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Abstract

The following proposition is well known in the group theory: if
(@, A) is a group {2-group) and § its congruence relation, then there
is exactly one C, € Q/0 such that (C,, A) is a subgroup of the group
(Q, A). However, for n > 3, for instance, there are n-groups (@, 4)
and their congruences @ such that for any C, € /8 the pair (C,, A) is
not an n-group (:4.1, 4.3). The main results of the paper are Theorems
3.1, 3.2 and 5.1.
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1. Preliminaries

1.1. About the expression af

Let p € N, ¢ € N U {0}, and let a be a mapping of the set {i|]i € NAi >
pAi<q}into the set §; 0 ¢ S. Then:

Qp, ..., 0q; p<q
ay stands for ¢ ay; : p=gq
empty sequence (=0); p>q.
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v

For example:
A(a{_l,A(af”-l ,a?igl), j€{l,...,n}, n € N\{1,2}, for j = n stands
for
A(al, ey Op—1, A(an, ey agn_l)).

Besides, in some situations instead of af we write (a;){_, (briefly:
(a:)3)-
For example:

(Vz; € Q)

for ¢ > 1 stands for
Ve, € Q... V2, €Q

[usually, we write: (Vz; € Q)...(Vz2 € Q)],
for ¢ = 1 it stands for
Yz, € @

[usually, we write: (Vz; € Q)],
and for ¢ = 0 it stands for an empty sequence (= 0).

In some cases, instead of aj, only, we write: sequence af (sequence af

over a set §). For example: ... for every sequence aj over a set 5 ... . And
if p < ¢, we usually write: af € §.

If af is a sequence over a set 5, p < g and the equalitiesa, = ...=a; = b
(€ 5) are satisfied, then

. g—p+1
al is denoted by b

In connection with this, if ¢ — p+ 1 = r (when we assume that there would
be no missunderstanding),

. q—p+1 . r
instead of b we write b.

0
In addition, we denote the empty sequence over S with b, where b is
an arbitrary element from S.

1.2. About n-groups

Let A: Q" — @ and n € N\ {1}. Then:
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1) (@, A) is said to be an n-semigroup iff for every 23*™! € Q and for
every ¢ € {2,...,n} the equality

A(A(eD), 2350Y) = A(ei™h, AP, o2

is .satisfied;

2) (Q, A) is said to be an n-quasigroup iff for every i € {1,...,n} and
for every a} € @ there is exactly one z; € @ such that the equality

A(d Y 2,07 ) = a,

holds; and

3) (@, A) is said to be an n-group iff it is both, an n-semigroup and an
n-quasigroup. (For n = 2 it is a group. The notion of an n-group has been
introduced in [1].)

1.3. On a {l,n}-neutral operation in an n-groupoid

Let (@, A) be an n-groupoid and n € N\ {1}. Let also e be an (n — 2)-ary
operation in ¢; for n = 2 this is a nullary operation. We say that e is a
{1, n}-neutal operation in the n-groupoid (@, A) iff the following holds:

(Va; € Q)77 (Vz € Q) (A(e(a]™?),a77%,2) = zA

1
() ANA(z,a]7% e(a}™?)) = z).

For n = 2, e(al) (= e(0)) = e € Q is a neutral element of the groupoid
(Q,A). The notion of an {1, j}-neutral operation of an n-groupoid (:n €
N\ {1}, {¢,7} € {1,...,n}, ¢ # j) has been introduced in [3]. The following
propositions hold:

1.3.1 [3]: In an n-groupoid (n € N'\{1}) there is at most one {1, n}-neutral
operation;

1.3.2 [3]: In every n-group, n € N\{1}, there is a {1, n}-neutral operation';

1.3.3 [3]: For n > 3, an n-semigroup (Q, A) zs an n-group iff (Q,A) has a
{1, n}-neutral operation. O

1The cases {i,5} # {1,n} (n > 3) were described in [5].
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By virtue of Proposition 1.3.3, the universal algebra (@, {4, e}) which
satisfies (1) and

(2)  (Va: € QM (N A(AGD), 20iY) = A(2] ™ AT, o 3100),
Ly
for n > 3, is considered to be an n-group.

1.4. On inversing operation in an n-group

The following proposition holds [4]:
1.4.1: Let (Q, A) be an n-semigroup and n € N\ {1}. Then:

a) There is at most one (n — 1)-ary operation f in @ such that the
following formulas hold

(1)
(Va; € Q)77% (Va € Q) (Vz € Q) A(f(a77%a),a]77%, A(a,ai ™% 2)) = 2

and
(2)
(Va; € Q)77% (Va € Q) (Vz € Q) A(A(z,a]7%,0),a772, f(al ™2, a)) = z;

b) If there is an (n — 1)-ary operation f in Q such that the formulas (1)
and (2) are satisfied, then (Q, A) is an n-group; and

¢) If (Q, A) is an n-group, then there is an (n — 1)-ary operation f in Q
such that the formulas (1) and (2) hold*. O

Therefore, a universal algebra (Q,{A, f}) satisfying (1), (2) and

(3)  (er € Q" (A AAGD),27) = A, AT, 2257)

7=2

is also taken to be an n-group.

As for the case n = 2 we say that the operation f is an inversing
operation in the n-group (Q, A); [4].

2f(al™?, a)défE(a;‘_z, a,a?~?), where E is a {1, 2n — 1}-neutral operation of a (2n — 1)-

2 "2
group (@, A); A(zf”_l)défA(A(z?), z27"). We note that for n = 2, this is the inversing
in a group.
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1.5. On superpositions of an n-semigroup operation

1 €
1.5.1: Let (@, B) be an n-groupoid and n € N \ {1}. Then: 1) Bd:fB; and
2) for every k € N and for every z(k+1)(»—1)+1 ¢ g ‘

k+1 k n— Eiﬂf k(n— k 7n—
B (@104 g f(ghrm D) gl ity

1.5.2: Let (Q, B) be an n-semigroup, n € N\ {1} and (i,j) € N2. Then,
for every z(tD(n=+1 ¢ Q and for every t € {1,...,i(n — 1) — 1}, the
following equality holds

i+ +7)(n— n-1 % n—
B(xg +1)( 1)+1) B( t-1 B( t+3( ), 5_:;1()“ ll_gil-l _

An immediate consequence of Proposition 1.5.2 is the following proposi-
tion:

k
1.5.3: If (@, B) is an n-semigroup (n-group) and k € N\ {1}, then (Q,B)
is a (k(n — 1) + 1)-semigroup ((k(n — 1)+ 1)-group).

Remark: More about superpositions of an n-semigroup operation (with
different notations) can be found in [2].

1.6. On congruences of m-groupoids

1.6.1: Let (Q,®) be an m-groupoid and m € N. Further on, let 8 be an
equivalence relation in (). Then we say that 8 is a congruence relation on
the m-groupoid (Q,®) iff the following statement holds

(1) (Va; € Q)7 (Vb; € Q)T ((/\ a;0b;) = ®(a7")0@(57")).

=1

The statement (1) is equivalent to the statement
(2) (YaeQ)(vbeQ)(Vee QF (A (abl=
= B(ci™ 0, )0R(el, b, e ).

Moreover, the following statement holds: If
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def
(3) B(Coyye ey Com) L Coam)

for eve}'y Cyyyeo o, Cr,, € Q/0, then (Q /8, ®) is an m-groupoid. We say that
(Q/8,®) is a factor m-groupoid of the m-groupoid (Q,®) over the
congruence 6.

0 is a congruence of a universal algebra (Q,2) iff 6 is a congruence of
the m;-groupoid (Q, ®;) for every ®; € Q. O

The following propositions hold:

1.6.2: If a universal algebra (Q,{A, f}) is an n-group (:1.4), n € N\ {1},
and 0 its congruence relation, then (Q/6,{A,F}), where

def
(31) A(Cyyy...,Cs,) ZCA(:,;;:)
and

def
(32) F(Cr17""cl'n—l):Cf(x;"_l)’

s also an n-group.

[The sketch of the part of the proof:

AF(Coysev3Cp2:Ca), Copovv o, Cop sy A(Coy Cyy e, Oy, C)) =
A(Cf(.’lt?—z,a)7 Cl‘l yo ey an_Q ) CA(CL,Z‘?_2,1')) -

CA(f(a72 a) 272 Ala,ap 2 0)) = Co (1 14) ]

1.6.3: If a universal algebra (Q, {A,e}) is an n-group (:1.3), n € N\{1,2},
and 0 its congruence relation, then (Q/6,{A,E}), where A is defined by
(31) and

de
(33) E(Cayy...,Copy) s Coger2)s

is also an n-group.

1.6.4 [6]: Letn € N\{1}, (@, A) an n-group, f its inversing operation (:1.4)
and e its {1,n}-neutral operation (:1.3). Then, the following statements
hold: (i) if 8 is a congruence on the n-groupoid (Q,A), then 8 is also a
congruence of the (n — 1)-groupoid (Q, f); and (i) is 0 is a congruence on
the n-groupoid (Q, A) and n > 3, then 6 is also a congruence of the (n — 2)-

groupoid (Q,e).
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2. Auxiliary statements

Proposition 2.1. Let n € N\ {1}, let (Q,A) be an n-group and f its
inversing operation (:1.4). Then, for every a € Q the following implication
holds:

AB) =a= f("a) =

Proof.

Let a be an arbitrary element of the set ) such that the following equality
holds

(1) A(a) = a.
Moreover, by proposition 1.4.1, we conclude that the following equality holds
A(f("a% a),"a% Ae, "% ) = a,
whence, by (1), we conclude that the following equality holds
2) A(f("a"),"a") = a.
Finally, since (@, A4) is an n-quasigroup (:1.2), we conclude that (1) and (2)
imply the following equality:
f"a) = a.

Proposition 2.2. Let n € N\ {1,2}, let (@, A) be an n-group and e its
{1, n}-neutral operation (:1.3). Then for every a € Q the following equiva-
lence holds:

Al@d)=a & e(nc—zz) = a.

Proof.
1) =

JLet a be an arbitrary element of the set ) such that the following equality
holds: ‘

(1) A(d) = a.
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In addition, the following equality holds
(2) Ae("a?),"a% ) = a (:1.3).

Finally, since (@, A) is an n-quasigroup (:1.2), we conclude that (1) and (2)
imply the following equality:

(3) e(n(_zz) = a.

2) «:

Let a be an arbitrary element of the set @ such that the equality (3)
holds. Since with (3) also hold (2) (:1.3), we conclude that (1) also holds.

Proposition 2.3. Let @ be a finite set, n € N\ {1} and (Q,A) an
n-group. Then the following statement holds:

k k(n—1)+1
a

(Va € Q) (3k e N) A( )=a

(:1.5.1).
Proof.
Let a be an arbitrary element of the set . Then,

t(n—1)+1
a

{A( JteN}CQ (:151).

Hence, since @ is a finite set, there is + € N and j € N such that the
following statements hold

(Fk € N) i+k=jand

i i(n—1)+1 J(n—1)+1
a

A( )= A( )s

whence, by Proposition 1.5.2 and since (&, A) is an n-quasigroup (:1.2), we
conclude that the following series of implications hold

i i(n—al)+1 i+k (z+k)(n-—1)+1

A( )= A( )=
;1(1'(71.—;)+1) A(A(k(n l)+1)’ i(n(;l)) N

kE k(n—1)+1
a

A( )=a
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Proposition 2.4. Let n € N\ {1} and let (Q, A) be an n-group. Further
on, let 8 be a congruence of the n-group (Q, A) and let (Q /8, A) be the factor
n-group of the n-group (Q, A) over the congruence 8. Then, the (k(n—1)+1)-

k

group (Q/6,A) is a factor (k(n — 1) + 1)-group of the (k(n — 1) + 1)-group

k
(@, A) over the congruence 8 for an arbitrary k € N.
Proof.

k k

For an arbitrary k¥ € N (Q,4) [(Q/8,A)] is a (k(n — 1) + 1)-group

(:1.5.3). The congruence 6 of the n-group (@, A) is also a congruence of a

k
(k(n —1) + 1)-group (@, A) for an arbitrary & € N (:1.5, 1.6, induction over
k). Let (Q/6,B) be a factor (k(n — 1)+ 1)-group of the (k(n — 1)+ 1)-group

k
(@, A) over the congruence 6. Then, for every Cyy,...,Cury,_y),, € @/6 the
following equality holds

(1) B(C:tn PR ka(n—1)+1) = z(zk("_l)ﬂ)
1

(:1.6). On the other hand, for every Cy,, ... ,C'g,;k(n_l)+1 € @ /8 the following
equality holds

k
(2) A(Cayyi s Capniyer) = Ci

ARy

2
[The sketch of the proof: a) A(Cy,...,Cz,,CrppysevesCorpuy)
A(A(Czyy - ,C1,),Crppyye 1 Cgy) = A(Cp@er)y Conyys o> Cozny)

t
b) A(Czys--yCrypiyyn) = Co
1 (n—1)+1 A(:E;( 1)+1)

Caaen ) = €5 ) =

n+1
t+1

A. (Cl'l ey CT(t+1)(n—1)+1 ) = Ct+1

A (D=1 (:1.5,1.6).]

Finally, since (1) and (2) hold for every Cy,,...Coy,_,y,, € @/6, We
k
conclude that B = A.
3. Main results

Theorem 3.1. Let n € N\ {1} and let (Q,{A, f}) be an n-group (:1.4).
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Further on, let 6 be a congruence of the universal algebra (n-group) (Q,{A, f})°
and (Q/0,{A,F}) the factor n-group of the n-group (Q,{A, f}) over the
congruence 8 (:1.6.1). Then, the following statement holds: for an arbitrary
C, € Q/8, a € Q, (Co,{A, f}) is an n-group (n-subgroup of the n-group
(Q,{A, f}) iff the following equality holds

A(C,) = C.

Proof.

1) Let C, be an arbitrary element of the set ¢/6. Then, since 6 is
a congruence of the n-group (@, {A, f}), for every z} € @, the following
equalities hold
A(Coys -, Con) = Cagep

and
F(Cryyee oy Consy) = Cpgnmry (:1.6.1,1.6.2),

whence we conclude that for every 2} € C, the following equalities hold

(1) A(Ca) = Caeny
and
2) =

Let (Cy,{A4, f}) be an n-group. Then, for every z} € C, the following
equalities hold
CA(.T:;") = Ca, a.nd Cf(z;z—-l) = Ca.)

whence, by (1) [and (2)], we conclude that the equality
3) A(Co) = Ca
holds [and also the equality

(4) F(C.) =C,

31f (Q, {A, f}) is an n-group and 8 a congruence of the n-groupoid (@, A), then, 6 is a
congruence also on the (n — 1)-groupoid (@, f) (:1.6.4).
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holds].
3) «:

Let (3) holds. Then, by Proposition 2.1, the equality (4) holds. Further
on, by (1) and (2), we conclude that for every 2} € C,

A(z}) € C, and f(2771) € C..

Theorem 3.2. Let n > 3 and let (Q,{A,e}) be an n-group (:1.3). Further
on, let @ be a congruence of the universal algebra (n-group) (Q,{A,e})*
and (Q/0,{A,E}) the factor n-group of the n-group (Q,{A,e}) over the
congruence 0 (:1.6.1). Then, for arbitrary C, € Q/6, a € @, the following
statements are equivalent:

(1) (Ca, {A4,e}) is an n-group [n-subgroup of the n-group (Q,{A,e})/;
(ii) the following equality holds

A(Ca) = Co;

(iii) the following equality holds

Proof.

Let (@, {4, f}) be an n-group and e its {1, n}-neutral operation (:1.3). -
Then for n > 3 the universal algebras (@, {4, f}) and (@, {4, e}) uniquely
represent the n-group (@, A) (:1.4, 1.3.3). In addition, if # is a congruence
of the n-groupoid (@, A), 6 is a congruence of the (n — 1)-groupoid (@, f)
and (n — 2)-groupoid (@, e) (:1.6.4). Whence, by Theorem 3.1, we conclude
that for every C, € @ /0 the following equivalence holds

(1) & ().

Finally, by Proposition 2.2, we conclude that for every C, € @/ also the
following equivalence holds

*If (@, {A, e}) is an n-group (n > 3) and & a congruence of the n-groupoid (@, A), then
@ is also a congruence of the-(n — 2)-groupoid (@, e) (:1.6.4).
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4. Two examples and a proposition

4.1. Example: Let ({1,2,3,4},-) be Klein’s group:
Table 1. Then, ({1,2,3,4}, A), where

A(z?)déle ~ZL9-T3-3

for every z3 € {1,2, 3,4}, is a 3-group;
Tables 2, — 24, Ai(:c,y)d;fA(z,i,y), i € {1,2,3,4}

Bl QO B = =
DO = ] o e
=1 RO o) W) b

x| eof DO = -

[(Ai(z,y)=2z-y-3, Ay(z,y) =z -y -4, As(z,y) =z -y, Table 1.
Ay(z,y) ==z y-2].
Ay 1 21314 Ag 1121314 Az 1{2]13]|4 As 1 21314
1 31411 2 1 4 131211 1 1 213 1|4 1 2111413
2 41312 1 2 3 {411 2 2 21141413 2 11211314
3 112314 3 2111413 3 3141712 3 4132 1
4 2 1 413 4 1 21314 4 4131211 4 3141112
Table 2, Table 25 Table 23 Table 24

The equivalence relation € in the set {1,2,3,4} defined by the equality

{1,2,3,4}/6 = {{1,2},{3,4}}

is a congruence relation of the 3-group ({1,2,3,4}, A) (:Tables 2;-24). The
corresponding factor 3-group ({{1,2},{3,4}},A) is represented in Tables
31-32°. We can see from Table 3;-3; that {1,3}-neutral operation E of the
3-group ({{1,2},{3,4}}, A) is the following per-

mutation of the set {{1,2},{3,4}} Angy | 11,2} ] {3,4}
| {1,2} | {3,4} | {1,2}
({1,2} {3,4}) 3.4 [{1.2)] (3,4)

{3,4} {1,2} - ) Table 3,

Since E({1,2}) = {3,4} and E({3,4}) = {1,2}, A4 | {1,2} | {3,4}
then by Theorem 3.2, we conclude that the pairs 7 91 | {1,2} | {3,4}
({1,2}, A) and ({3,4}, A) are not 3-groups. (3,4} | {3,4} | {1,2}

Table 3,
4.2. Example: Let ({1,2,3,4},-) be the Klein’s group: Table 1. Then,
({1,2,3,4}, B), where

B(zf)déle T - T3 -2

5A{1,2}(Ir y)d;fA(z’ {11 2}! y), A{3,4}(z: y)défA(z) {3’ 4}’ y); T,y € {{1, 2}, {3,4}}-
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for every z3 € {1,2,3,4}, is a 3-group; Table 4; — 44, Bi(x,y)défB(w,i,y),
S {1’2>334} [ZB](.’I),y) =Ty~ 23 B2(xay) =Yy, Bs(l"y) =Yy '43

B, |1]213]|4 B, |1 121314 Bs | 1|23 ] 4 By |112]3] 4
1 2111413 1 112134 1 4 (1312(1 1 3 (4|12
2 1 (2134 2 2111413 2 314172 2 4 131211
3 4131211 3 31411/|2 3 211143 3 1123 )4
4 314112 4 4131211 4 1(213¢}14 4 211143

Table 4, Table 4, Table 43 Table 44

The equivalence relation 6 in the set {1,2,3,4} defined by the equality

{1’ 2’3’4}/0 = {{1’2},{3’4}}

is a congruence relation of the 3-group ({1,2, 3,4}, B) (:Table 4; — 4,). The
corresponding factor 3-group ({{1,2},{3,4}},B) is represented in Table 5;—
59. Since B({1,2},{1,2},{1,2}) = {1, 2} (:Table 5,) and B({3,4},{3,4},1{3,
4}) = {3,4} (:Table 52), then by Theorem 3.1 (or Theorem 3.2) we conclude
that the pairs ({1,2}, B) and ({3,4}, B) are 3-groups. They are represented,
respectively in Table 6; — 6; and Table 7; — 7,.

B{1,2 {1’2} {3’4} B{3,4} {152} {3’4}

{1,2} | {1,2} | {3,4} {1,2} | {3,4} | {1,2}

{3,4} | {3,4} | {1,2} {3,4} [ {1,2} | {3,4}
Table 51 Table 52

B |1 B, |1]2 Bs |34 By |34

1121 1 ({12 3 413 3 (3|4

2 {1]2 2 121 4 (34 4 1413

Table 64 Table 6, Table 74 Table 7,

In the group theory (n = 2) the following proposition is well known: if
(Q, A) is a group, ~! its inverting operation and @ its congruence, then there
is a normal subgroup (H, A) of (@, A) such that

(1) H € Q/8; and
(2) for every a,b € Q) the equivalence
abb & A(a™'b) € H
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holds. By the cited proposition and by Example 4.1 and Example 4.2, we
conclude that the following proposition holds:

Proposition 4.3. a) Let (Q, A) be an arbitrary n-group, 8 its arbitrary
congruence and n = 2. Then, there is exactly one C, € Q/0 such that
(Cq, A) 1s an n-group (:group). b) If n > 3, then

(i) there ezist an n-group (Q,A) and its congruence 0 such that for
every C, € Q/0 the pair (Cy, A) is not an n-group; and

(ii) there exist an n-group (Q,A) and its congruence 8 such that for
every C, € /8 the pair (Cq, A) is an n-group.

5. On n-groups with finite factor n-groups

Theorem 5.1. Let n € N\ {1}, let (Q, A) be an n-group, 0 its congruence
relation and (Q/6,A) the factor n-group of the n-group (Q,A) over the
congruence 0. Then: if /0 is a finite set, then for every C, € /8 there is

k
k € N such that (Cq, A) is a (k(n — 1) + 1)-group.

Proof.

Let C, be an arbitrary element of the set @ /6. Since (/8, A) is a finite
n-group, then by Proposition 2.3, there is £ € N such that

k k(n—1)+1
(1) Al C, )=0C,.
k
Further on, by Proposition 2.4, (@ /6, A) is a factor (k(n — 1) + 1)-group of
k
the (k(n — 1) + 1)-group (@, A) over the congruence §. Hence, by (1) and
k
by Theorem 3.1, we conclude that (Cy, A) is a (k(n — 1) + 1)-group.
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