MINIMAX THEOREMS IN CONVEX SPACES

Sehie Park

Department of Mathematics Seoul National University Seoul 151-742, Korea

Abstract

We apply our basic coincidence theorem in [6] to obtain new forms of minimax theorems and a saddle point result. Our results extend the works of Arandjelović [1] and Sion [7], and represent variants of the works of Ha [3], Komornik [5], and Komiya [4].

AMS Mathematics Subject Classification (1991): 49K35, 47H10, 54H25 Key words and phrases: multimap (map), convex space, upper semicontinuous (u.s.c.), "better" admissible class, coincidence point, complete linearly ordered sets, minimax theorem, saddle point

1. Introduction

Recently ([6]) we introduced a "better" admissible class \mathfrak{B} of multimaps and a basic coincidence theorem for \mathfrak{B} as well as a matching theorem and a KKM theorem. Those results are subsequently applied to the problems related to a generalized minimax inequality in [7] and to extensions of monotone sets in [8].

In the present paper, we apply the basic coincidence theorem in [6] to obtain new forms of minimax theorems and a saddle point result.

2 Sehie Park

From our basic theorem (Theorem 1), we deduce first a particular coincidence theorem (Theorem 2) extending Fan's result [2]. Then, from Theorem 2, we deduce a minimax theorem (Theorem 3), which is a variant of a result of Komornik [5] and extends a saddle point result due to Arandjelović [1] and Sion [7]. Finally, we obtain another minimax theorem (Theorem 4) involving acyclic sets, which is a variant of the results of Ha [3], Komornik [5], and Komiya [4].

2. Coincidence Theorems

A multimap (simply, a map) $T: X \multimap Y$ is a function from a set X into the power set 2^Y of another set Y. Note that $y \in T(x)$ is equivalent to $x \in T^-(y)$, and $T(A) = \bigcup \{T(x) : x \in A\}$ for $A \subset X$.

A convex space is a nonempty convex set (in a vector space) equipped with any topology that induces the Euclidean topology on the convex hulls of its finite subsets. Such convex hulls will be called *polytopes*.

For topological spaces X and Y, a multimap $T: X \multimap Y$ is said to be upper semicontinuous (u.s.c.) if, for each open subset G of Y, the set $\{x \in X: Tx \subset G\}$ is open in X; and compact whenever T(X) is relatively compact in Y. Recall that a nonempty topological space is acyclic if all of its reduced Čech homology groups over rationals vanish.

In our previous work [6], we introduced a "better" admissible class \mathfrak{B} of maps defined on a convex space X as follows:

 $T \in \mathfrak{B}(\mathfrak{X}, \mathfrak{Y}) \iff \text{for any polytope } P \text{ in } X \text{ and any } f \in \mathbb{C}(\mathbb{F}(\mathbb{P}), \mathbb{P}),$ the composite $f(T|_P) : P \multimap P$ has a fixed point.

We give some examples of \mathfrak{B} as follows:

- $t \in \mathbb{C}(X, Y) \iff t \text{ is a continuous (single-valued) function.}$
- $T \in \mathbb{K}(\mathbb{X}, \mathbb{Y}) \iff T$ is a u.s.c. map with nonempty compact convex values, where Y is a convex space.
- $T \in \mathbb{V}(\mathbb{X}, \mathbb{Y}) \iff T$ is an acyclic map; that is, a u.s.c. map with compact acyclic values.
- $T \in \Phi(X,Y) \iff T(x)$ is nonempty convex for each $x \in X$ and $T^{-}(y)$ is open for each $y \in Y$, where Y is a convex space.

There are many other examples of \mathfrak{B} ; see [6].

The following is due to the author [6, Theorem 1]:

Theorem 1. Let X be a convex space, Y a Hausdorff space, and $T, S: X \multimap Y$ maps satisfying

- (1) $T \in \mathfrak{B}(\mathfrak{X}, \mathfrak{Y})$ is compact;
- (2) for each $y \in T(X)$, $S^{-}(y)$ is convex; and
- (3) {Int $S(x): x \in X$ } covers the closure $\overline{T(X)}$.

Then T and S have a coincidence point $x_0 \in X$; that is, $T(x_0) \cap S(x_0) \neq \emptyset$.

From Theorem 1, we obtain the following theorem, which shows that there is another subclass of \mathfrak{B} bigger than Φ :

Theorem 2. Let X be a convex space, Y a Hausdorff convex space, and $F, G: X \longrightarrow Y$ maps such that

- (1.1) F is compact, F(x) is convex for each $x \in X$, and $X = \bigcup \{ \text{Int } F^-(y) : y \in Y \}$; and
- (1.2) $G^-(y)$ is convex for each $y \in F(X)$ and $\overline{F(X)} = \bigcup \{ \text{Int } G(x) : x \in X \}.$

Then F and G have a coincidence point.

Proof. In view of Theorem 1, it suffices to show that $F \in \mathfrak{B}(\mathfrak{X},\mathfrak{Y})$. Let P be a polytope in X. Since P is compact, there exists a finite subset $\{y_1, y_2, \ldots, y_n\} \subset Y$ such that $P \subset \bigcup_{i=1}^n \operatorname{Int} F^-(y_i)$. Let $\{\lambda_i\}_{i=1}^n$ be the partition of unity subordinated to the cover of P. Define $h: P \to Y$ by

$$h(x) = \sum_{i=1}^{n} \lambda_i(x) y_i = \sum_{i \in N_x} \lambda_i(x) y_i \quad \text{for } x \in P,$$

where

$$i \in N_x \iff \lambda_i(x) \neq 0 \Longrightarrow x \in \text{Int } F^-(y_i) \subset F^-(y_i).$$

Then $y_i \in Fx$ for each $i \in N_x$. Clearly, h is continuous and, by (1.1), $h(x) \in \operatorname{co}\{y_i : i \in N_x\} \subset Fx$ for each $x \in P$. Therefore, h is a continuous

4 Sehie Park

selection of $F|_P$. Since $h: P \to h(P) \subset F(P)$, for any $f: \mathbb{C}(\mathbb{F}(\mathbb{P}), \mathbb{P})$, the composite $fh: P \to P$ is a continuous selection of $f(F|_P): P \multimap P$ and has a fixed point by the Brouwer fixed point theorem. Hence, $F \in \mathfrak{B}(\mathfrak{X}, \mathfrak{Y})$. Now the conclusion follows from Theorem 1. \square

Remark 1. Theorem 2 improves the result of Fan [2].

3. New Minimax Theorems

In this section, Z denotes a complete linearly ordered space; that is, a linearly ordered set whose every subset has a least upper bound. Examples are the extended real line $\overline{\mathbf{R}}$, the extended Euclidean space $\overline{\mathbf{R}}^n$, and any compact (in the Euclidean topology) subset of \mathbf{R}^n with respect to the lexicographic order; see Komornik [5].

For a topological space X, a function $f: X \to Z$ is said to be lower [resp. upper] semicontinuous (l.s.c.) [resp. u.s.c.] whenever $\{x \in X : f(x) > z\}$ [resp. $\{x \in X : f(x) < z\}$] is open in X for each $z \in Z$.

If X is compact and $f: X \to Z$ is l.s.c., then there exists an $x_0 \in X$ such that $f(x_0) = \inf_{x \in X} f(x)$. For any family $\{f_i\}_{i \in I}$ of l.s.c. functions $f_i: X \to Z$, the function $\sup_{i \in I} f_i$ is also l.s.c. (see [5]).

The following is the main result of this section:

Theorem 3. Let X be a convex space, Y a Hausdorff compact convex space, and $f: X \times Y \to Z$ a function. Suppose that

- (1) there is a subset $U \subset Z$ such that $a, b \in f(X \times Y)$ with a < b implies $U \cap (a, b) \neq \emptyset$;
- (2) $f(x,\cdot)$ is l.s.c. on Y and $\{y \in Y : f(x,y) < s\}$ is convex for each $x \in X$ and $s \in U$; and
- (3) $f(\cdot,y)$ is u.s.c. on X and $\{x \in X : f(x,y) > s\}$ is convex for each $y \in Y$ and $s \in U$.

Then

$$\sup_{x \in X} \min_{y \in Y} f(x, y) = \min_{y \in Y} \sup_{x \in X} f(x, y).$$

Proof. Since $f(x,\cdot)$ is l.s.c., $p(x) = \min_{y \in Y} f(x,y)$ exists for each $x \in X$. Since $q(y) = \sup_{x \in X} f(x,y)$ is l.s.c. for each $y \in Y$, $q(y_0) = \min_{y \in Y} q(y)$ exists. Note that

$$p(x) = \min_{y \in Y} f(x, y) \le f(x, y) \le \sup_{x \in X} f(x, y) = q(y)$$

for all $x \in X$ and $y \in Y$. Therefore, we have

$$\sup_{x \in X} p(x) \le \min_{y \in Y} q(y).$$

Suppose that the equality does not hold. Then, there exists an $s \in U$ such that

$$\sup_{x \in X} p(x) < s < \min_{y \in Y} q(y).$$

We define the multimaps $T, S: X \multimap Y$ by

$$T(x) = \{ y \in Y : f(x,y) < s \} \text{ and } S(x) = \{ y \in Y : f(x,y) > s \}$$

for $x \in X$. Then T(x) is nonempty and convex by (2), and S(x) is open since $f(x,\cdot)$ is l.s.c. Moreover,

$$T^{-}(y) = \{x \in X : f(x,y) < s\} \text{ and } S^{-}(y) = \{x \in X : f(x,y) > s\}$$

for $y \in Y$. Then $T^{-1}(y)$ is open since $f(\cdot, y)$ is u.s.c., and $S^{-1}(y)$ is nonempty and convex by (3). Now, by applying Theorem 2, there exists an $x_0 \in X$ such that $T(x_0) \cap S(x_0) \neq \emptyset$. This contradicts

$$f(x_0, a) < s < f(x_0, b)$$
 for each $a \in T(x_0)$ and $b \in S(x_0)$.

This completes our proofs. \Box

Remark 2. If U = Z, then Theorem 3 is a consequence of Komornik [5, Theorem 2] for interval spaces with different proof.

Corollary 1. Under the hypothesis of Theorem 3, further if X is compact, then f has a saddle point.

Proof. Since $f(x,\cdot)$ and $f(\cdot,y)$ are l.s.c. and u.s.c., resp., $p(x) = \min_{y \in Y} f(x,y)$ and $q(y) = \max_{x \in X} f(x,y)$ exist for each $x \in X$ and $y \in Y$. Since p is u.s.c. on X and q is l.s.c. on Y, $\max_{x \in X} p(x) = p(x_0)$ and $\min_{y \in Y} q(y) = q(y_0)$ for some $x_0 \in X$ and $y_0 \in Y$. Then (x_0, y_0) is a saddle point by Theorem 3. This completes our proof. \square

Remark 3. The corollary reduces to the results of Arandjelović [1, Theorem 3] whenever $Z = \mathbf{R}$, which extends the Sion minimax theorem [9].

The following new minimax theorem is a variant of Theorem 3:

Theorem 4. Let X be a convex space, Y a Hausdorff compact space, and $f: X \times Y \to Z$ a l.s.c. function such that

- (1) there is a subset $U \subset Z$ such that $a, b \in f(X \times Y)$ with a < b implies $U \cap [a, b) \neq \emptyset$;
- (2) for each $s \in U$ and $y \in Y$, $\{x \in X : f(x,y) > s\}$ is convex; and
- (3) for each $s \in U$ and $x \in X$, $\{y \in X : f(x,y) \leq s\}$ is acyclic.

Then

$$\sup_{x \in X} \min_{y \in Y} f(x, y) = \min_{y \in Y} \sup_{x \in X} f(x, y).$$

Proof. As in the proof of Theorem 3, we have

$$\sup_{x \in X} p(x) \le \min_{y \in Y} q(y).$$

Suppose that the equality does not hold. Then there exists an $s \in U$ such that

$$\sup_{x \in X} p(x) \le s < \min_{y \in Y} q(y).$$

We define the multimaps $T, S: X \multimap Y$ by

$$T(x) = \{ y \in Y : f(x,y) \le s \} \text{ and } S(x) = \{ y \in Y : f(x,y) > s \}$$

for $x \in X$. Then T(x) is nonempty by the definition of p(x) and closed since $f(x, \cdot)$ is l.s.c. for each $x \in X$. On the other hand, S(x) is open since $f(x, \cdot)$ is l.s.c. Moreover, for each $y \in Y$,

$$S^{-}(y) = \{x \in X : f(x,y) > s\}$$

is nonempty and convex by (2).

Consider the graph of T

$$\mathrm{Gr}(T)=\{(x,y)\in X\times Y: f(x,y)\leq s\}.$$

Since f is l.s.c., Gr(T) is closed in $X \times Y$. Since Y is compact, T is u.s.c. Note that each T(x) is acyclic by (3). Hence T is an acyclic map.

Therefore by Theorem 1 for \mathbb{V} instead of \mathfrak{B} , there exists an $x_0 \in X$ such that $T(x_0) \cap S(x_0) \neq \emptyset$. This leads a contradiction as in the proof of Theorem 3. \square

Remark 4. 1. In case we replace the acyclicity in (3) by convexity and if $U = Z = \mathbf{R}$, then Theorem 4 is a particular form of Ha [3, Theorem 4].

- 2. If we replace the acyclicity in (3) by convexity and if U = Z, then Theorem 4 follows from Komornik [5, Theorem 3] with different proof.
- 3. Komiya [4, Theorem 3] obtained a saddle point theorem whenever $U = Z = \mathbf{R}$, f is continuous, and the acyclicity in (3) is replaced by convexity in Theorem 4 under an extra restriction.

Acknowledgement

This research is partially supported by Ministry of Education, 1997, Project Number BSRI-98-1413 and S.N.U. Research Fund, 1999.

References

- [1] Arandjelović, I., An extension of the Sion's minimax theorem, Zb. rad. Fil. fak. u Nišu, Ser. Mat. 6 (1992), 1–3.
- [2] Fan, Ky, Applications of a theorem concerning sets with convex sections, Math. Ann. 163 (1966), 189–203.
- [3] Ha, C.W., Minimax and fixed point theorems, Math. Ann. 248 (1980), 73–77.
- [4] Komiya, H., Coincidence theorem and saddle point theorem, Proc. Amer. Math. Soc. 96 (1986), 599-602.
- [5] Komornik, V., Minimax theorems for upper semicontinuous functions, Acta Math. Acad. Sci. Hungar. 40 (1982), 159–163.

8 Sehie Park

[6] Park, Sehie, Coincidence theorems for the better admissible multimaps and their applications, WCNA '96—Proceedings, Nonlinear Anal. 30 (1997), 4183–4191.

- [7] Park, Sehie, A generalized minimax inequality related to admissible multimaps and its applications, J. Korean Math. Soc. 34 (1997), 719– 730.
- [8] Park, Sehie, Extensions of monotone sets, to appear.
- [9] Sion, M., On general minimax theorems, Pacific J. Math. 8 (1958), 171-178.

Received by the editors March 3, 1997.