ON CONGRUENCE CLASSES OF n-GROUPS

Janez Ušan

Institute of Mathematics, Faculty of Science, University of Novi Sad Trg Dositeja Obradovića 4, 21000 Novi Sad, Yugoslavia

Abstract

The following proposition is well known in the group theory: if (Q,A) is a group (2-group) and θ its congruence relation, then there is exactly one $C_a \in Q/\theta$ such that (C_a,A) is a subgroup of the group (Q,A). However, for $n \geq 3$, for instance, there are n-groups (Q,A) and their congruences θ such that for any $C_a \in Q/\theta$ the pair (C_a,A) is not an n-group (:4.1,4.3). The main results of the paper are Theorems 3.1,3.2 and 5.1.

AMS Mathematics Subject Classification (1991): 20N15 Key words and phrases: n-groupoids, n-semigroups, n-quasigroups, n-groups, $\{i, j\}$ -neutral operations on n-groupoids, inversing operation on n-group.

1. Preliminaries

1.1. About the expression a_n^q

Let $p \in \mathbb{N}$, $q \in \mathbb{N} \cup \{0\}$, and let a be a mapping of the set $\{i | i \in \mathbb{N} \land i \ge p \land i \le q\}$ into the set $S; \emptyset \notin S$. Then:

$$a_p^q ext{ stands for } \left\{ egin{array}{ll} a_p, \dots, a_q; & p < q \ a_p; & p = q \ ext{ empty sequence } (=\emptyset); & p > q. \end{array}
ight.$$

For example: $A(a_1^{j-1}, A(a_j^{j+n-1}), a_{j+n}^{2n-1}), j \in \{1, ..., n\}, n \in \mathbb{N} \setminus \{1, 2\}, \text{ for } j = n \text{ stands for }$

$$A(a_1,\ldots,a_{n-1},A(a_n,\ldots,a_{2n-1})).$$

Besides, in some situations instead of a_p^q we write $(a_i)_{i=p}^q$ (briefly: $(a_i)_p^q$).

For example:

$$(\forall x_i \in Q)_1^q$$

for q > 1 stands for

$$\forall x_1 \in Q \dots \forall x_q \in Q$$

[usually, we write: $(\forall x_1 \in Q) \dots (\forall x_2 \in Q)$], for q = 1 it stands for

$$\forall x_1 \in Q$$

[usually, we write: $(\forall x_1 \in Q)$], and for q = 0 it stands for an empty sequence $(= \emptyset)$.

In some cases, instead of a_p^q only, we write: sequence a_p^q (sequence a_p^q over a set S). For example: ... for every sequence a_p^q over a set S And if $p \leq q$, we usually write: $a_p^q \in S$.

If a_p^q is a sequence over a set S, $p \leq q$ and the equalities $a_p = \ldots = a_q = b$ $(\in S)$ are satisfied, then

$$a_p^q$$
 is denoted by b^{q-p+1} .

In connection with this, if q - p + 1 = r (when we assume that there would be no missunderstanding),

instead of
$$\overset{q-p+1}{b}$$
 we write $\overset{r}{b}$.

In addition, we denote **the empty sequence over** S with $\overset{0}{b}$, where b is an arbitrary element from S.

1.2. About n-groups

Let $A: Q^n \to Q$ and $n \in \mathbb{N} \setminus \{1\}$. Then:

1) (Q, A) is said to be an *n*-semigroup iff for every $x_1^{2n-1} \in Q$ and for every $i \in \{2, ..., n\}$ the equality

$$A(A(x_1^n),x_{n+1}^{2n-1})=A(x_1^{i-1},A(x_i^{i+n-1}),x_{i+n}^{2n-1})$$

is satisfied;

2) (Q, A) is said to be an *n*-quasigroup iff for every $i \in \{1, ..., n\}$ and for every $a_1^n \in Q$ there is exactly one $x_i \in Q$ such that the equality

$$A(a_1^{i-1}, x_i, a_i^{n-1}) = a_n$$

holds; and

3) (Q, A) is said to be an *n*-group iff it is both, an *n*-semigroup and an *n*-quasigroup. (For n = 2 it is a group. The notion of an *n*-group has been introduced in [1].)

1.3. On a $\{1, n\}$ -neutral operation in an n-groupoid

Let (Q, A) be an *n*-groupoid and $n \in \mathbb{N} \setminus \{1\}$. Let also **e** be an (n-2)-ary operation in Q; for n=2 this is a nullary operation. We say that **e** is a $\{1, n\}$ -neutal operation in the *n*-groupoid (Q, A) iff the following holds:

(1)
$$(\forall a_i \in Q)_1^{n-2} \ (\forall x \in Q) \ (A(\mathbf{e}(a_1^{n-2}), a_1^{n-2}, x) = x \land A(x, a_1^{n-2}, \mathbf{e}(a_1^{n-2})) = x).$$

For n=2, $\mathbf{e}(a_1^0)$ $(=\mathbf{e}(\emptyset))=e\in Q$ is a neutral element of the groupoid (Q,A). The notion of an $\{i,j\}$ -neutral operation of an n-groupoid $(:n\in \mathbb{N}\setminus\{1\},\{i,j\}\subseteq\{1,\ldots,n\},i\neq j)$ has been introduced in [3]. The following propositions hold:

- **1.3.1** [3]: In an n-groupoid $(n \in \mathbb{N} \setminus \{1\})$ there is at most one $\{1, n\}$ -neutral operation;
- **1.3.2** [3]: In every n-group, $n \in \mathbb{N} \setminus \{1\}$, there is a $\{1, n\}$ -neutral operation¹;
- **1.3.3** [3]: For $n \geq 3$, an n-semigroup (Q, A) is an n-group iff (Q, A) has a $\{1, n\}$ -neutral operation. \square

The cases $\{i, j\} \neq \{1, n\} \ (n \geq 3)$ were described in [5].

By virtue of Proposition 1.3.3, the **universal algebra** $(Q, \{A, e\})$ which satisfies (1) and

$$(2) \quad (\forall x_i \in Q)_1^{2n-1} \left(\bigwedge_{j=2}^n A(A(x_1^n), x_{n+1}^{2n-1}) = A(x_1^{j-1}, A(x_j^{j+n-1}), x_{j+n}^{2n-1}) \right),$$

for $n \geq 3$, is considered to be an n-group.

1.4. On inversing operation in an n-group

The following proposition holds [4]:

- **1.4.1**: Let (Q, A) be an n-semigroup and $n \in \mathbb{N} \setminus \{1\}$. Then:
- a) There is at most one (n-1)-ary operation f in Q such that the following formulas hold

$$(1) \quad (\forall a_i \in Q)_1^{n-2} \ (\forall a \in Q) \ (\forall x \in Q) \ A(f(a_1^{n-2}, a), a_1^{n-2}, A(a, a_1^{n-2}, x)) = x$$

 $\frac{and}{(2)}$

$$(\forall a_i \in Q)_1^{n-2} \ (\forall a \in Q) \ (\forall x \in Q) \ A(A(x, a_1^{n-2}, a), a_1^{n-2}, f(a_1^{n-2}, a)) = x;$$

- b) If there is an (n-1)-ary operation f in Q such that the formulas (1) and (2) are satisfied, then (Q, A) is an n-group; and
- c) If (Q, A) is an n-group, then there is an (n-1)-ary operation f in Q such that the formulas (1) and (2) hold². \square

Therefore, a universal algebra $(Q, \{A, f\})$ satisfying (1), (2) and

$$(3) \qquad (\forall x_i \in Q)_1^{2n-1} \ (\bigwedge_{j=2}^n A(A(x_1^n), x_{n+1}^{2n-1}) = A(x_1^{j-1}, A(x_j^{j+n-1}), x_{j+n}^{2n-1}))$$

is also taken to be an n-group.

As for the case n=2 we say that the operation f is an inversing operation in the n-group (Q,A); [4].

 $^{^{2}}f(a_{1}^{n-2},a) \stackrel{def}{=} E(a_{1}^{n-2},a,a_{1}^{n-2})$, where E is a $\{1,2n-1\}$ -neutral operation of a (2n-1)-group (Q,A); $A(x_{1}^{2n-1}) \stackrel{def}{=} A(A(x_{1}^{n}),x_{n+1}^{2n-1})$. We note that for n=2, this is the inversing in a group.

1.5. On superpositions of an n-semigroup operation

1.5.1: Let (Q, B) be an n-groupoid and $n \in \mathbb{N} \setminus \{1\}$. Then: 1) $\overset{1}{B} \stackrel{def}{=} B$; and 2) for every $k \in \mathbb{N}$ and for every $x^{(k+1)(n-1)+1} \in Q$

$$\overset{k+1}{B}(x_1^{(k+1)(n-1)+1}) \overset{def}{=} B(\overset{k}{B}(x_1^{k(n-1)+1}), x_{k(n-1)+2}^{(k+1)(n-1)+1}).$$

1.5.2: Let (Q, B) be an n-semigroup, $n \in \mathbb{N} \setminus \{1\}$ and $(i, j) \in \mathbb{N}^2$. Then, for every $x^{(i+j)(n-1)+1} \in Q$ and for every $t \in \{1, \ldots, i(n-1)-1\}$, the following equality holds

$$\overset{i+j}{B}(x_1^{(i+j)(n-1)+1}) = \overset{i}{B}(x_1^{t-1}, \overset{j}{B}(x_t^{t+j(n-1)}), x_{t+j(n-1)+1}^{(i+j)(n-1)+1}).$$

An immediate consequence of Proposition 1.5.2 is the following proposition:

1.5.3: If (Q, B) is an n-semigroup (n-group) and $k \in \mathbb{N} \setminus \{1\}$, then (Q, B) is a (k(n-1)+1)-semigroup (k(n-1)+1)-group).

Remark: More about superpositions of an n-semigroup operation (with different notations) can be found in [2].

1.6. On congruences of m-groupoids

1.6.1: Let (Q, Φ) be an m-groupoid and $m \in \mathbb{N}$. Further on, let θ be an equivalence relation in Q. Then we say that θ is a **congruence** relation on the m-groupoid (Q, Φ) iff the following statement holds

(1)
$$(\forall a_j \in Q)_1^m \ (\forall b_j \in Q)_1^m \ ((\bigwedge_{i=1}^m a_i \theta b_i) \Rightarrow \Phi(a_1^m) \theta \Phi(b_1^m)).$$

The statement (1) is equivalent to the statement

(2)
$$(\forall a \in Q) (\forall b \in Q) (\forall c \in Q)_1^m (\bigwedge_{i=1}^m (a\theta b \Rightarrow \Phi(c_1^{i-1}, a, c_i^{m-1})\theta \Phi(c_1^{i-1}, b, c_i^{m-1}))).$$

Moreover, the following statement holds: If

(3)
$$\Phi(C_{x_1},\ldots,C_{x_m}) \stackrel{def}{=} C_{\Phi(x_1^m)}$$

for every $C_{x_1}, \ldots, C_{x_m} \in Q/\theta$, then $(Q/\theta, \Phi)$ is an m-groupoid. We say that $(Q/\theta, \Phi)$ is a factor m-groupoid of the m-groupoid (Q, Φ) over the congruence θ .

 θ is a congruence of a universal algebra (Q,Ω) iff θ is a congruence of the m_i -groupoid (Q,Φ_i) for every $\Phi_i \in \Omega$. \square

The following propositions hold:

1.6.2: If a universal algebra $(Q, \{A, f\})$ is an n-group (:1.4), $n \in \mathbb{N} \setminus \{1\}$, and θ its congruence relation, then $(Q/\theta, \{A, F\})$, where

(3₁)
$$\mathbf{A}(C_{x_1}, \dots, C_{x_n}) \stackrel{def}{=} C_{A(x_1^n)}$$

and

(3₂)
$$\mathbf{F}(C_{x_1}, \dots, C_{x_{n-1}}) \stackrel{def}{=} C_{f(x_1^{n-1})},$$

is also an n-group.

The sketch of the part of the proof:

$$\mathbf{A}(\mathbf{F}(C_{x_1}, \dots, C_{x_{n-2}}, C_a), C_{x_1}, \dots, C_{x_{n-2}}, \mathbf{A}(C_a, C_{x_1}, \dots, C_{x_{n-2}}, C_x)) =$$

$$\mathbf{A}(C_{f(x_1^{n-2}, a)}, C_{x_1}, \dots, C_{x_{n-2}}, C_{A(a, x_1^{n-2}, x)}) =$$

$$C_{A(f(x_1^{n-2}, a), x_1^{n-2}, A(a, x_1^{n-2}, x))} = C_x \ (: 1.4).]$$

1.6.3: If a universal algebra $(Q, \{A, e\})$ is an n-group (:1.3), $n \in \mathbb{N} \setminus \{1, 2\}$, and θ its congruence relation, then $(Q/\theta, \{A, E\})$, where A is defined by (3_1) and

(3₃)
$$\mathbf{E}(C_{x_1}, \dots, C_{x_{n-2}}) \stackrel{def}{=} C_{\mathbf{e}(x_1^{n-2})},$$

is also an n-group.

1.6.4 [6]: Let $n \in \mathbb{N} \setminus \{1\}$, (Q, A) an n-group, f its inversing operation (:1.4) and e its $\{1, n\}$ -neutral operation (:1.3). Then, the following statements hold: (i) if θ is a congruence on the n-groupoid (Q, A), then θ is also a congruence of the (n-1)-groupoid (Q, f); and (ii) is θ is a congruence on the n-groupoid (Q, A) and $n \geq 3$, then θ is also a congruence of the (n-2)-groupoid (Q, e).

2. Auxiliary statements

Proposition 2.1. Let $n \in \mathbb{N} \setminus \{1\}$, let (Q, A) be an n-group and f its inversing operation (:1.4). Then, for every $a \in Q$ the following implication holds:

$$A(\overset{n}{a}) = a \Rightarrow f(\overset{n-1}{a}) = a.$$

Proof.

Let a be an arbitrary element of the set Q such that the following equality holds

$$A(\overset{n}{a}) = a.$$

Moreover, by proposition 1.4.1, we conclude that the following equality holds

$$A(f({}^{n-2},a),{}^{n-2},A(a,{}^{n-2},a))=a,$$

whence, by (1), we conclude that the following equality holds

(2)
$$A(f({}^{n-1}), {}^{n-1}) = a.$$

Finally, since (Q, A) is an *n*-quasigroup (:1.2), we conclude that (1) and (2) imply the following equality:

$$f(^{n-1}a) = a.$$

Proposition 2.2. Let $n \in \mathbb{N} \setminus \{1,2\}$, let (Q,A) be an n-group and \mathbf{e} its $\{1,n\}$ -neutral operation (:1.3). Then for every $a \in Q$ the following equivalence holds:

$$A(\stackrel{n}{a}) = a \Leftrightarrow \mathbf{e}(\stackrel{n-2}{a}) = a.$$

Proof.

$$1) \Rightarrow :$$

Let a be an arbitrary element of the set Q such that the following equality holds:

$$A(\overset{n}{a}) = a.$$

In addition, the following equality holds

(2)
$$A(e({}^{n-2}), {}^{n-2}, a) = a \ (:1.3).$$

Finally, since (Q, A) is an n-quasigroup (:1.2), we conclude that (1) and (2) imply the following equality:

$$\mathbf{e}\binom{n-2}{a} = a.$$

2) \Leftarrow :

Let a be an arbitrary element of the set Q such that the equality (3) holds. Since with (3) also hold (2) (:1.3), we conclude that (1) also holds.

Proposition 2.3. Let Q be a finite set, $n \in \mathbb{N} \setminus \{1\}$ and (Q, A) an n-group. Then the following statement holds:

$$(\forall a \in Q) (\exists k \in \mathbf{N}) \overset{k}{A} (\overset{k(n-1)+1}{a}) = a$$

(:1.5.1).

Proof.

Let a be an arbitrary element of the set Q. Then,

$$\{ \stackrel{t}{A} (\stackrel{t(n-1)+1}{a}) | t \in \mathbb{N} \} \subseteq Q \ \ (:1.5.1).$$

Hence, since Q is a finite set, there is $i \in \mathbb{N}$ and $j \in \mathbb{N}$ such that the following statements hold

$$(\exists k \in \mathbf{N}) \ i + k = j \text{ and }$$

$$\overset{i}{A}(\overset{i(n-1)+1}{a}) = \overset{j}{A}(\overset{j(n-1)+1}{a}),$$

whence, by Proposition 1.5.2 and since (Q, A) is an n-quasigroup (:1.2), we conclude that the following series of implications hold

$$\begin{array}{l} \stackrel{i}{A}(\stackrel{i(n-1)+1}{a}) = \stackrel{i+k}{A}(\stackrel{(i+k)(n-1)+1}{a}) \Rightarrow \\ \stackrel{i}{A}(\stackrel{i(n-1)+1}{a}) = \stackrel{i}{A}(\stackrel{k}{A}(\stackrel{k(n-1)+1}{a}), \stackrel{i(n-1)}{a}) \Rightarrow \\ \stackrel{k}{A}(\stackrel{k(n-1)+1}{a}) = a. \end{array}$$

Proposition 2.4. Let $n \in \mathbb{N} \setminus \{1\}$ and let (Q, A) be an n-group. Further on, let θ be a congruence of the n-group (Q, A) and let $(Q/\theta, \mathbf{A})$ be the factor n-group of the n-group (Q, A) over the congruence θ . Then, the (k(n-1)+1)-group $(Q/\theta, \mathbf{A})$ is a factor (k(n-1)+1)-group of the (k(n-1)+1)-group (Q, A) over the congruence θ for an arbitrary $k \in \mathbb{N}$. Proof.

For an arbitrary $k \in \mathbb{N}$ $(Q, \overset{k}{A})$ $[(Q/\theta, \overset{k}{A})]$ is a (k(n-1)+1)-group (:1.5.3). The congruence θ of the n-group (Q, A) is also a congruence of a (k(n-1)+1)-group $(Q, \overset{k}{A})$ for an arbitrary $k \in \mathbb{N}$ (:1.5, 1.6, induction over k). Let $(Q/\theta, \mathbf{B})$ be a factor (k(n-1)+1)-group of the (k(n-1)+1)-group $(Q, \overset{k}{A})$ over the congruence θ . Then, for every $C_{x_1}, \ldots, C_{x_{k(n-1)+1}} \in Q/\theta$ the following equality holds

(1)
$$\mathbf{B}(C_{x_1}, \dots, C_{x_{k(n-1)+1}}) = C_{\substack{k \\ A(x_i^{k(n-1)+1})}}$$

(:1.6). On the other hand, for every $C_{x_1}, \ldots, C_{x_{k(n-1)+1}} \in Q/\theta$ the following equality holds

(2)
$$\mathbf{A}(C_{x_1}, \dots, C_{x_{k(n-1)+1}}) = C_{\substack{k \\ A(x_1^{k(n-1)+1})}}.$$

[The sketch of the proof: a)
$${\bf A}(C_{x_1},\ldots,C_{x_n},C_{x_{n+1}},\ldots,C_{x_{2n-1}})={\bf A}({\bf A}(C_{x_1},\ldots,C_{x_n}),C_{x_{n+1}},\ldots,C_{x_{2n-1}})={\bf A}(C_{A(x_1^n)},C_{x_{n+1}},\ldots,C_{x_{2n-1}})={\bf A}(C_{A(x_1^n)},x_{n+1}^{2n-1})=C_{2n-1};$$
 b) ${\bf A}(C_{x_1},\ldots,C_{x_{t(n-1)+1}})=C_{1n-1},\ldots,C_{2n-1}$ \Rightarrow ${\bf A}(C_{x_1},\ldots,C_{x_{t(n-1)+1}})=C_{1n-1},\ldots,C_{2n-1}$ (:1.5, 1.6).]

Finally, since (1) and (2) hold for every $C_{x_1}, \ldots C_{x_{k(n-1)+1}} \in Q/\theta$, we conclude that $\mathbf{B} = \mathbf{A}$.

3. Main results

Theorem 3.1. Let $n \in \mathbb{N} \setminus \{1\}$ and let $(Q, \{A, f\})$ be an n-group (:1.4).

Further on, let θ be a congruence of the universal algebra $(n\text{-group})(Q, \{A, f\})^3$ and $(Q/\theta, \{A, F\})$ the factor n-group of the $n\text{-group}(Q, \{A, f\})$ over the congruence θ (:1.6.1). Then, the following statement holds: for an arbitrary $C_a \in Q/\theta$, $a \in Q$, $(C_a, \{A, f\})$ is an n-group(n-subgroup) of the $n\text{-group}(Q, \{A, f\})$ iff the following equality holds

$$\mathbf{A}(\overset{n}{C}_{a})=C_{a}.$$

Proof.

1) Let C_a be an arbitrary element of the set Q/θ . Then, since θ is a congruence of the *n*-group $(Q, \{A, f\})$, for every $x_1^n \in Q$, the following equalities hold

$$\mathbf{A}(C_{x_1},\ldots,C_{x_n})=C_{A(x_1^n)}$$

and

$$\mathbf{F}(C_{x_1},\ldots,C_{x_{n-1}}) = C_{f(x_i^{n-1})}$$
 (:1.6.1, 1.6.2),

whence we conclude that for every $x_1^n \in C_a$ the following equalities hold

(1)
$$\mathbf{A}(\overset{n}{C}_{a}) = C_{A(x_{1}^{n})}$$

and

(2)
$$\mathbf{F}(\overset{n}{C}_{a}) = C_{f(x_{1}^{n-1})}.$$

2) ⇒:

Let $(C_a, \{A, f\})$ be an *n*-group. Then, for every $x_1^n \in C_a$ the following equalities hold

$$C_{A(x_1^n)} = C_a$$
 and $C_{f(x_1^{n-1})} = C_a$,

whence, by (1) [and (2)], we conclude that the equality

(3)
$$\mathbf{A}(\overset{\mathfrak{n}}{C}_{a}) = C_{a}$$

holds [and also the equality

$$\mathbf{F}(\overset{n-1}{C}_a) = C_a$$

³If $(Q, \{A, f\})$ is an *n*-group and θ a congruence of the *n*-groupoid (Q, A), then, θ is a congruence also on the (n-1)-groupoid (Q, f) (:1.6.4).

holds].

3) ⇐:

Let (3) holds. Then, by Proposition 2.1, the equality (4) holds. Further on, by (1) and (2), we conclude that for every $x_1^n \in C_a$

$$A(x_1^n) \in C_a$$
 and $f(x_1^{n-1}) \in C_a$.

Theorem 3.2. Let $n \geq 3$ and let $(Q, \{A, e\})$ be an n-group (:1.3). Further on, let θ be a congruence of the universal algebra (n-group) $(Q, \{A, e\})^4$ and $(Q/\theta, \{A, E\})$ the factor n-group of the n-group $(Q, \{A, e\})$ over the congruence θ (:1.6.1). Then, for arbitrary $C_a \in Q/\theta$, $a \in Q$, the following statements are equivalent:

(i) $(C_a, \{A, e\})$ is an n-group [n-subgroup of the n-group $(Q, \{A, e\})$];

(ii) the following equality holds

$$\mathbf{A}(\overset{n}{C}_{a})=C_{a};$$

(iii) the following equality holds

$$\mathbf{E}(\overset{n-2}{C}_a) = C_a.$$

Proof.

Let $(Q, \{A, f\})$ be an n-group and \mathbf{e} its $\{1, n\}$ -neutral operation (:1.3). Then for $n \geq 3$ the universal algebras $(Q, \{A, f\})$ and $(Q, \{A, \mathbf{e}\})$ uniquely represent the n-group (Q, A) (:1.4, 1.3.3). In addition, if θ is a congruence of the n-groupoid (Q, A), θ is a congruence of the (n-1)-groupoid (Q, f) and (n-2)-groupoid (Q, \mathbf{e}) (:1.6.4). Whence, by Theorem 3.1, we conclude that for every $C_a \in Q/\theta$ the following equivalence holds

$$(i) \Leftrightarrow (ii).$$

Finally, by Proposition 2.2, we conclude that for every $C_a \in Q/\theta$ also the following equivalence holds

$$(ii) \Leftrightarrow (iii).$$

⁴ If $(Q, \{A, e\})$ is an n-group $(n \ge 3)$ and θ a congruence of the n-groupoid (Q, A), then θ is also a congruence of the (n-2)-groupoid (Q, e) (:1.6.4).

4. Two examples and a proposition

4.1. Example: Let $(\{1,2,3,4\},\cdot)$ be Klein's group: Table 1. Then, $(\{1, 2, 3, 4\}, A)$, where

$$A(x_1^3) \stackrel{def}{=} x_1 \cdot x_2 \cdot x_3 \cdot 3$$

 $\overline{2}$

for every $x_1^3 \in \{1, 2, 3, 4\}$, is a 3-group;

Tables $2_1 - 2_4$, $A_i(x, y) \stackrel{def}{=} A(x, i, y)$, $i \in \{1, 2, 3, 4\}$ $[A_1(x,y) = x \cdot y \cdot 3, A_2(x,y) = x \cdot y \cdot 4, A_3(x,y) = x \cdot y,$ $A_4(x,y) = x \cdot y \cdot 2].$

A_1	1	2	3	4	A_2	1	2	3	4	A_3	1	2	3	4	A4	1	2	3	4
1	3	4	1	2	1	4	3	2	1	1	1	2	3	4	1	2	1	4	3
2	4	3	2	1	2	3	4	1	2	2	2	1	4	3	2	1	2	3	4
3	1	2	3	4	3	2	1	4	3	3	3	4	1	2	3	4	3	2	1
4	2	1	4	3	4	1	2	3	4	4	4	3	2	1	4	3	4	1	2
Table 2 ₁					Table 2 ₂				Table 2 ₃					Table 2 ₄					

The equivalence relation θ in the set $\{1,2,3,4\}$ defined by the equality

$$\{1,2,3,4\}/\theta=\{\{1,2\},\{3,4\}\}$$

is a congruence relation of the 3-group $(\{1,2,3,4\},A)$ (:Tables 2_1-2_4). The corresponding factor 3-group $(\{\{1,2\},\{3,4\}\},\mathbf{A})$ is represented in Tables 3_1 - 3_2 ⁵. We can see from Table 3_1 - 3_2 that $\{1,3\}$ -neutral operation **E** of the 3-group $(\{\{1,2\},\{3,4\}\},\mathbf{A})$ is the following per-

mutation of the set $\{\{1,2\},\{3,4\}\}$

$$\left(\begin{array}{cc} \{1,2\} & \{3,4\} \\ \{3,4\} & \{1,2\} \end{array}\right).$$

$$\begin{array}{c|c|c} \mathbf{A}_{\{1,2\}} & \{1,2\} & \{3,4\} \\ \hline \{1,2\} & \{3,4\} & \{1,2\} \\ \hline \{3,4\} & \{1,2\} & \{3,4\} \\ \hline & Table \ 3_1 \\ \hline \end{array}$$

Since $\mathbf{E}(\{1,2\}) = \{3,4\}$ and $\mathbf{E}(\{3,4\}) = \{1,2\}$, $A_{\{3,4\}}$ $\{1,2\} \mid \{3,4\}$ then by Theorem 3.2, we conclude that the pairs $\overline{\{1,2\}}$ $(\{1,2\},A)$ and $(\{3,4\},A)$ are not 3-groups. $\{3, 4\}$ $\{3,4\}$

4.2. Example: Let $(\{1,2,3,4\},\cdot)$ be the Klein's group: Table 1. Then, $(\{1,2,3,4\},B)$, where

$$B(x_1^3) \stackrel{def}{=} x_1 \cdot x_2 \cdot x_3 \cdot 2$$

 $^{^{5}\}mathbf{A}_{\{1,2\}}(x,y) \stackrel{def}{=} \mathbf{A}(x,\{1,2\},y), \ \mathbf{A}_{\{3,4\}}(x,y) \stackrel{def}{=} \mathbf{A}(x,\{3,4\},y); \ x,y \in \{\{1,2\},\{3,4\}\}.$

for every $x_1^3 \in \{1, 2, 3, 4\}$, is a 3-group; Table $4_1 - 4_4$, $B_i(x, y) \stackrel{def}{=} B(x, i, y)$, $i \in \{1, 2, 3, 4\}$ [: $B_1(x, y) = x \cdot y \cdot 2$, $B_2(x, y) = x \cdot y$, $B_3(x, y) = x \cdot y \cdot 4$, $B_4(x, y) = x \cdot y \cdot 3$].

B_1	1	2	3	4	B_2	1	2	3	4	B_3	1	2	3	4	B_4	1	2	3	4
1	2	1	4	3	1	1	2	3	4	1	4	3	2	1	1	3	4	1	2
2	1	2	3	4	2	2	1	4	3	2	3	4	1	2	2	4	3	2	1
3	4	3	2	1	3	3	4	1	2	3	2	1	4	3	3	1	2	3	4
4	3	4	1	2	4	4	3	2	1	4	1	2	3	4	4	2	1	4	3
Table 4 ₁			Table 4 ₂				Table 4 ₃					Table 4 ₄							

The equivalence relation θ in the set $\{1,2,3,4\}$ defined by the equality

$$\{1,2,3,4\}/\theta = \{\{1,2\},\{3,4\}\}$$

is a congruence relation of the 3-group $(\{1,2,3,4\},B)$ (:Table 4_1-4_4). The corresponding factor 3-group $(\{\{1,2\},\{3,4\}\},\mathbf{B})$ is represented in Table 5_1-5_2 . Since $\mathbf{B}(\{1,2\},\{1,2\},\{1,2\})=\{1,2\}$ (:Table 5_1) and $\mathbf{B}(\{3,4\},\{3,4\},\{3,4\})=\{3,4\}$ (:Table 5_2), then by Theorem 3.1 (or Theorem 3.2) we conclude that the pairs $(\{1,2\},B)$ and $(\{3,4\},B)$ are 3-groups. They are represented, respectively in Table 6_1-6_2 and Table 7_1-7_2 .

$$\begin{array}{c|c|c} \mathbf{B}_{\{1,2\}} & \{1,2\} & \{3,4\} \\ \hline \{1,2\} & \{1,2\} & \{3,4\} \\ \hline \{3,4\} & \{3,4\} & \{1,2\} \\ \hline & \text{Table 5}_1 \\ \hline \end{array}$$

	$\{1, 2\}$	$\{3,4\}$						
$\{1, 2\}$	$\{3,4\}$	$\{1, 2\}$						
$\{3,4\}$	$\{1, 2\}$	$\{3, 4\}$						
Table 5_2								

$$\begin{array}{c|cccc}
B_1 & 1 & 2 \\
\hline
1 & 2 & 1 \\
\hline
2 & 1 & 2 \\
\hline
\text{Table } 6_1
\end{array}$$

$$\begin{array}{c|c|c}
B_2 & 1 & 2 \\
\hline
1 & 1 & 2 \\
\hline
2 & 2 & 1 \\
\hline
Table 6_2
\end{array}$$

$$\begin{array}{c|c|c}
B_4 & 3 & 4 \\
\hline
3 & 3 & 4 \\
\hline
4 & 4 & 3 \\
\hline
Table 7_2
\end{array}$$

In the group theory (n=2) the following proposition is well known: if (Q,A) is a group, $^{-1}$ its inverting operation and θ its congruence, then there is a normal subgroup (H,A) of (Q,A) such that

- (1) $H \in Q/\theta$; and
- (2) for every $a, b \in Q$ the equivalence

$$a\theta b \Leftrightarrow A(a^{-1},b) \in H$$

holds. By the cited proposition and by Example 4.1 and Example 4.2, we conclude that the following proposition holds:

Proposition 4.3. a) Let (Q, A) be an arbitrary n-group, θ its arbitrary congruence and n = 2. Then, there is **exactly one** $C_a \in Q/\theta$ such that (C_a, A) is an n-group (:group). b) If $n \geq 3$, then

- (i) there exist an n-group (Q, A) and its congruence θ such that for every $C_a \in Q/\theta$ the pair (C_a, A) is not an n-group; and
- (ii) there exist an n-group (Q, A) and its congruence θ such that for every $C_a \in Q/\theta$ the pair (C_a, A) is an n-group.

5. On *n*-groups with finite factor *n*-groups

Theorem 5.1. Let $n \in \mathbb{N} \setminus \{1\}$, let (Q, A) be an n-group, θ its congruence relation and $(Q/\theta, \mathbf{A})$ the factor n-group of the n-group (Q, A) over the congruence θ . Then: if Q/θ is a finite set, then for every $C_a \in Q/\theta$ there is $k \in \mathbb{N}$ such that (C_a, A) is a (k(n-1)+1)-group.

Proof.

Let C_a be an arbitrary element of the set Q/θ . Since $(Q/\theta, \mathbf{A})$ is a finite n-group, then by Proposition 2.3, there is $k \in \mathbf{N}$ such that

(1)
$$\mathbf{A} \begin{pmatrix} k & k(n-1)+1 \\ C_a \end{pmatrix} = C_a.$$

Further on, by Proposition 2.4, $(Q/\theta, \mathbf{A})$ is a factor (k(n-1)+1)-group of the (k(n-1)+1)-group (Q, \mathbf{A}) over the congruence θ . Hence, by (1) and by Theorem 3.1, we conclude that (C_1, \mathbf{A}) is a (k(n-1)+1)-group.

References

- [1] Dörnte W., Untersuchengen über einen verallgemeinerten Gruppenbegriff, Math. Z. 29 (1928), 1-19.
- [2] Čupona G., Finitary associative operations, Mat. bibl. 39 (1969), 135-149. (In Serbo-Croatian)

- [3] Ušan J., Neutral operations of *n*-groupoids, Rev. of Research, Fac. of Sci. Univ. of Novi Sad, Math. Ser., 18-2 (1988), 117-126. (In Russian.)
- [4] Ušan J., A comment on n-groups, Rev. of Research, Fac. of Sci. Univ. of Novi Sad, Math. Ser., 24-1 (1994), 281-288.
- [5] Ušan J., On *n*-groups with $\{i, j\}$ -neutral operation for $\{i, j\} \neq \{1, n\}$, Rev. of Research, Fac. of Sci. Univ. of Novi Sad, Math. Ser., 25-2 (1995), 167-178.
- [6] Ušan J., On congruences on n-groups, Novi Sad J. Math. (to appear).

Received by the editors September 10, 1996.