applications, ¢f. [3]). Since A = kere is a free RF-
module on the generators {z; — 1,...,z, — 1}, it follows that any element
of the algebra RF can be uniquely written as

u = e(u) + Z;0;(u)(z; — 1).

Repeated application of the formula above leads to the following identity,
valid in RF/A"1:

v = e(u)+
+X; ed;(u)(z: — 1) +
+Xi 63{3]'(11)(2:,' - 1)(2:]' -1)+
+3; jx €0;0;0c(u)(z; — 1)(zj — 1)(zpg — 1) + -+~
+Xiy e €05 - iy (u) (i, — 1) <+ (24, — 1)
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i

It is clear that the elements w that satisfy all the relations €g;, - - - ;, (w)
0, for 0 < k < n, are precisely those that belong to the dimension subgroup
Dy +1(F). The linear functionals €0;, - - - G;, , where 0 < k < n, form a linear
basis for the dual of RF/A™t!l. In fact, this is precisely the dual basis to
the basis consisting of the products (z;; — 1) - (25, — 1), 0 < k < n. In
general, if the group is not free, the Fox derivatives cannot be defined in
the standard way. However, Chen’s iterated path integrals might be an ap-
propriate generalization. In the free group, instead of dealing directly with
the Fox derivatives, one could deal only with the functionals €6;, - - - ;.
These functionals may be replaced by the integration maps that form the
basis dual to a suitable basis of the truncated group-algebra RG/A™. The
advantage is that some of the algebraic properties of the ‘augmentized’ Fox
derivative functionals are reflected in the algebra of iterated path integrals.
For instance, since the Fox derivatives have the property (2) in the definition
above, it is easily seen that

£8:6;((u — 1)(v — 1)) = €8i(w)ed; (v),

which is exactly analogous to the identity

/ wiwg = /’wl/’LUQ
(A-1)(—-1) A 7

valid for iterated path integrals. Further, a straightforward induction shows
that the identity

£0;y -+~ Oy, (wv) = 5020, -+ 8y, (u) - €8y, -+ B3, (v),

is an analog of the integral formula (¢f. [4])

k
/ wil . wik = 2,7:0 / wil P le . /wij'+1 [P wik .
Ap A m

Consider, now, the matrix-valued 1-form w whose only non-zero entries
wy,...,w, are on the first superdiagonal. The identity above states that the

mapping
T(g)=I+/w+/ww---/w---w
9 9 9 -

defines a unitriangular representation G — GL,;1(R) provided that the
integral [ w is a homotopy functional. (A necessary and sufficient condtion
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for this is the identity dw+wAw = 0.Cf. [4].) By analogy, for example, if we
consider the 2-generated free group and define the matrix valued operator
0 with the only non-zero entries 8; and J; on the first superdiagonal, then
this operator induces the representation

p=1+¢ed+ed

of the free group into the group of 3 x 3 unitriangular matrices (it is a
homomorphism because of the identities given above for Fox derivatives).

Thus, iterated path integrals play a similar role in the representations of
the fundamental group as do the Fox derivatives in the representations of
the free group. This ‘similarity of formalism’ is perhaps a sign that some of
the results in combinatorial group theory that employ Fox derivatives on the
free group could be made feasible for a broader class of groups by studying
the full Hopf algebra structure of the group algebra. For example, Chen’s
iterated path integrals have been successfully applied by Hain and others in
the study of monodromy representations of fundamental groups of varieties,
in the context of a generalized form of the Riemann-Hilbert problem (cf.

[4])-
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