Novi SAD J. MATH. 173

VoL. 28, No. 2, 1998, 173-186

LINDA AS AN ABSTRACT DATA TYPE FOR
CONCURRENT PROGRAMMING

Zoran Budimac, Dragan Masulovié
Institute of Mathematics, University of Novi Sad
Trg D. Obradovica 4, 21000 Novi Sad, Yugoslavia

e-mail: {zjb,masul}@unsim.im.ns.ac.yu

Abstract

In this paper we show how Linda (a parallel programming paradigm)
can be implemented as an abstract data type. This approach enables
Linda to be used as a concurrent programming paradigm. There-
fore, Linda applications and Linda itself become available on single-
processor machines and more portable.

AMS Mathematics Subject Classification (1991): 68N25
Key words and phrases: Linda, parallel programing, concurent pro-
gramming

1. Introduction

Linda is a parallel programming paradigm. When injected into an existing
sequential programming language in a suitable way, a parallel programming
language for the target parallel platform is obtained.

Rather than constructing a new compiler for a specific parallel platform,
we show how to implement Linda as an abstract data type, on top of ex-
isting process synchronization mechanisms. We obtain implementations of
Linda on a high level of abstraction because they almost completely rely on

174 ‘ Z. Budimac, D. Masulovié

the underlying process synchronization mechanisms provided by the oper-
ating system and/or the programming language. Linda implemented as an
abstract data type offers several advantages:

e Linda becomes another (alternative) mechanism for process synchro-
nization, (besides condition variables, semaphores, etc.) as well as a
concurrent programming paradigm;

e Linda becomes more portable: to implement Linda on a new plat-
form, it suffices to reimplement it using synchronization mechanisms
of a new operating system (it is reasonable to assume that synchroniza-
tion mechanisms on the new platform are based upon the underlying
processor architecture and, therefore, are expected to be efficient);

e Linda applications become more portable as well: it is possible to
develop and test Linda applications using Linda as an abstract data
type and port it afterwards to any truly parallel architecture.

We show how to implement Linda as an abstract data type using moni-
tors and condition variables (which are supported by the programming lan-
guage). Since monitors are programming language constructs rather than
constructs of the operating system, a solution presented in this paper can be
directly implemented in some languages (e. g. Modula-2, Concurrent Euclid,
Modula-3, Java, ...). The same approach can be used straightforwardly to
implement Linda using less abstract programming language constructs and
mechanisms for process synchronization (see e. g. [4] p. 72, for equivalences
among the most popular process synchronization mechanisms).

The rest of the paper is organized as follows: the following two sections
briefly overview the concepts of monitors, condition variables and the Linda
paradigm. The fourth and the fifth section present abstract data types which
implement tuples and Linda itself. The sixth section discusses the usage and
possible further work on this implementation. The seventh section concludes
the paper.

2. Monitors and Condition Variables

A monitor is a software module i. e., a collection of procedures and data.
Monitor exports some identifiers and only those are visible outside the mon-

Linda as an abstract data type ... 175

itor’s body. That way, monitor (as any other module) hides the imple-
mentation of important data structures from its environment. Hidden data
structures can be accessed only through exported procedures. Actually, the
only true difference between monitors and modules is that only one monitor
procedure can be active at any instant. If a process calls a monitor procedure
while another monitor procedure is active, the calling process is blocked. It
will resume when currently active monitor procedure has blocked or has fin-
ished its execution. This feature (together with information hiding) makes
monitors suitable for implementation of mutual exclusion and/or critical re-
gions of running processes. Monitors are programming language constructs
and are usually regarded as a synchronization mechanism of higher level.

Condition variables usually go along with monitors. Condition variables
can be dynamically created, can be waited on and signaled on (i. e., “an-
nounced”). When a process waits on a condition variable c, it is immediately
blocked and other waiting processes are immediately allowed to enter the
critical section. When a process signals on a condition variable ¢, one (and
only one) of the processes waiting on ¢ shall be awakened. The process sig-
naling on some condition variable is blocked and that enables some waiting
process to enter the monitor.

To summarize: process blocks when

e it calls a monitor procedure while other monitor procedure is being
executed, or

e it waits on a condition variable, or

¢ it signals a condition variable.

After issuing ‘wait’ or ‘signal’, the process leaves the monitor hence enabling
some waiting process to enter the critical section.

Monitors and condition variables are standard part of Modula-2, Concur-
rent Euclid and Java, and can be easily simulated in Modula-3 (condition
variables are called signals in Modula-2). The behavior of monitors and
condition variables can be successfully implemented using other available
synchronization mechanisms.

176 Z. Budimac, D. Masulovié¢

3. Linda—A Brief Overview

Linda [1] is an explicitly-parallel programming paradigm designed to sup-
port:

e asynchronous communication between processes,
e dynamic allocation of processes,
e efficient distribution of algorithm and data, and

e independence of underlying hardware (i. e. number of processing ele-
ments and the topology).

It is a “software injection” that consists of six primitive instructions: in,
inp, rd, rdp, out, and eval which are injected into a sequential language.
A language L with the injection is usually referred to as L-Linda.

The entire available memory of the system behaves as a unique contin-
uous piece of memory, called the tuple space. Tuple space is a bag whose
elements are tuples of data of different lengths. The fields of a tuple need
not be of the same type, but are required to be of a simple type. A process
(Linda-worker in jargon) manipulates the tuple space via primitive instruc-
tions.

out adds a tuple to the tuple space. E. g. out ("GRAPH", k + 1, g(k),
TRUE) adds the quadruple ("GRAPH", k + 1, g(k), TRUE) to the tuple
space.

Instructions in and rd browse the tuple space and look for the tu-
ple that matches the template supplied as the argument to the instruc-
tion. A template is a tuple with two kinds of fields: actual fields and
formal fields. Actual fields are represented by expressions, while formal
fields are represented by special syntax constructs (usually ?variable).
Both instructions block the current process and wait for the tuple that
matches the template to appear in the tuple space. The tuple matches
the template iff they are of the same length, values at positions of ac-
tual fields are equal, while values at positions of formal fields are of the
same (simple) type. As soon as such a tuple appears, the process awak-
ens, copies the corresponding values from the retrieved tuple into vari-
ables at formal fields’ positions and proceeds. There is a slight differ-
ence between in and rd: after the match has been found, in removes the

vLinda as an abstract data type ... 177

matching tuple from the tuple space, while rd leaves it there. Examples:
in("GRAPH", ?n, 2k + 1, ?0K), rd("STACK", id, ?val, 7next).

Instructions inp and rdp are modifications of in and rd, respectively,
which do not wait for the tuple to appear in the tuple space. They browse the
tuple space only once. If the match is found they behave as their analogons,
but if the match is not found, the failure is somehow reported and the
execution proceeds.

Instruction eval is a modification of out. It forks a new process which
evaluates its argument and then performs out. After that the process dis-
integrates. eval is Linda’s way to dynamically create processes.

4. Tuple as an Abstract Data Type

For the sake of simplicity, at the level of implementation we assume no
distinction between tuples and templates. The same abstract data is used
in both cases. A tuple/template is represented by a list of cells. E. g. the
template generated by Linda primitive in(i, ?b, r) (where i, b and r are,
respectively, an integer, a boolean and a real variable) is shown in figure 1.

LEN actual field formal field actual field
3 integer boolean real

12 0.57

Figure 1: Representation of a template
Module Tuple implements the abstract data type Tuple.T and exports
operations to manipulate tuples. The interface of the module Tuple follows
(in Modula-2 syntax):

DEFINITION MODULE Tuple;
IMPORT String;

TYPE T; (* tuple/template data type *)

TYPE FormalType = (* the type of a formal field in a template *)

178

Z. Budimac, D. Masulovié

(shInt, int, lngInt, card, lngCard, real, lngReal, set, ch,

str, bool);

PROCEDURE New(): T;

PROCEDURE Kill(VAR t: T);

PROCEDURE IsEmpty(t: T): BOOLEAN;
PROCEDURE IsTemplate(t: T): BODOLEAN;
PROCEDURE TheyMatch(ti, t2: T): BOOLEAN;
PROCEDURE DoMatch(ti, t2: T);

(*
(%
(*
(o
(*
(*

create a new tuple *)
kill t #*)

is t empty? *)

is t a template? *)

do t1 and t2 match? =)
match t1 and t2 *)

(% Adding new field ’'v’' to the existing tuple ’t’ %)

(* NB: There is one procedure per simple type
; Ve
: INTEGER)

PROCEDURE AddShInt (t:
PROCEDURE AddInt (t:
PROCEDURE AddLngInt (t:
PROCEDURE AddCard (t:
PROCEDURE AddLngCard(t:
PROCEDURE AddReal (t:
PROCEDURE AddLngReal(t:
PROCEDURE AddSet (t:
PROCEDURE AddCh o (t:
PROCEDURE AddStr (t:
PROCEDURE AddBool (t:
PROCEDURE AddFormal (t:

M4 wr wr ws we ws wr we we we

o e e B B Ml B Bl B I I |

d d d d d d d d 4«

.

ty: FormalType):

SHORTINT)

LONGINT)

: CARDINAL)

LONGCARD)

: REAL)

LONGREAL)

: BITSET)
: CHAR)
: String.T)

BOOLEAN)

T
T
T
T
T
N
: T
T
T
T
T
T

*)
;
;
;
;

’

(* Get the field ’v’ from position ’pos’ of tuple ’t’ #*)

(* NB: There is one procedure per simple type
pos:
pos:
pos:
pos:
pos:
pos:
pos:
pos:
pos:
pos:
pos:

PROCEDURE GetShInt (t:
PROCEDURE GetInt (t:
PROCEDURE GetLngInt (t:
PROCEDURE GetCard (t:
PROCEDURE GetLngCard(t:
PROCEDURE GetReal (t:
PROCEDURE GetLngReal(t:
PROCEDURE GetSet (t:
PROCEDURE GetCh (t:
PROCEDURE GetStr (t:
PROCEDURE GetBool (t:

END Tuple.

wt wr e we we we we wa ws e

o e e B M B B B B Bl ML

CARDINAL;
CARDINAL;
CARDINAL;
CARDINAL;
CARDINAL;
CARDINAL;
CARDINAL;
CARDINAL;
CARDINAL;
CARDINAL;
CARDINAL;

*)
VAR v: SHORTINT);
VAR v: INTEGER);
VAR v: LONGINT);
VAR v: CARDINAL);
VAR v: LONGCARD);
VAR v: REAL);
VAR v: LONGREAL);
VAR v: BITSET);
VAR v: CHAR);
VAR v: String.T);
VAR v: BOOLEAN) ;

Operations New and Add. . . are used to construct a tuple (or a template).
Operations Get. . . are used to retrieve information from tuples after match-

Linda as an abstract data type ... 179

ing. Matching tuples with templates reduces to substitution of cells which
represent formal fields in the template by copies of corresponding cells of the
tuple. Thus, if t were a template and t1 were a tuple, after DoMatch(t, t1)
t would become a tuple. As an example, consider the following sequence of
instructions which has the effect of in(i, 7b, r) (Modula-2 syntax):

VAR
t: Tuple.T;
i: INTEGER;
b: BOOLEAN;
r: REAL;

t
L]

Tuple.New(); . .
Tuple.AddInt(t, i);
:= Tuple.AddFormal(t, Tuple.bool);
t := Tuple.AddReal(t, r);
Linda.In(t);
Tuple.GetBool(t, 2, b)
END

t
U |

5. Linda as an Abstract Data Type

Linda can be implemented as a monitor Linda which exports the following
five procedures (we use a Modula-2 like pseudolanguage):

DEFINITION MONITOR Linda;
IMPORT Tuple;

VAR DoneP: BOOLEAN;

PROCEDURE QOut(t: Tuple.T);
PROCEDURE In (t: Tuple.T);
PROCEDURE Inp(t: Tuple.T);
PROCEDURE Rd (t: Tuple.T);
PROCEDURE Rdp(t: Tuple.T);
PROCEDURE NewWorker(script: PROC; memSize: LONGCARD) ;

END Linda.

180 Z. Budimac, D. Masulovié

The tuple space is implemented as a list of tuples and is encapsulated in
module Linda. Two more lists are required for efficient synchronization:

WaitingIn the list of templates which are waiting for an in, and

WaitingRd the list of templates which are waiting for a rd.

Truly speaking, the latter two lists are lists of pairs (P,C), where P is
a template and C is a condition variable to be signaled as soon as the
template P finds its match. The signal awakens the process that has been
waiting for the match. The corresponding declarations in a Modula-2 like
pseudo-language are:

VAR
TupleSpace: LIST OF Tuple.T;
WaitingIn: LIST OF PAIR(Tuple.T, CondVar.T);
WaitingRd: LIST OF PAIR(Tuple.T, CondVar.T);

We shall now describe the implementation of in, rd and out in a pseudo-
language. The implementation is a straightforward translation of standard

behaviour of these instructions.

PROCEDURE In(VAR p: Tuple.T);

VAR
t: Tuple.T;
¢: CondVar.T;
BEGIN

(* Look for p in TupleSpace *)
FOREACH t IN TupleSpace DO
IF Tuple.TheyMatch(p, t) THEN
Tuple.DoMatch(p, t);
REMOVE t FROM TupleSpace;
RETURN
END
END;

(* If not found, the process has to to wait for it *)
¢ := CondVar.New();
ADD PAIR(p, c) TO WaitingIn;

Linda as an abstract data type ... 181

END

CondVar.Wait(c)
In;

PROCEDURE RA(VAR p: Tuple.T);

VAR

t: Tuple.T;
c: CondVar.T;

BEGIN

END

(* Look for p in TupleSpace *)
FOREACH t IN TupleSpace DO
IF Tuple.TheyMatch(p, t) THEN
Tuple.DoMatch(p, t);
RETURN
END
END;

(* If not found, the process has to to wait for it x)
¢ := CondVar.New();
ADD PAIR(p, c) TO WaitingRd;

. CondVar.Wait(c)

Rd;

PROCEDURE QOut(t: Tuple.T);

VAR

p: Tuple.T;
c: CondVar.T;

BEGIN

(* Awake all the processes waiting for t in WaitingRd *)
FOREACH PAIR(p, c) IN WaitingRd DO
IF Tuple.TheyMatch(p, t) THEN
Tuple.DoMatch(p, t); .
REMOVE PAIR(p, c) FROM WaitingRd;
CondVar.Signal(c)
END
END;

(* Awake only the first process waiting for t in WaitingIn *)

182 Z. Budimac, D. Masulovié

FOREACH PAIR(p, c) IN WaitingIn DO
IF Tuple.TheyMatch(p, t) THEN
Tuple.DoMatch(p, t);
REMOVE PAIR(p, c) FROM WaitingIn;
CondVar.Signal(c); '
RETURN
END
END;

(* If no process waits for t in WaitingIn, add the tuple to
TupleSpace *)
ADD t TO TupleSpace
END Out;

Note that Linda.In and Linda.Rd add the template they are looking for to
an appropriate list if they cannot find matches in the TupleSpace, even if
the same template already exists in the list. That way each process waiting
for in or rd has its own template and its own condition variable.

The implementation of Linda primitives inp and rdp is similar to the
implementation of in and rd, respectively. The only difference is that in
case they do not manage to find a match during one scan of the TupleSpace,
they signalize the failure through the global variable Linda.DoneP instead
of waiting for the signal. The effect of Linda primitive eval is obtained with
the help of Linda.NewWorker and Linda.Out. For example, the following
sequence of Modula-2 instructions has the effect of eval(1, £(i), j+1):

VAR
intVarl, intVar2: INTEGER;

PROCEDURE f(x: INTEGER): INTEGER;
END f£;

PROCEDURE Evall;

VAR
t: Tuple.T;
BEGIN
t := Tuple.New();
t := Tuple.AddInt(t, 1);

Linda as an abstract data type ... 183

t := Tuple.AddInt(t, f(intVarl));
t := Tuple.AddInt(t, intVar2);
Linda.Out (t)

END Evali;

BEGIN

intVarl := i;
intVar2 := j;
Linda.NewWorker (Evali, 1000);

END

Linda.NewWorker can be easily implemented as a direct translation to the
underlying facility that creates new processes.

6. Implementations, Usage and Further Work

An application that employs Linda uses the module Tuple to build tuples
and then the monitor Linda to manipulate created tuples. The full poten-
tial is obtained if the modules are regarded as a support to a translator
from a higher level Linda programming language (e. g. Modula-2-Linda or
Modula-3-Linda). Such a language should support Linda primitives as syn-
tax constructs. Each construct, then, is to be translated to a sequence of
appropriate procedure calls. For example, the following Modula-2-Linda
excerpt

PROCEDURE DoSomething;
VAR
u, N: INTEGER;
BEGIN
N :=0;
WHILE INP("data" ?u) DO
INC(N);
EVAL("res", N, F(u))
END;
ProcessResults
END DoSomething;

184 Z. Budimac, D. Masulovié

translates to

IMPORT Tuple, Linda, String;

VAR
intVarl, intVar2: INTEGER;

PROCEDURE Evall;

VAR
t: Tuple.T,;
BEGIN
t := Tuple.New();
t := Tuple.AddStr(t, String.New("res"));
t := Tuple.AddInt(t, intVarl);

t := Tuple.AddInt(t, F(intVar2));
Linda.0Out(t)
END Evalil;

PROCEDURE DoSomething;
VAR

u, N: INTEGER;

t: Tuple.T;
BEGIN

N := 0;

LOQoP

t

Tuple.New();
t := Tuple.AddStr(t, String.New("data"));
t := Tuple.AddFormal(t, Tuple.int);
Linda.Inp(t);
IF NOT Tuple.DoneP THEN EXIT END;
Tuple.GetInt(t, 2, u);
INC(N);
intVarl := N;
intVar2 := u;
Linda.NewWorker (Evall, 1000)
END;
, ProcessResults
END DoSomething;

1]

Linda as an abstract data type ... 185

Ideas presented in this paper are implemented both in Modula-2 and
Modula-3. Implementation in Modula-3 supports multi-tasking based on
Modula-3 threading facilities. Modula-3 multi-threading and mutex con-
structs have been used to implement the eval primitive as well as the in/out
control of the tuple space.

Implementation in Modula-2 supports multi-tasking as well. The im-
plementation relies on the multi-tasking support for Modula-2 under DOS
developed at the Institute of Mathematics, University of Novi Sad. .

Many other improvements to the ideas presented in this paper are pos-
sible. To enhance the efficiency of the Linda Kernel, tuples and templates
could be organized into binary search trees, sorted with respect to the tuple
dimensions. Priorities among the processes could also be introduced, so that
processes with higher priority are to be awakened before others.

7. Conclusion

We proposed an implementation of the Linda paradigm as an abstract data
type. Mutual exclusion and process synchronization needed in the Linda
Kernel are implemented using monitors and condition variables, respec-
tively. Having in mind the semantics of these synchronization primitives,
similar implementations could be built using other synchronization primi-
tives (semaphores, rendezvous, etc.)

Although Linda is about to celebrate her thirteenth birthday, her sim-
plicity and elegance are still attractive [2, 3, 5]. Papers [2] and [3] present
implementations of Linda that rely on powerful concepts of the respective
languages. The implementation presented in this paper has above all other
things a great educational value—it brings the Linda paradigm down to the
cheapest uni-processor machines. The simple design carried out in a high
level programming language may serve as a good example to Computer Sci-
ence students with special interest in operating systems. The existence of the
implementation of this kind is important because it enhances the portabil-
ity of Linda implementations as well as Linda applications. Linda can now
be regarded even as a concurrent programming mechanism like monitors,
semaphores and so on.

186 Z. Budimac, D. Masulovié

Acknowledgements

The authors would like to acknowledge Vladimir Blagojevi¢ for the imple-
mentation of the multi-tasking library for Modula-2 under DOS, Miljan
Milinkovi¢ for the implementation of Linda as an abstract data type in
Modula-2, and Srdjan Mladjenovié¢ for the implementation of Linda as an
abstract data type in Modula-3.

References

(1] Ahuja S. et al,, Linda and friends, IEEE Computer, pp. 26-34, Au-
gust 1986.

[2] Jellinghaus J., Eiffel Linda: an object-oriented Linda dialect, SIGPLAN
Notices, Vol. 25, No. 12 (1990), pp. 70-84.

[3] Ledru P., Space: Implementation of a Linda System in Java, SIGPLAN
- Notices, Vol. 33, No. 8 (1998), pp. 48-50.

[4] Tanenbaum A. S., Operating Systems—Design and Implementation,
Prentice Hall Int. 1987

(5] Yuen C. K., Wong W. F., A self interpreter for BaLinda Lisp, SIGPLAN
Notices, Vol. 25, No. 5 (1990), pp. 39-58.

Recetved by the editors July 8, 1998.

