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Abstract

We apply our basic coincidence theorem in [6] to obtain new forms
of minimax theorems and a saddle point result. Our results extend the
works of Arandjelovi¢ [1] and Sion (7], and represent variants of the
works of Ha [3], Komornik [5], and Komiya [4]. '
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1. Introduction

Recently ([6]) we introduced a “better” admissible class 8 of multimaps and
a basic coincidence theorem for B as well as a matching theorem and a KKM
theorem. Those results are subsequently applied to the problems related to -
a generalized minimax inequality in {7] and to extensions of monotone sets
in [8].

In the present paper, we apply the basic coincidence theorem in [6] to
obtain new forms 6f minimax theorems and a saddle point result.
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From our basic theorem (Theorem 1), we deduce first a particular coinci-
dence theorem (Theorem 2) extending Fan’s result {2]. Then, from Theorem
2, we deduce a minimax theorem (Theorem 3), which is a variant of a re-
sult of Komornik [5] and extends a saddle point result due to Arandjelovié
[1] and Sion [7]. Finally, we obtain another minimax theorem (Theorem 4)
involving acyclic sets, which is a variant of the results of Ha (3], Komornik
(5], and Komiya [4].

2. Coincidence Theorems

A multimap (simply, a map) T : X — Y is a function from a set X into
the power set 2 of another set Y. Note that y € T(z) is equivalent to
z €T (y), and T(A) = U{T'(z) : z € A} for A C X.

A converz space is a nonempty convex set (in a vector space) equipped
with any topology that induces the Euclidean topology on the convex hulls
of its finite subsets. Such convex hulls will be called polytopes.

For topological spaces X and Y, a multimap T' : X — Y is said to
be upper semicontinuous (u.s.c.) if, for each open subset G of Y, the set
{r € X : Tz C G} is open in X; and compact whenever T(X) is relatively
compact in Y. Recall that a nonempty topological space is acyclic if all of
its reduced Cech homology groups over rationals vanish.

In our previous work [6}, we introduced a “better” admissible class B of
maps defined on a convex space X as follows:

T € B(X,9)) <= for any polytope P in X and any f € C(F(P),P),
the composite f(T|p) : P — P has a fixed point.

We give some examples of B as follows:

te C(X,Y) <= tisa continuous (single-valued) function.
TeK(XY) < T isau.s.c.c map with nonempty compact convex
values, where Y is a convex space.
TeV(X)Y) <= T isan acyclic map; that is, a u.s.c. map with
compact acyclic values.
Ted(X,Y) < T(z)is nonempty convex for each z € X and T~ (y)
is open for each y € Y, where Y is a convex space.
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- There are many other examples of ®B; see [6].

The following is due to the author [6, Theorem 1]:

Theorem 1. Let X be a conver space, Y a Hausdorff space, and T,S :
X — Y maps satisfying

(1) T € B(X,9) is compact;
(2) for eachy € T(X), S~ (y) is convez; and

(3) {Int S(z) : z € X} covers the closure T(X).

Then T and S have a coincidence point zo € X ; that is, T(zo) N S(zo) # 0.

From Theorem 1, we obtain the following theorem, which shows that
there is another subclass of B bigger than &:

Theorem 2. Let X be a convez space, Y a Hausdorff convez space, and
F,G: X — Y maps such that

(1.1) F is compact, F(z) is convez for each x € X, and X = | J{Int F~(y) :
y€Y}; and

(1.2) G~ (y) is convez for eachy € F(X) and F(X) = |J{Int G(z) : z € X }.
Then F and G have a coincidence point.

Proof. In view of Theorem 1, it suffices to show that F € B(X,9). Let
P be a polytope in X. Since P is compact, there exists a finite subset
{v1,v2,..-,yn} C Y such that P C U, Int F~(y;). Let {A\;}7_; be the
partition of unity subordinated to the cover of P. Define h: P — Y by

n

h{z) = Z Ai(z)y = Z Ai(z)y; forz € P,

i=1 1€EN:

where
1€ Ny <= X(z) #0 =z € Int F~(y;) C F™ (y).

Then y; € Fz for each ¢ € N,. Clearly, h is continuous and, by (1.1),
h(z) € co{y; : 1 € N;} C Fx for each £ € P. Therefore, h is a continuous
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selection of F|p. Since h : P — h(P) C F(P), for any f : C(F(P),P), the
composite fh : P — P is a continuous selection of f(F|p) : P — P and
has a fixed point by the Brouwer fixed point theorem. Hence, F' € B(%X,9).
Now the conclusion follows from Theorem 1. O

Remark 1. Theorem 2 improves the result of Fan [2].

3. New Minimax Theorems

In this section, Z denotes a complete linearly ordered space; that is, a linearly
ordered set whose every subset has a least upper bound. Examples are the
extended real line R, the extended Euclidean space R", and any compact
(in the Euclidean topology) subset of R™ with respect to the lexicographic
order; see Komornik [5].

For a topological space X, a function f : X — Z is said to be lower [resp.
upper] semicontinuous (1s.c.) [resp. u.s.c.] whenever {z € X : f(z) > z}
[resp. {z € X : f(z) < z}] is open in X for each z € Z.

If X is compact and f : X — Z is l.s.c., then there exists an zg € X
such that f(zo) = infyex f(z). For any family {f;}:cs of l.s.c. functions
fi : X = Z, the function sup;.; f; is also Ls.c. (see [5]).

The following is the main result of this section:

Theorem 3. Let X be a convez space, Y a Hausdorff compact convez space,
and f: X XY — Z a function. Suppose that

(1) there is a subset U C Z such that a,b € f(X X Y) with a < b implies
U N (a,b) # 0;

(2) f(z,-) islsc. onY and {y € Y : f(z,y) < s} is convezx for each
r€ X and seU; and

(3) f(,y) isusc. on X and {x € X : f(z,y) > s} is convez for each
yE€Y andseU.

Then

sup min f(z,y) = min su T,Y).
xeXyEYf( 'Y) erxe;Iif( )
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Proof. Since f(z,-) is Ls.c., p(z) = minycy f(z,y) exists for each z € X.

Since g(y) = supgex f(z,y) is Ls.c. for each y € Y, ¢(yo) = mingyey ¢(y)
exists. Note that

p(z) = min f(z,y) < f(z,y) < sup f(z,y) = q(y)
yeY zeX
for all z € X and y € Y. Therefore, we have
su z) < min .
wegp( ) < min q(y)

Suppose that the equality does not hold. Then, there exists an s € U such
that

sup p(z) < s < ming(y).
zeX yey

We define the multimaps T, S : X — Y by
T(z)={yeY: f(z,y) <s}and S(z) ={y €Y : f(z,y) > s}

for £ € X. Then T(z) is nonempty and convex by (2), and S(z) is open
since f(z,-) is l.s.c. Moreover,

T~(y) = {z € X : f(z,y) < s} and S~(v) = {z € X : f(z,y) > s}

fory € Y. Then T~!(y) is open since f(,y) is u.s.c., and S~!(y) is nonempty
and convex by (3). Now, by applying Theorem 2, there exists an zg € X
such that T'(zg) N S(zo) # @. This contradicts

f(zo,a) < s < f(zo,b) for each a € T(zp) and b € S(z0).

This completes our proofs. 0O

Remark 2. If U = Z, then Theorem 3 is a consequence of Komornik [5,
Theorem 2] for interval spaces with different proof.

Corollary 1. Under the hypothesis of Theorem 3, further if X is compact,
then f has a saddle point.

Proof. Since f(z,-) and f(-,y) arel.s.c. and u.s.c., resp., p(z) = minyey f(z,y)
and q(y) = maxzecx f(z,y) exist for each z € X and y € Y. Since p is u.s.c.
on X and ¢ is ls.c. onY, maxzecx p(z) = p(xo) and mingey q(y) = g(vo)
for some z¢p € X and.yp € Y. Then (zo,yo) is a saddle point by Theorem 3.
This completes our proof. O



6 Sehie Park

Remark 3. The corollary reduces to the results of Arandjelovié [1, Theorem
3] whenever Z = R, which extends the Sion minimax theorem [9].

The following new minimax theorem is a variant of Theorem 3:

Theorem 4. Let X be a convez space, Y a Hausdorff compact space, and
f: X xY = Z als.c. function such that

(1) there is a subset U C Z such that a,b € f(X xY) with a < b itmplies
UnNia,b) #0;

(2) foreach s€ U andy €Y, {z € X : f(z,y) > s} is convez; and

(3) for each s€e U andz € X, {y € X : f(z,y) < s} is acyclic.

Then

sup min f(z,y) = min sup f(z,y).
zegyeyf( y) mip sup (z,9)

Proof. As in the proof of Theorem 3, we have

su z) < min .
rL‘Egp( ) < min q(y)

Suppose that the equality does not hold. Then there exists an s € U such
that

sup p(z) < s < ming(y).
zeX - yey

We define the multimaps T, S : X — Y by
T(z)={yeY:f(z,y) <s}tand S(z) = {y €Y : f(z,y) > s}

for z € X. Then T(z) is nonempty by the definition of p(z) and closed since
f(z,-) is Ls.c. for each z € X. On the other hand, S(z) is open since f(z,-)
is L.s.c. Moreover, for each y € Y,

ST(y) ={z e X: f(z,y) > s}
is nonempty and convex by (2).

Consider the graph of T

Gr(T) = {(zy) € X x ¥ : f(a,y) < s).
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Since f is L.s.c., Gr(T) is closed in X x Y. Since Y is compact, T is u.s.c.
Note that each T'(z) is acyclic by (3). Hence T is an acyclic map.

Therefore by Theorem 1 for V instead of 98, there exists an 29 € X
such that T'(zg) N S(zg) # @. This leads a contradiction as in the proof of
Theorem 3. O

Remark 4. 1. In case we replace the acyclicity in (3) by convezity and if
U = Z =R, then Theorem 4 is a particular form of Ha [3, Theorem 4].

2. If we replace the acyclicity in (3) by convezity and if U = Z, then
Theorem 4 follows from Komornik [5, Theorem 3] with different proof.

3. Komiya [{, Theorem 3] obtained a saddle point theorem whenever U =
Z =R, f is continuous, and the acyclicity in (8) is replaced by convezity
in Theorem 4 under an extra restriction.
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