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Abstract

The present note is a continuation of our work in [5], [6] and [7] on
constructing varieties of small types given by reasonably simple recur-
sive lists of equations, having solvable word problem, but undecidable
equational theory (and thus uniformly unsolvable word problem). Here
we give an example of a semigroup variety of such kind, inspired by
some ideas of Wells [16]. This, in a certain sense, unifies our previous
results in this field.
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1. Introduction

Let V be a variety of algebras of a given type 7. The set of all equations of
type 7 holding on all members of V, that is

EqV)={p=q: VEDP=gq},

is called the equational theory of V. The equational theory of a variety V
is said to be decidable, whenever Eq(V) is a recursive set, otherwise it is
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undecidable. Of course, one can consider other sets of formule, such as
all first-order formulee and quasi-identities, which are true on V. In this
way, we obtain respectively the elementary and the implicational theory of
V, and one can consider questions of their decidability as well. Of course,
decidability of the elementary theory yields decidability of the implicational
theory, and the latter yields decidabilty of the equational theory for any
variety V.

For example, varieties of Abelian groups and Boolean algebras have de-
cidable elementary theory. Varieties of all groups and all lattices provide
further examples of those having decidable equational theory. On the other
hand, equational theories of varieties of modular lattices and relation alge-
bras appear to be undecidable.

Another class of decidability problems in algebra are word problems. A
presentation of type T is a pair (G, R), where G is a nonempty set and R is a
set of equations of type 7¢ = 7 UG without variables (the elements of G are
treated as new constant symbols adjoined to 7). In the case of semigroups,
both sides of equations from R are just words over G. A presetation is
finite, if such are both G and R. If ¥ is a set of identities of type 7, the
word problem for {G, R) over T asks if there is an algorithm to determine
whether TU R | u = v for two terms u, v of type 7¢ without variables.

However, it is more cusomary to speak about word problems for alge-
bras and varieties instead of a rather logical settings of presentations and
equations. Therefore, we say that an alegebra A (belonging to a variety V
of type 7) is presented by (G,R), if A = Fy(G)/0r, where F,(G) is the
V-free algebra freely generated by G and 0 is the congruence on Fy(G)

~generated by {(u,v): (u=wv) € R}. In that case, we denote A = Py(G, R)
and call the word problem for (G, R) over Eq(V) the word problem for A.
Now the true meaning of the word problem is much more transparent: it
looks for the existence of an algorithm which should answer whether two
elements of the free algebra F}(G) (in free semigroups these are literally
words) represent the same element of A, by identification (in the sense of
the above isomorphism) of elements of G with the appropriate generating
elements of A.

The word problem for the variety V is said to be solvable, if it is so for
each finitely presented algebra in V. However, in several cases it turns out
that the whole multitude of these word problems can be solved in a uniform
way, or, to be more specific, that there exists a universal algorithm which,
given a finite presentation (G, R) as input, works exactly as the algorithm
solving the word problem for P,(G, R). If so, we say that V has uniformly
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solvable word problem.

The diversity just described raised the natural question whether varieties
whose word problem is solvable, but not uniformly, exist at all. Mekler, Nel-
son and Shelah [14] constructed such an example by encoding computations
of certain Turing machines by equations and utilizing the unsolvability of
the Halting Problem. Of course, their example by far did not matched any
natural class of algebras. Examples of such kind, obtained as a result of al-
gebraization of different Turing machines, were known ever earlier, see Wells
[15], who supplied examples of simpler types, but with enormous number of
axioms. The varieties from latter examples met, in fact, the requirements of
being pseudorecursive (see [15]), and such varieties are, for example, those
having solvable word problem, but undecidable equational theory. This un-
decidability condition is stronger than the uniform unsolvability of the word
problem, since the latter can be shown to be equivalent to the undecidability
of the implicational theory.

However, in [15] and [16], Wells presented an another pattern for pro-
ducing pseudorecursive varieties. This is a technique ha called pleonastic
variable rewriting and it uses, in essence, the well-known Craig’s trick from
model theory. Of course, it is reasonable to require that the varieties in
question are given by recursive sets of identities, i.e. that Eq(V) is an ax-
iomatic theory. Even though, the key for undecidability of Eq(V) is still in
the list of axioms for equations of V. This direction was followed in examples
presented by Crvenkovié and Deli¢ [3], [4] and Crvenkovié and Dolinka [5],

[6], [7].

In [7], the authors constructed a variety of groupoids with the desired
properties. Unfortunately, introduction of associativity for the binary oper-
ation in that example would cause difficulties that could be overcome only
by adding a unary operation symbol to the language, as it was done in [6].
Nevertheless, in what follows, we develop and idea from Wells [16] in order
to obtain the missing pseudorecursive semigroup variety defined in Craig’s
fashion. In this way, our previous efforts in the topic are unified by the
present paper.

For all undefined notions of universal algebra and semigroup theory, we
refer to {1] and [10].
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2. Preliminaries and the Main Theorem

Given any nonempty set X, we denote by X+ the free semigroup over X.
Throughout the paper, we are going to fix a countably infinite set of symbols
A = {a, : n €N}, as well as its subsets A, = {a1,...,a,} for all n €N.
Also, we choose a recursive function ¢ : N N such that the set of its images

¥ = {¢(n): ne N}

is not recursive (the existence of such function is well-known in the recursion
theory).
Finally, consider the following identities:

W ey ~ alye),
(2) 2y =~ 2,
(3) yz* ~ 2,
(4) Tyrzr = o,
(5) P’y ~ 2’
(6) Ty =~ 1z,
(7) a:yfy%...yfb(n)x ~ "% neN.

The semigroup variety determined by identities (1)-~(6) we denote by W,
while its subvariety defined by the sequence of identities (7) will be in the
sequel denoted by V. The aim of the present paper is now to prove the
following result.

Main Theorem. The variety V has a solvable word problem and undeci-
dable equational theory.

Two remarks should be given at this point concerning the equations
above. First, note that (2) and (3) say, in fact, that the cube of each ele-
ment of any semigroup from W is the zero element of that semigroup. Since
a semigroup can contain at most one zero, it is justified to write the symbol
0 instead of a cube of any variable (or term) in the identities we deal with.
Thus (2)-(6) can be rephrased as follows:

0-y=y-0=~ zyzze =~ £2yz = zyz’ ~ 0,
while (7) is obviously equivalent to

Ty?yl. .. yfb(n)x ~0,neN.
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Nevertheless, we shall not pursue this new notation for (7), despite its
convinience. Namely, it takes only a short reflection to see that the set of
these slightly modified equational axioms for V is not recursive. But the
major feature of Craig’s trick is that the original set of identities (1)—(7) is
recursive, by virtue of the pleonastic use of z and its (n + 3)*® power. Of
course, it is not hard to construct an algorithm which determines whether
a given semigroup identity is of the form

2,2 2,
xylyz...ykx~x

for some m > 3. Now the above equation belongs to the sequence (7) if
and only if & = t(m — 3), which can easily be decided using the Turing
machine which computes the recursive function . Hence, the given system
of identities is a recursive base for V.

3. The proof of the Main Theorem

Let I3 be the set of all words from At which contain at least three oc-
curences of some of the letters from A. The set of words I3, is defined quite
analogously within A7

Lemma 3.1. I3 is an ideal of A" and I3, is an ideal of AY for alln €N.

Proof. The assertion of the lemma follows easily from the fact that if u is
any word and the word w contains at least three ocurences of a letter a;,
then the same holds for words uw and wu. O

Lemma 3.2. The Rees quotient At /I3 (AY/I3y) is W-free over A (over
Ap, for alln €N).

Proof. We present the proof for A1 /I3, while the case of finitely generated
Rees quotients is easily imitated.

First of all, recall that the elements of A% /I3 are 0 and all words not
belonging to I3, that is, all words containing each letter from A at most
twice. The multiplication in this semigroup is defined such that uv = 0
if v and v together contain at least three occurences of the same letter,
otherwise uv is just the concaternation of u and ». Now it is easy to verify
that identities (2)—(6) are satisfied in At /I3, because every interpretation
of the variables yields on their left-hand sides either products in which 0
appears, or words with at least three occurences of some letter from A. In
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both cases, the result of an interpretation of both sides of (2)-(6) is 0. Thus
A% /I3 belongs to W.
If X is a countably infinite set of variables, define

Ow={pg) e X* xX¥: Wkp=qg}.

Since it is known that 8y is a congruence of Xt and that the W-free semi-
group over X is isomorphic to X+ /0y, our goal is to prove that the homo-
morphism ¢ : Xt /6y, — At /I3 which extends the mapping ¢y given by
wo(zn/0w) = a, for all n €N is, in fact, an isomorphism (of course, such
homomorphism exists because of the conclusion of the previous paragraph).
This follows almost immediately, because if

Qi1 Q4y - . - Qg = Q1 Qgy .- - Qg
holds in A% /I3, then either ¥k = m and i, = j, for all 1 < r < k, or both
sides of the above equality contain at least three occurences of some letter.
But then in both cases it is a routine to show that the equation

TiyTig -+ - Tip = Zjy Ty -« Tgp,
is an equational consequence of (1)-(6) and thus it holds in W. In other
words, :

Lj Lig e :Eik/ew = ."le:l}jz ‘e ..’I:jm/GW,

which completes the proof of the lemma. O
Lemma 3.3. The variety V is locally finite.

Proof. By Lemma 3.2, the semigroup A} /I3, is W-free over a set of n free
generators. It has only finitely many elements — all words over A,, containing
each letter at most twice and 0. The lemma now follows immediately. O

Denote by S the Rees quotient A*/I3 with the usual identification
of its universe with the set of words (A% \ I3) U {0}. Define J; to be
the set containing 0 and all words from S having subwords of the form
uwWy W WeWs . . . wrwyu for some k € ¥ and u,wy,ws,...,wx € AY. By a
similar argument as in Lemma, 3.1, the following is obvious.

Lemma 3.4. Jy is an ideal of S. O
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Denote by Sy the Rees quotient 5/Jy defined over (S \ Jy) U {0}. Now
we arrived to the key lemma in our proof.

Lemma 3.5. Sy = zy?y?...y2z ~ 23 if and only if k € T.

Proof. (=) Suppose k ¢ ¥. Then consider the interpretation of variables
in Sy given by £ — ag4; and y; = a; for 1 <4 < k. Under this interpre-
tation, 3 has the value 0, and the value of the term zy?y2...y2z in S is
Gk+10101G2G2 . . . GxGkQk+1. By an easy inspection, one concludes that this
word does not belong to Jy, because its only subwords with coinciding pre-
fixes and suffixes are the whole word itself and the words a;a; for 1 <i < k.

Hence,
3

Sy ¥ zyly: .. yiz ~ i

(<«=) Let k € ¥. Any interpretation of the variables z,y;,¥2, . .. , yx yields

in S a word of the form uw wiwowy ... wewgu which is an element of Jy.
So the identity zy?y2 . ..y2z ~ 0 holds in Sy, as desired. O

It remains only to emphasize the conclusion of the above lemma.
Lemma 3.6. V E2y?y?.. . y2z ~ 23 if and only if k€ 0.

Proof. First of all, the semigroup §; belongs to V, because it is is a ho-
momorphic image of S (thereby satisfying (1)-(6)) and because it satisfies
all identities of the form (7) by the previous lemma. The direct part of
this lemma follows from this observation and the direct part of the previ-
ous lemma, while the converse implication is immediate, being an obvious
consequence of the defining equations (7). O

Proof of the Main Theorem. By Lemma 3.3, V is locally finite, so all of its
finitely presented members are finite algebras, having trivially solvable word
problem. On the other hand, suppose Eq(V) is decidable. Then it is quite
easy to construct an algorithm which recognizes equations of the form

oyiy3 .- . via = 2%,
whose validity in V can be, by assumption, algorithmically decided. But

then, by Lemma 3.6, we have just obtained an algorithm for deciding whether
k € ¥. Contradiction. 0O
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