THE LOCALLY CONVEX A-SPACES AND THEIR DUAL SPACES #### Wu Junde Department of Mathematics Daquing Petroleum Institute Anda 151400 China ## Endre Pap Institute of Mathematics University of Novi Sad 21000 Novi Sad Yugoslavia ## Du Xinghua Department of Mathematics Daquing Petroleum Institute Anda 151400 China #### Abstract Let E be a locally convex Hausdorff space with continuous dual E' and sequentially continuous dual E^s . In this paper, we show that if E is an A-space, then $(E, \sigma(E, E^s)), (E, \beta(E, E^s)), (E^s, \sigma(E^s, E))$ and $(E^s, \beta(E^s, E))$ are all A-spaces. In particular, if E is a Mazur A-space, then $(E', \sigma(E', E))$ and $(E', \beta(E', E))$ are both A-spaces. We apply the obtained results to generalize the Adjoint Theorem on operators with the domain being a locally convex A-space. AMS Mathematics Subject Classification (1991): 46A03, 46A05, 46A30 Key words and phrases: A-space, dual space, adjoint operator ## 1. Introduction Let (X, τ) be a topological vector space, a sequence $\{x_n\}$ from X is said to be τ - \mathcal{K} convergent if each subsequence of $\{x_n\}$ has a subsequence $\{x_{n_k}\}$ such that the series $\sum_{k=1}^{\infty} x_{n_k}$ is τ convergent to an element $x \in X$ [1, §3]. A subset B of X is said to be τ - \mathcal{K} bounded if for each sequence $\{x_n\}$ from B and each scalar sequence $\{t_n\}$ such that $t_n \to 0$, the sequence $\{t_nx_n\}$ is τ - \mathcal{K} convergent $[1, \S 3]$. A τ - \mathcal{K} bounded subset B of X must be τ -bounded but in general the converse does not hold $[1, \S 3]$. A topological vector space (X, τ) is a \mathcal{K} -space if each sequence which converges to 0 is τ - \mathcal{K} -convergent [1, §3]. A topological vector space (X, τ) is said to be an \mathcal{A} -space if each τ -bounded subset of X is τ - \mathcal{K} bounded [3]. Let (E, τ) be a locally convex Hausdorff space with continuous dual E' and sequentially continuous dual E^s , i.e., E^s is the space of all sequentially continuous linear functionals defined on E. If E and F are a pair of vector spaces in duality, let $\sigma(E, F)(\tau(E, F), \beta(E, F))$ be the weak topology (Mackey topology, strong topology) on E from this duality. There are a large number of important \mathcal{A} -spaces, many of which are not complete or \mathcal{K} -spaces [3, Prop. 6 and Coroll. 6–7]. It is very interesting that if (E,τ) is a locally convex \mathcal{A} -space and $(E,\tau(E,E'))$ is an infrabarrelled space, then (E,τ) must be sequentially complete and must also be boundedly complete [5, Th. 2]. \mathcal{A} -space have been shown to enjoy many important properties [6], particular with respect to the Uniform Bounded Principle and hypocontinuity for bilinear operators [2, 3]. Now, we would like to show some new important facts for locally convex \mathcal{A} -spaces and their dual spaces. Our proofs need the following lemma. **Lemma 1.** [6] Let (E, F) be a dual pair. Then all topologies on E admissible with respect to (E, F) have the same K-bounded sets. In particular, if (E, τ) is an A-space, then E is also an A-space for any topology on E admissible with respect to (E, E'). # 2. The Spaces $(E, \sigma(E, E^s))$ and $(E^s, \sigma(E^s, E))$ At first, we study the space $(E, \sigma(E, E^s))$. **Theorem 1.** Let (E, τ) be a locally convex space, then (E, τ) , $(E, \sigma(E, E'))$ and $(E, \sigma(E, E^s))$ have the same bounded sets and the same K-bounded subsets. *Proof.* It follows from the Mackey Theorem and Lemma 1 that (E, τ) and $(E, \sigma(E, E'))$ have the same bounded sets and the same \mathcal{K} -bounded subsets. Since the topology $\sigma(E,E')$ is weaker then topology $\sigma(E,E^s)$, hence, we only need to show that $\sigma(E,E')$ bounded sets are $\sigma(E,E^s)$ bounded, $\sigma(E,E')$ - \mathcal{K} bounded sets are $\sigma(E,E^s)$ - \mathcal{K} bounded. In fact, let $B \subseteq E$ be $\sigma(E, E')$ bounded, for each sequence $\{x_n\} \subseteq B$ and each scalar sequence $\{t_n\}$ such that $t_n \to 0$ and each $f \in E^s$, then $\{t_n x_n\}$ is τ -convergent to 0, and so it follows that $$\lim_{n\to\infty}f(t_nx_n)=0.$$ That is, B is a $\sigma(E, E^s)$ -bounded subset of E. Note that each $\sigma(E, E')$ - \mathcal{K} bounded set must be τ - \mathcal{K} bounded. It is easy to show that each $\sigma(E, E')$ - \mathcal{K} bounded set must also be $\sigma(E, E^s)$ - \mathcal{K} bounded set. From Lemma 1 and Theorem 1 it follows that: Corollary 1. If (E, τ) is a locally convex space, then all topologies on E admissible with respect to (E, E') or (E, E^s) have the same K bounded sets. In particular, if (E, τ) is an A-space, then E is also an A-space for any topology on E admissible with respect to (E, E') or (E, E^s) . A locally convex sace is said to be a Mazur space if $E' = E^s$ [7, §8.6]. The following example shows that Corollary 1 generalize Lemma 1. **Example 1.** If X is a normed, barrelled, and not complete space, then $(X', \sigma(X', X))$ is an A-space [3], but it is not a Mazur space [7, Prob. 9-3-117]. Let E = X', $\tau = \sigma(X', X)$, then $\sigma(E, E')$ is actually weaker than $\sigma(E, E^s)$. Let τ_1 and τ_2 be two locally convex topologies on E if $(E, \tau_1)^s = (E, \tau_2)^s$, then τ_1 and τ_2 is said to be sequentially compatible. Corollary 2. Let (E, τ_1) and (E, τ_2) be sequentially compatible if (E, τ_1) is an A-space, then (E, τ_2) is also an A-space. That is, the locally convex A-space is sequentially compatible invariant property. For a locally convex space (E,τ) , let $\tau^+ = \sup\{\tau' : \tau' \text{ is a locally convex topology on } E$ with the same convergent sequences as $\tau\}$ [8]. Webb has also shown that $(E,\tau)^s = (E,\tau^+)^s = (E,\tau^+)'$. So from Corollary 2 we have **Corollary 3.** If (E, τ) is a locally convex A-space, then (E, τ^+) is also an A-space. Next, we study the space $(E^s, \sigma(E^s, E))$. **Theorem 2.** If (E, τ) is a locally convex Hausdorff space, then $(E, \sigma(E, E^s))$ is a Mazur space. Proof. Let $f \in (E, \sigma(E, E^s))^s$ and $\{x_n\}$ be τ -convergent to 0, then for each $g \in E^s$, $g(x_n) \to 0$. Thus, $x_n \to 0$ in $(E, \sigma(E, E^s))$ and hence $f(x_n) \to 0$. It follows that $f \in E^s$, that is $(E, \sigma(E, E^s))^s \subseteq E^s$. Note that $(E, \sigma(E, E^s))' = E^s$ [7, §8.2], $(E, \sigma(E, E^s))^s = (E, \sigma(E, E^s))'$, $(E, \sigma(E, E^s))$ is a Mazur space. Corollary 4. Let (E, τ) be a locally convex Hausdorff space, then $(E^s, \beta(E^s, E))$ is sequentially complete and, hence, is an A-space. *Proof.* Since $(E, \sigma(E, E^s))$ is a Mazur space it follows from [7, §8.6] that $(E^s, \beta(E^s, E))$ is sequentially complete and, hence, is an \mathcal{A} -space. **Example 2.** Let c_{oo} be the space of all sequences which are eventually 0 and τ be the sup-norm topology. Then (c_{oo}, τ) is a normed space and, hence, is a Mazur space. We have $(c_{oo}, \tau)' = (c_{oo}, \tau)^s = l_1$. It follows from Corollary 4 that $(c_{oo}^s, \beta(c_{oo}^s, c_{oo})) = (l_1, \beta(l_1, c_{oo}))$ is an A-space. But $(c_{oo}^s, \sigma(c_{oo}^s, c_{oo})) = (l_1, \sigma(l_1, c_{oo}))$ is not an A-space. In fact, if e_k is the sequence with 1 in the kth coordinate and 0 elsewhere, then $\{ke_k\} \subseteq l_1$ is $\sigma(l_1, c_{oo})$ bounded, but, it is not $\sigma(l_1, c_{oo})$ -K bounded. Example 2 shows that if $(E^s, \beta(E^s, E))$ is an \mathcal{A} -space it does not imply that $(E^s, \sigma(E^s, E))$ is also an \mathcal{A} -space. But, for a locally convex \mathcal{A} -space we have: **Theorem 3.** If (E, τ) is a locally convex A-space, then $(E^s, \sigma(E^s, E))$ is also an A-space. *Proof.* Let $A \subseteq E^s$ be $\sigma(E^s, E)$ bounded. For each $\{f_n\} \subseteq A$ and each scalar sequence $\{t_n\}$ such that $t_n \to 0$, pick a subsequence $\{t_{n_j}\}$ of $\{t_n\}$ such that $\sum_j |t_{n_j}| < \infty$. Denote $f = \sum_j t_{n_j} f_{n_j}$, then f is a linear functional defined on E. Now, we show that $f \in E^s$. In fact, if $\{x_i\}$ is τ -convergent to 0, it follows from [3, Coroll. 4] that $$\sup_{i,n}\{|f_n(x_i)|\}=M<\infty.$$ For each $\epsilon > 0$, pick $j_0 \in N$ such that $$M\sum_{j=j_0+1}^{\infty}|t_{n_j}|<\frac{\epsilon}{2}.$$ Note that $\{f_n\} \subseteq E^s$, there is $i_0 \in N$ such that for $i \geq i_0$ we have $$\sum_{j=1}^{j_0} |t_{n_j}f_{n_j}(x_i)| < \frac{\epsilon}{2}.$$ Thus, for $i \geq i_0$ we have $$|f(x_i)| = \left|\sum_j t_{n_j} f_{n_j}(x_i)\right| \leq \sum_{j=1}^{j_0} |t_{n_j} f_{n_j}(x_i)| + M \sum_{j=j_0+1}^{\infty} |t_{n_j}| < \epsilon.$$ This shows that $f \in E^s$. Therefore $(E^s, \sigma(E^s, E))$ is an \mathcal{A} -space. Corollary 5. If (E, τ) is an A-space, then E^s is also an A-space for any topology on E^s admissible with respect to (E^s, E) . Corollary 6. If (E, τ) is a Mazur A-space, then $(E', \sigma(E', E))$ is also an A-space. Corollary 7. If (E, τ) is a Mazur A-space, then E' is also an A-space for any topology on E' admissible with respect to (E', E). # 3. The Adjoint Theorem Let E, F be two locally convex Hausdorff spaces and $T: E \to F$ be a linear operator. The domains of the adjoint operator T' and sequentially adjoint operator T^s are defined to be $$D(T') = \{y' : y' \in F', y'T \in E'\}, \quad D(T^s) = \{y' : y' \in F^s, y'T \in E^s\},$$ respectively. $T':D(T')\to E'$ and $T^s:D(T^s)\to E^s$ are defined by T'y'=y'T and $T^sy'=y'T$. **Theorem 4.** Let E and F be two locally convex Hausdorff spaces and T: $E \to F$, then $T^s: D(T^s) \to E^s$ carries $\sigma(F^s, F)$ bounded subsets of $D(T^s)$ to subsets of E^s which are uniformly bounded on $\sigma(E, E^s)$ -K bounded subsets of E. *Proof.* Consider the spaces $(E, \sigma(E, E^s))$ and $(F, \sigma(F, F^s))$. Note that $(E, \sigma(E, E^s))' = E^s$ and $(F, \sigma(F, F^s))' = F^s$. Then it follows from [4, Th. 1] that the conclusion holds. Theorem 4 may also been proved in an analogous way as in [4]. Corollary 8. Let (E, τ) be an A-space, then T^s carries $\sigma(F^s, F)$ bounded subsets of $D(T^s)$ to $\beta(E^s, E)$ -K bounded subsets. In particular, T' carries $\sigma(F', F)$ bounded subsets of D(T') to strongly bounded subsets of E'. ## References - [1] Antosik, P., Swartz, C., Matrix Methods in Analysis, Springer-Verlag, Lecture Notes in Mathematics 1113, Heidelberg, 1985. - [2] Antosik, P., Swartz, C., Boundedness and continuity for bilinear operators, Studia Sci. Math. Hungar., 29 (1994), 387–395 - [3] Li Ronglu, Swartz, C., Spaces for which the uniform boundedness principle holds, Studia Sci. Math. Hungar., 27 (1992), 379–384 - [4] Pap, E., The adjoint theorem on A-spaces, Novi Sad J. Math., 26, (1996) 63-68 - [5] Wu Junde, K-bounded sets and A-spaces, Chinese Quarter. J. Math., 12 (1998), 64–66 - [6] Wu Junde, Li Ronglu, An Orlitz-Pettis theorem with applications to A-spaces, Studia Sci. Math. Hungar., 35 (1999), (to appear) - [7] Wilansky, A., Modern Methods in Topological Vector Spaces, McGraw-Hill, New York, 1978. - [8] Webb, J.H., Sequential convergence in locally convex spaces, Proc. Camb. Phil. Soc., 64 (1968), 341–364 Received by the editors December 9, 1998.