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Abstract

The paper gives a special construction of those words (binary se-
quences) of length n over the alphabet {0,1} in which the subword
1010...10 is forbidden for some natural number p, where p is fixed.

2p
This number of words is counted in two different ways, which gives

some new combinatorial identities.
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1. Definitions and notations

Let X = {0,1} denote a 2—element set of digits (letters). X is called an
alphabet. By X™ we shall denote the set of all words of the length n over
the alphabet X, i.e.

X" ={z122..7, |21 E X Az E X A ... Azp € X},
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the only element of X° is the empty word, i.e. the word of the length 0. The
set of all finite words over the alphabet X is

x*=Jx"

n>0

If S is a set, then |S| is the cardinality of S. By [z] and |z] we denote the
smallest integer > z and the greatest integer < z, respectively. By ¢,(p) we
denote the number of subwords ¢ in the word p € X*. The set N is the set
of natural numbers, N, = {1,2,...,n}, N, =0 for n <0, (Z) =0ifn<k
and [z] is the nearest integer to z. If z125...z, € X™, then x, = z122...25.

2. Results and discusion

Now we shall construct and enumerate the set of words

Ap(n) = {Xn | Xn € X", (Vi € Np_op11)(ZiTiy1...Tizop—1 # 1010...10)}
2p

for each natural number p. We shall denote |A,(n)| with ap . It is obvious
that
ain =| Ai(n) |=n +1

On the other hand it is known [4] that

wa
=l ) = 3 (0" ] )

=0

where
Ai(n) = {Xn | Xn = 2122..T0 € X", (Vi € Np_1) (@sziy1 # 10)}.

Now we have the theorems

Theorem 1.

LY N
a1n = Z (—1)1( i )211_21' =n+1.
=0
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Theorem 2. [6]

3
a2n = |A2(n)| = nt1+ ) > 11 (32+1) (Z3+1)... (s +1) ikt
k=1 i1+i2+...+ik+1=n—-2k+2

where 11,42, ...,2k+1 € N and
Az(n) = {Xn|xXn = z1%2...2Zn € {0,1}"A(Vi € Np_3)ZiTit1Tiy2Zi43 # 1010}

Theorem 3. [6]

20° + 20— 1
= lz(n)l = [2a3—2a2+6a 4

IR, M8V o

"] where

= 1, 883203506.

Corollary 1.

1 |al)
Jim — > > G162 + 1) (i3 + 1) ... (6 + 1)igyr =

k=1 ‘i1+‘i2+...+ik+1=n—2k+2
20% +2a — 1 .. .

= a7 — 942 60 —4 where t1,%9,...,%4+1 € N

Lemma 1.

23]

Ghp= > (my + 1)(ma +1)...(mj41 + 1)

k=0 mi+mo+...A4mpyp1=n—2k

where mi,mo,...,mgy1 € N and a2n is the number of all words of the
length n over the alphabet {0,1} with the forbidden subword 1010 and which
neither begin nor end with 10.

Lemma 2.

3
ah,=n+1+ Y > (i1 + 1) (g + 1).oik 41

k=1 1’1+i2+...+‘ik+1:ﬂ-—2k+1

where 41,12,...,5k41 € N and a3, is the number of all words of the length
n over the alphabet {0,1} with the forbidden subword 1010 and which only
do not begin with 10.
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The proofs of Lemma 1 and Lemma, 2 follows from the proof of Theorem

It is obvious that aj, is the number of all words of the length n over
the alphabet {0, 1} with the forbidden subword 1010 and which only do not
end with 10.

Theorem 4.

12
—_ n I 1 n
a3n = agqn + E E ‘ 09,i,02,i5+823, F24, |

k=1 7:1 +i2+...+ik+1=n—4k

where i1, tg+1 € NU{0} and ip,i3,...,it €N

Proof. Let us count the number of all words of the length n over the alphabet
{0,1} with the forbidden subword 101010, i.e. the number of words in set
As(n). We make a partition of the set A3(n) into subsets A%(n), where
A%(n) is the set of all those words of the length n over the alphabet {0,1}
which contain exactly k subwords 1010 (x, € A¥(n) = lig10(Xn) = k) and
do not contain the subword 101010. In the same way as in Theorem 2 we
complete the proof by using Lemma 1 and Lemma 2. O

Theorem 5.

a® + at + o? n]

azn = [A3(n)| = [—a4 + 4a3 - 302 + 8a — 5"

where a = 1,974818708297706 . ..

Proof. In the same way as in Theorem 3 we have the recurrence relation
G3n = 2a3-1 — A3 n—2 + 20353 — A3 n—4 + 20355 — A3 s,
whose characteristic equation is
-2+t 283+ 22— 20 +1=0,

and whose roots we denote with «,3,7,d,¢,{. This equation has two real
roots a and B,where a € (1,2) and 3 € (0,1). The complex roots v, §,¢,(
have modules equal 1.
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The explicit formula for a3, is

asn = Cra” + C2f" + C3y™ + Cs6™ + Cs€™ + Co(™

where
C_ a6+a4+a2 C— ﬂ6+ﬂ4+ﬂ2
Y i 1403 — 302 +8a-5" 2 iy 4B -3 +83-5
Cn— it e O = 0% + 6% + 47
ST A NP 3 18y =5 T 51403352 +86-5
Cs =

—et + 463 ~ 3e2 4+ 8e — 5’ Co = —(4+4¢3-3¢2+8( -5’

Since |B| < 1 and |y| = |§| = |¢] = |¢| = 1 the theorem is proved. O

By using Theorem 4 and Theorem 5 we have

Theorem 6.

(=)
_ "o ! i _
a3n = a2n + E E 2410255024, 024, ) =
k=1 i1+is+...tigy1=n—4k
ab +at + a? n
= «
—ot +4a3 — 302 +8a - 5-

where iy and igp1 € NU{O}, iz, 43, ..., ik € N and @ = 1,974818708297706 . ..

Corollary 2.

) (2F )
nILIBo o | %2n + Z Z 03,3, 0245023, W23y )
k=1 ij+ig+..+Figyi=n—4k
ab +at +o?
—at+4a® - 3a2+8a -5
where i, and ix1 € NU{O} , iz, i3, ...,ix € N and a = 1,974818708297706 . ..
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Lemma 3.

n+1 J
2m-1

L
1 1
am,n. - am—l,n +
k=1 ij+is+..tigri=n—2(m-1)k

/ I i /
Om—-1,i1%m—14 * - Cm—1,5. Bm—1,i 4,

where 41,12,...,ik4+1 € N and ay, , is the number of all words of the length
n over the alphabet {0,1} with the forbidden subword 1010...10 and which

o . i m times 10
ineither begin nor end with 10.
Lemma 4.
|_L+_1__|
2m~1
" . " ! ! !
U = Om-1nt E : E : O —1,i, Om—1,55 - Om—~1,ip Om—1ip

k=1 i +i2+...+~ik+1=n—2(m—1)k

where i,1 € N U {0}, 42,...,5x+1 € N and ay, ,, is the number of all words
of the length n over the alphabet {0,1} with the forbidden subword 1010...10

m times 10

and which only do not begin with 10.

It is obvious that ay, , is the number of all words of the length n over
the alphabet {0, 1} with the forbidden subword 1010...10 and which only do

. m times 10
not end with 10.
Theorem 7.
LL‘k‘.l__J
2m+1
_ " 1 ! "
em+1n = Gmpnt E E Am—1,; %m—1,i - Pm—1,i %m—1,i5 11

k=1 iy+ig+..tigpi=n—2mk

where i1,%k4+1 € N U {0} and ig,13,...,5x €N

Proof. Let us count the number of all words of the length n over
the alphabet {0,1} with the forbidden subword 1010...10 i.e. the num-

m times 10

ber of words in the set A, (n). We make a partition of the set Ap,(n) into
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subsets AE (n), where AF (n) is the set of all those words of the length
n over the alphabet {0,1} which contain exactly k subwords 1010...10

m~—1 times 10

(xn € AF (n) = l1010...10(%xa) = k) and wich do not contain the subword
S

m-—1
1010...10 . In the same way as in Theorem 2, by using Lemma 3 and Lemma

m
4, we complete the proof. O
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