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Abstract

Let E be a locally convex Hausdorff space with continuous dual E'
and sequentially continuous dual E*®. In this paper, we show that if
E is an A-space, then (E,o(E, E*)), (E, 8(E, E®)), (E®*,0(E®, E)) and
(E?, B(E?, E)) are all A-spaces. In particular, if E is a Mazur A-space,
then (E',o(E', E)) and (E', B(E', E)) are both A-spaces. We apply the
obtained results to generalize the Adjoint Theorem on operators with
the domain being a locally convex A-space.
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1. Introduction

Let (X,7) be a topological vector space, a sequence {z,} from X is said

to be 7-K convergent if each subsequence of {z,} has a subsequence {z,, }
e8]

such that the series ), &, is 7 convergent to an element z € X [1, §3].
k=1

A subset B of X is said to be 7-KX bounded if for each sequence {z,}

from B and each scalar sequence {¢,} such that ¢, — 0, the sequence {{,z,}

is 7-K convergent [1, §3]. A 7-K bounded subset B of X must be T-bounded

but in general the converse does not hold [1, §3].

A topological vector space (X,7) is a K-space if each sequence which
converges to 0 is 7-K-convergent (1, §3].

A topological vector space (X,7) is said to be an .A-space if each 7-
bounded subset of X is 7-K bounded {3].

Let (E,7) be a locally convex Hausdorff space with continuous dual E’
and sequentially continuous dual E?, i.e., E? is the space of all sequentially
continuous linear functionals defined on E. If E and F are a pair of vec-
tor spaces in duality, let o(E, F)(7(E, F),8(E, F)) be the weak topology
(Mackey topology, strong topology) on E from this duality.

There are a large number of important .4-spaces, many of which are not
complete or K-spaces [3, Prop. 6 and Coroll. 6-7]. It is very interesting that
if (E,7) is a locally convex A-space and (E,7(E, E')) is an infrabarrelled
space, then (E, 7) must be sequentially complete and must also be boundedly
complete [5, Th. 2]. .A-space have been shown to enjoy many important
properties [6], particular with respect to the Uniform Bounded Principle
and hypocontinuity for bilinear operators {2, 3]. Now, we would like to show
some new important facts for locally convex A-spaces and their dual spaces.

Our proofs need the following lemma.

Lemma 1. [6] Let (E,F) be a dual pair. Then all topologies on E admis-
sible with respect to (E,F) have the same K-bounded sets. In particular,
if (E,7) is an A-space, then E is also an A-space for any topology on E
admissible with respect to (E, E').
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2. The Spaces (F,o(E, E®)) and (E*,0(E*, E))

At first, we study the space (E, o(E, E*)).

Theorem 1. Let (E,T) be a locally convez space, then (E,7), (E,o(E, E"))
and (E,o(E, E*)) have the same bounded sets and the same K-bounded sub-
sets.

Proof. 1t follows from the Mackey Theorem and Lemma 1 that (F,7) and
(E,o(E, E'")) have the same bounded sets and the same K-bounded subsets.

Since the topology o(FE, E') is weaker then topology o(E, E*), hence,
we only need to show that o(F, E') bounded sets are o(E, Ef) bounded,
o(E, E')-K bounded sets are o(E, E*)-K bounded.

In fact, let B C FE be o(E, E') bounded, for each sequence {z,} C B and
each scalar sequence {¢,} such that ¢, — 0 and each f € E*, then {t,z,}
is 7-convergent to 0, and so it follows that

lim f(thzn) =0.

n—o0
That is, B is a o(F, E*)-bounded subset of E.

Note that each o(E, E’)-K bounded set must be 7-K bounded. It is easy
to show that each ¢ (E, E')-K bounded set must also be o(E, E*)-K bounded
set.

From Lemma 1 and Theorem 1 it follows that:

Corollary 1. If (E,7) s a locally convez space, then all topologies on E
admissible with respect to (E, E') or (E, E*®) have the same K bounded sets.
In particular, if (E,7) is an A-space, then E is also an A-space for any
topology on E admissible with respect to (E,E') or (E, E®).

A locally convex sace is said to be a Mazur space if E' = E* [7, §8.6].

The following example shows that Corollary 1 generalize Lemma 1.

Example 1. If X is a normed, barrelled, and not complete space, then
(X',0(X', X)) is an A-space [3], but it is not a Mazur space [7, Prob. 9-3-
117].
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Let E = X', 7 = o(X',X), then o(E,E') is actually weaker than
o(E, E®).

Let 71 and 75 be two locally convex topologies on E if (E, 71)° = (E, 2)°%,
then 7; and 72 is said to be sequentially compatible.

Corollary 2. Let (E,n) and (E,m2) be sequentially compatible if (E, )
is an A-space, then (E,T9) is also an A-space. That is, the locally convez
A-space is sequentially compatible invariant property.

For a locally convex space (E, 7), let 77 = sup{r’ : 7' is a locally convex
topology on E with the same convergent sequences as 7} [8]. Webb has also
shown that (E,7)* = (E,7%)* = (E,7%)". So from Corollary 2 we have

Corollary 3. If (E,T) is a locally convez A-space, then (E,TT) is also an
A-space.

Next, we study the space (E*,0(E*, E)).

Theorem 2. If (E,7) is a locally convexr Hausdorff space, then (E,c(E, E*))
is a Mazur space.

Proof. Let f € (E,o(E,E?®))* and {z,} be T-convergent to 0, then for each
g € E¢, g(zp) = 0. Thus, z, — 0in (E,c(E, E*)) and hence f(z,) — 0. It
follows that f € E®, that is (E,o(E, E®))* C E*. Note that (E,c(E, E®))' =
E* [7,88.2), (E,0(E, E*))® = (E,0(E, E*)), (E,o(E, E*)) is a Mazur space.
Corollary 4. Let (E,7) be a locally convex Hausdorff space, then (E°,
B(E*, E)) is sequentially complete and, hence, is an A-space.

Proof. Since (E,o(E, E®)) is a Mazur space it follows from {7, §8.6] that
(E®,B(E*, E)) is sequentially complete and, hence, is an A-space.

Example 2. Let c,, be the the space of all sequences which are eventually
0 and 7 be the sup-norm topology. Then (co,T) is a normed space and,
hence, is a Mazur space. We have (Coo,T) = (Co0,T)° = li. It follows
from Corollary 4 that (c3,,B(c3,00)) = (1, B(l1,¢00)) ts an A-space. But
(c5,,0(50sC00)) = (l1,0(l1,¢00)) 18 not an A-space. In fact, if ex is the
sequence with 1 in the kth coordinate and 0 elsewhere, then {kex} C 1 is
a(l1,co0) bounded, but, it is not o(l1,co0)-K bounded.
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Example 2 shows that if (E*, 8(E*, F)) is an A-space it does not imply
that (E®, o(E?, E)) is also an A-space. But, for a locally convex A-space we
have:

Theorem 3. If (E,7) is a locally convex A-space, then (E°,0(E*, E)) is
also an A-space.

Proof. Let A C E* be o(E*®, E) bounded. For each {fn} C A and each scalar
sequence {t,} such that ¢, — 0, pick a subsequence {t,,} of {t,} such that
2j ltn;] < 0o. Denote f =3, tn; fn;, then f is a linear functional defined
on E. Now, we show that f € E*. In fact, if {z;} is T-convergent to 0, it
follows from (3, Coroll. 4] that

Siu,?{lf"(zi)l} =M < oo.

For each ¢ > 0, pick jo € N such that

o0
€
M > ta,l < 5

J=jo+1
Note that {f,} C E®, there is i € N such that for i > i; we have
Jjo ¢
Z |tnjfnj($i)| < 9

=1

Thus, for 7 > ig we have

|f(:cz )= Ztnjfnj(m» <§j|tnjfn,<m,>|+M Z [tn,] < €.

Jj=1 F=jo+1

This shows that f € E*. Therefore (E*,o(E*, E)) is an A-space.

Corollary 5. If (E,7) is an A-space, then ES is also an A-space for any
topology on E* admissible with respect to (E*, E).

Corollary 6. If (E,T) is a Mazur A-space, then (E',o(E',E)) is also an
A-space.

Corollary 7. If (E,7) is a Mazur A-space, then E' is also an A-space for
any topology on E' admissible with respect to (E', E).
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3. The Adjoint Theorem

Let E, F be two locally convex Hausdorff spaces and T : £ — F' be a linear
operator. The domains of the adjoint operator T' and sequentially adjoint
operator T are defined to be

DTY={y:yeF,yTeE}, DT ={y:y €F°yTeE},

respectively. T' : D(T') — E' and T® : D(T?®) — E° are defined by Ty =
y'T and Ty = o'T.

Theorem 4. Let E and F be two locally convex Hausdorff spaces and T :
E — F, then T® : D(T*) — E* carries o(F*,F) bounded subsets of D(T*)
to subsets of E° which are uniformly bounded on o(E, E*)-K bounded subsets
of E.

Proof. Consider the spaces (E,o(E, E®)) and (F,o(F, F*)). Note that (F,
o(E,E*%)) = E* and (F,¢(F,F*)) = F*. Then it follows from [4, Th. 1]
that the conclusion holds.

Theorem 4 may also been proved in an analogous way as in [4].

Corollary 8. Let (E,7) be an A-space, then T® carries o(F*®, F) bounded
subsets of D(T*) to B(E*, E)-K bounded subsets. In particular, T' carries
o(F', F) bounded subsets of D(T') to strongly bounded subsets of E'.
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