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Abstract

An n-ary quasigroup (@, A) such that for some ¢ € {1,...,n} the
identity
A(A(zD), Az 21),. .., AlTn, 277Y)) = 25

holds is called an i-Weisner n-quasigroup (i-W-n-quasigroup). -W-n-
quasigroups represent a generalization of quasigroups satisfying
Schroder law (zy - yz = z) and quasigroups satisfying Stein’s third
law (zy - yr = y).

Properties of i-W-n-quasigroups which are satisfied for all i are de-
termined. Necessary and sufficient conditions for an n-quasigroup to
be an i-W-n-quasigroup are obtained. It is proved that every i-W-n-
quasigroup of order v defines an orthogonal set of n (n— 1)-quasigroups
of order v. It is shown that some i-W-n-quasigroups are equivalent to
orthogonal arrays. Conjugates of i-W-n-quasigroups are investigated,
connections among these conjugates for different values of n, ¢ are es-
tablished. The existence of several classes of i-W-n-quasigroups 1s
proved.
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1. Introduction and Preliminaries

A Weisner design is a pair of superimposed orthogonal latin squares with the
property that (z,y) is in position 4, j if and only if (4, 7) is in position z,y.
A Weisner design is selforthogonal if the latin squares are transposes of each
other. Every self-orthogonal Weisner design is equivalent to a quasigroup
(Q,-) in which zy - yz = z (Schréder second law) holds [11], {13] . A quasi-
group satisfying Schroder second law is called a Schroder quasigroup. Such
quasigroups are self-orthogonal and they are associated to other combina-
torial structures. Schroder quasigroups are equivalent to a class of n? x 4
orthogonal arrays [7], [8], and idempotent Schréder quasigroups correspond
to triple tournaments of Baker [1] and to a class of edge-coloured block
designs with block size four [4].

The identity zy - yz = y is called Stein’s third law [5]. Quasigroups
satisfying this identity are also self-orthogonal. They are equivalent to a
class of n? x 4 orthogonal arrays and also to a class of perfect Mendelsohn
designs [2].

Here we shall generalize Schroder and quasigroups satisfying Stein’s third
law, but first we give some necessary definitions and notations.

The sequence Z,,,Zm+1,...,Ln We denote by 2, or {z;}, . Iffm>n
then z7, will be considered empty.

An n-ary groupoid (Q, A) is called an n-quasigroup if the equation
A(at Yz, a’ 1) = aps1 has a unique solution z for every ait! € Q and
every 1 € Ny = {l¥,...,x}. An n-quasigroup (Q, 4) is called idempotent

if for every z € @ A(z,z,...,7) = . An element z € @ is called an
idempotent if A(z,z,...,z) = z.
A set {A;,..., Ax} of n-ary operations defined on the same nonempty set

Q, k > n, is orthogonal if for each (a}) € Q™ and each injection ¢ : Ny — N+
there exist a unique (c}) € Q™ such that

(Vi € Nx)Aym) () =02

If (Q, A) is an n-quasigroup and o € Sp+1, where Sp4; is the symmetric
group of degree n + 1, then the n-quasigroup (@, A7) defined by

A%(23]) = To(nt1) & A(2]) = Tnt1
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is called a o-conjugate (or simply conjugate) of A. A conjugate A% such
that o(n + 1) = n + 1 is called principal. A permutation o € S,4; such
that o(n + 1) = n + 1 is called a principal permutation. If (Q,A) is an
n-quasigroup, o, 7 € Sp+1, then (A%)" = A°". If (Q, A) is an n-quasigroup
such that the set {4, Ay,...,A,_1} is orthogonal, where A; are conjugates
of A defined by A;(z7) = A(z?,,), i € Nx_g, then (Q, A) is called a
self-orthogonal n-quasigroup. ‘

A natural generalization of Schroder and quasigroups satisfying Stein’s
third law to n-ary case is given in the following definition.

Definition 1. An n-quasigroup (Q, A) such that for some i € Ny the iden-
tity
A(A(.’L”f), A(.’L’g, xl)a RN A(xni x?_l) =

holds is called an i-Weisner n-quasigroup (i- W-n-quasigroup).

From the preceding definition for n = 2, 7 = 1 Schroder quasigroups are
obtained and for n = 2, i = 2 we get quasigroups satisfying Stein’s third
law. These two classes of quasigroups, being special cases of a more general
class, have many common properties, but on the other hand, some of their
properties are different. For example, there are no Schroder quasigroups of
order 5, but quasigroups satisfying Stein’s third law of order 5 do exist.

2. Properties of i-W-n-quasigroups

An important characterization of ¢-W-n-quasigroups is given in the following
theorem which can be proved easily.

Theorem 1. An n-quasigroup (@, A) is an i- W-n-quasigroup if and only if
the following equivalence is valid

( A(al) = z;,
A(af =
A(z?) = a1, (03, 01) = @i,
Al z) =ag, | | o AR
(23, 71) , ¢ Alal_;. 07 ’L_ Tn,

................. B
A(:L‘n,x;l 1) = Qn, A(az"‘i'f'?’a’n ) =1,

{ A(an,a} ) =z
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Corollary 1. Every i- W-n-quasigroup is selforthogonal.

Corollary 2. If (Q, A) is an i-W-n-quasigroup , then for all z,y € Q
Alz,...,z2) =y & Aly,...,y) ==.

Corollary 3. If (Q, A) is an i- W-n-quasigroup and for some z,y € Q
A(l‘,. .- ,:l)) = A(yi'- . ’y),
thenz =y.

Corollary 4. If (Q, A) is a finite i- W-n-quasigroup, then
{A(z,...,2) [z €Q} =Q.

Corollary 5. Every i- W-n-quasigroup of odd order has at least one idem-
potent.

The condition for an n-quasigroup to be an i-W-n quasigroup given in
Theorem 1 for ¢ = 1 is called the Weisner property. In [11] it was proved
that for any n > 3 and every odd v none of whose prime divisors divides
n there exists a self-orthogonal n-quasigroup of order v having the Weisner
property. The condition given in Theorem 1 where 7 is arbitrary we call the
generalized Weisner property.

3. Orthogonal sets of n-quasigroups

We have seen that every i-W-n-quasigroup is self-orthogonal. Now we shall
prove that every i-W-n quasigroup of order v also defines an orthogonal set
of n (n — 1)-quasigroups of order v.

Theorem 2. Let (Q, A) be an i- W-n-quasigroup of order v and a € Q. If
n (n — 1)-ary operations are defined on Q by

Bi(z}7") = A(z} 7, 0),

By(z}7) = A(5 7, 0, 31),

Bu(27™") = Ala, 27 7h),
then {By,...,Bn} is an orthogonal set of n (n — 1)-quasigroups of order v.
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Proof. Let b}~ ! be arbitrary elements from Q. Since A is an n-quasigroup
the equation A(d); h +1 T b;‘"i) = @ has a unique solution z = c.
The system
Bi(z77h) = by,
Ba(z771) = by,

has a solution
21 = A(Bh i 6 01T,
z2 = A(bR i3, 0577,
z;—1 = Ac,5771)
= A} 0)
zH1=Aw?*wwn

:L‘nl—A(bnlcbn"l)

n—i)’

since

Bi(A(bPT} 5,0, b7 ), A(BRTL 5, 0, 0772, L
A(c,b771), A(BT 7, 0), A3 ¢, b1), .., A(BR TS, 6 b7 )
= A(AMBRT) 5,0 bF L) ABRTE 5, BT,

(

A, b1, AT 0), AR ¢, by), ., AT, ¢, 0P, a) = by,

By(A(BRTY 5, ¢, 07 A(BR T 55 c N At WO

Ale, b7, AT 0), AL e,b1), .. ABRTE ¢, b))
= A(A®]ZL 5,0, b7 77F2), A(B] }+4,c,b{‘"‘+3),...,

Ale, b 1), AL, ¢), A(S L, ¢, b1), - - -

A5, 6,677, a, AV i, 001 TTY)) = by,

nz’

.....................................................

B 1 (A(BRTL 5, ¢, 6775, AR 5, 0,677,
A, b 1), AT, 0), AB Y ¢, br), - . AT 1,c,b"“"‘1))
= A(A(B}Z;, ¢, 6771, 0, AR} s b';—'“)

n—
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Alc, bF 1), AT, ¢), AT e, br)y e AR 6, BTT2)) = by

n—i—11

This solution is unique. Indeed, if we take any other solution z7 of the given
system, we get

£ = A(A(QIZ:—}.;.W a, :l:’f_H_l), A(-’L‘::-}+3> a, z?_i+2), cres
Ala,s77), A= 70), . AR Tl 0,27 7)

= A(Bn-it2(z} ™), Bnoira(z?™h),. ..,
Ba(z7™Y), Bi(z77Y), ..., Broita (z77h))
= AL}l Ba(z} 1), 6771,

n—i+2?
But since
a = A(A(:L‘Z:}_H,a, x’l"i), A(:c::}_ﬂ, a, i,
A(a,z771), Az} a),- ., Az}, 0,277 7Y))
= AR}, Ba(2P™1), 007
and A(BIZ1, 1,¢,b7™") = a we obtain Bn(z}™') = c which implies z; =
Al 421G b77**1) and analogously for z§ .

Hence {Bj,...,Bn_1} is an orthogonal set of n —1 (n — 1)-quasigroups.

The proof is analogous for any other choice of n —1 (n — 1)-quasigroups
from the set {By,...,Byp}. O

4. Orthogonal arrays and :- W-n-quasigroups

A v"™ X m, n < m, orthogonal array (OA) is a pair (P, B), where P is an v
element set and B is a set of ™ ordered m-tuples of elements from P which
called rows, such that if i € N5, 47 < ... < 4, then for all a¥ € P there
exists exactly one row from B in which 4,-th coordinate is ap, p € Ny.

Theorem 3. Every i- W-n-quasigroup, n € {2,3}, of order v defines an
v™ x (2n) orthogonal array.

Proof. It is well known that every self-orthogonal binary quasigroup (Q, A)
of order v defines an v? x 4 OA of order v, the rows of which are given by
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(z,y, Az, y), A (z,y)). Since 1-W-2-quasigroups and 2-W-2-quasigroups
are self-orthogonal they define orthogonal arrays.

In [12] it was proved that every I-W-3-quasigroup (@, A) of order v
defines an v3 x 6 OA of order v where the rows of the OA are defined
by (z,y, 2, A(z,y, 2), AP (z, y, z),Apz(:z:,y,z)), p = (123). It can be proved
analogously that also 2- W-9-quasigroups and 9- W-3-quasigroups define v x
6 OAs. DO

REMARK. It is interesting that Theorem 3 is not valid for n > 4. For
example, if for n = 4 on GF(5) we define an 1-W-4-quasigroup by
A(.’L‘%) = 3(—1121 + 22+ x3 + :L‘4)

then it does not deﬁx}e an 5% x 8 OA.

5. Conjugates of - W-n-quasigroups

Theorem 4. If n is odd, then for every i- W-n-quasigroup A and every j €
N there ezists a principal conjugate AP such that AP is a j- W-n-quasigroup.

If n is even and 1 € N an odd integer, then for every i- W-n-quasigroup
A and every odd 7 € Ny there exists a principal conjugate AP such that AP
s a j- W-n-quasigroup.

If n and i € N are even, then for every i- W-n-quasigroup A and every
even j € Ny there exists a principal conjugate AP such that AP is a j-W-n-
quasigroup.

Proof. Let (Q, A) be a 1-W-n-quasigroupand c=(nn—1...21) € Sy4;.
Then the identity

A(A(m?)aA(mgaml)) e 1A($n7$?—1)) =T
which is satisfied by A, can be written as
(1) A(A(z}), A%aD),..., A7 (a])) = 7.

Let p be an arbitrary principal permutation from Sy, ;. If we denote A? = B,
then (1) becomes

1

BP (B (z}), B ¢z}, ..., BP T (a])) = 4
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and
BB (1), BP0 @), BT () = 2
which implies

B(B({mcl-P(l)p(k)}zzlL B({mc“P(Z)p(k)}Z':l)’ A B({mcl"?’(”’)p(k)};::l)) =I3.
(2)

We shall investigate under what conditions the preceding identity defines
a j- W-n-quasigroup (Q, B) for some 5 € Ni.

(@, B) will be a j- W-n-quasigroup if there exists a principal permutation
g € Sp+1 such that

ct2lp = g,
PPp = gl
! PBp = g,
cl_p(n)p - qc—(ﬂ—l)

From the preceding system of equations it follows

PNy = 1 P@pe = (PR pe? = | = P pent
and
Fht)-pk)y — pe k=1,2,...,n—1.
Hence
Fm)-p(n-1) _ pn-1)-p(n-2) —  _— 2(2)-p(1)
which implies
3) pr)-p(n-1)=p(n-1)-pn-2)=...=p(2) —p(1) (modn).

It is not difficult to see that (2) defines a j- W-n-quasigroup (Q, B) for
some j € Ny if and only if (3) holds.

The permutation

@ pe 1 2 ..t t+1 t+2 ... n n+l
P=\n—-t+1 n—t+2 ... n 1 2 .. n—t n+1
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where t € Ny _y, satisfies (3) which means that (Q, B) is a j- W-n-quasigroup.
The value of j € Ny is determined by

§=p W) =p (1) =p7 Mt +1) =2t +1 (mod n).
So, from j = 2t+1 (mod n), if n is odd varying ¢ we can get every j € Ny.

If n is even, then for all values of ¢ we get for j all odd numbers from
Ny .

Hence we have proved that when n is odd and (Q,A) is a 1-W-n-
quasigroup, then for every j € Ny there exists a principal conjugate AP
such that A? is a j- W-n-quasigroup.

Since the set of all principal conjugates of an n-quasigroup with respect
to multiplication of permutations is a group, we get that when n is odd for
every i- W-n-quasigroup (@, A) and every j € Ny there exists a principal
conjugate AP such that A? is a j- W-n-quasigroup.

Analogously, one can obtain that if n is even and ¢ € N is an odd integer,
then for every i-W-n-quasigroup A and every odd j € Ny there exists a
principal conjugate AP such that AP is a j- W-n-quasigroup.

Also, if n and 7 € N are even, then for every i- W-n-quasigroup A and
every even j € N, there exists a principal conjugate AP such that A? is a
J- W-n-quasigroup. o

Now we shall determine all values of j which can be obtained using all
principal permutations p € Sp41 which satisfy (3).

When n is even the procedure described in the preceding theorem for
permutation p defined by (4) gives as principal conjugates of a 1-W-n-
quasigroup only j- W-n-quasigroups where j is odd. We shall prove that
all other principal permutations from S, ; satisfying (3) also give only j-
W-n-quasigroups where j is odd.

a a3 ... a, n+1
ing (3), then applying the procedure from Theorem 4 and using the same
notation, we obtain

j=p D1 (1) =p~len (1) = p (n —ay + 2).

If p = ( 12 ... n ntl ) is a principal permutation satisfy-

Since n is even, we get that n — a; + 2 and a; are both even or both odd.
But p satisfies (3), hence the differences p(m) — p(m — 1) must be relatively
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prime to n for every m = 2,....n. Consequently, consecutive numbers a;
in p can not be both even or both odd, which implies that in p the number
n —a; + 2 is at odd place (as a1), s0 j = p~}(n — a1 + 2) is always odd.

Analogously, one obtains that when n and 7 are even and (Q, A) is a i- W-
n-quasigroup, then for every p € S, satisfying (3) the procedure described
in Theorem 4 gives only j- W-n-quasigroups (@, AP) where j is even.

6. The existence of - W-n-quasigroﬁps

We have already noted that spectra of i-W-n-quasigroups for n = 2,i=1
and ¢ = 2 are different. In fact, the spectrum of Schroder quasigroups
consists of all positive integers v = 0,1 (mod 4) except n = 5 ([4],[6], [9])
and the spectrum of quasigroups satisfying Stein’s third law consists of all
positive integers v = 0,1 (mod 4) ([10],(6]).

On the other hand, some of the -W-n-quasigroups are closely related
and can be transformed one into another.

The existence of 1-W-3-quasigroups was considered in [12] where it was
proved that idempotent 1-W-3-quasigroups of order v exist for every odd v
which is not divisible by 3, and nonidempotent 1-W-3-quasigroups of order
v exist for every v = 4%k, where « is a nonnegative integer and k is an odd
integer not divisible by 3. From Theorem 4 it follows that the spectra of
i- W-3-quasigroups are equal for all ¢ € Ny, hence we have the next theorem.

Theorem 5. For all i € Ny there exists an i- W—n-quasz’group of order v,
where v = 1,5 (mod 6) or v =4,20 (mod 24) or v =4%, k€N,

From Theorem 4 and [11] we get the next theorem.

Theorem 6. For every odd n, every i € N and every odd v such that
(n,v) =1 there exists an i- W-n-quasigroup of order v.

For every even n, every odd 1 € N and every v such that (n,v) =1 there
exists an - W-n-quasigroup of order v.
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Corrigenda

205

In the paper "GENERALIZED WEISNER DESIGNS AND QUASI-
GROUPS” by Zoran Stojakovié and Wieslaw A. Dudek, published in
the Novi Sad Journal of Mathematics, Vol. 28, No. 2, 1998, 143-153. a number
of errors appeared as a consequence of using different version of LATEX. The
following table gives a list of the errors and corrections.

page line €rToT correction
144 710 TEN, = {F, .., x} iEN, ={L,...,n}
144 -6 @: Ny = Ny ¢:N, =2 N,
144 -4 (Vi € Ny )A, () (k)=03. | (Vie Nn)Ag@ () = a;.
145 6 1€ Ny t €N,
145 10 1 € Nk it €N,
148 -6 it eN, it €N,
148 -6 ik in
148 -6 a* a?
148 -5 p € Ny peEN,
149 | -15-13,10 | j € N« JEN,
150 6,-3 j € Ny jEN,
151 | 2,4,6,8,12,15,18 || j € Ny jEN,
152 -8, -7 ieNg i€N
152 -7 i-W-n i-W-3

We apologize to the authors and readers for these mistakes.
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