ON CONGRUENCES ON n-GROUPS

Janez Ušan

Institute of Mathematics, Faculty of Science, University of Novi Sad Trg Dositeja Obradovića 4, 21000 Novi Sad, Yugoslavia

Abstract

Let θ be an equivalence relation in a set Q, and let (Q, F) be an m-groupoid, $m \in N$. Then: a) θ is a congruence relation of the m-groupoid (Q, F) iff for all $a, b \in Q$ and for every sequence c_1^{m-1} over Q (:1.1) the following statement holds

$$\bigwedge_{i=1}^{m} (a\theta b \Rightarrow F(c_1^{i-1}, a, c_i^{m-1})\theta F(c_1^{i-1}, b, c_i^{m-1})); \text{ and }$$

b) θ is a normal congruence of the *m*-groupoid (Q, F) iff for all $a, b \in Q$ and for every sequence c_1^m over Q the following statement holds

$$\bigwedge_{i=1}^{m} (a\theta b \Leftrightarrow F(c_1^{i-1}, a, c_i^{m-1})\theta F(c_1^{i-1}, b, c_i^{m-1})); \ (:1.5).$$

Further on, let (Q, A) be an n-group (:1.2), e its $\{1, n\}$ -neutral operation (:1.3) and f its inversing operation (1.4). The main result of the paper is: If θ is a congruence relation of the n-groupoid (Q, A), then: 1) θ is a normal congruence of the n-groupoid (Q, A) for every $n \geq 2$; 2) θ is a normal congruence of the (n-2)-groupoid (Q, e) for every $n \geq 3$; 3) θ is a congruence of the (n-1)-groupoid (Q, f) for every $n \geq 2$; and 4) θ is a normal congruence of the (n-1)-groupoid (Q, f) for n = 2.

AMS Mathematics Subject Classification (1991): 20N15 Key words and phrases: n-groupoids, n-semigroups, n-quasigroups, n-groups, $\{i,j\}$ -neutral operations on n-groupoids, inversing operation on n-group.

1. Preliminaries

1.1. About the expression a_p^q

Let $p \in N$, $q \in N \cup \{0\}$ and let a be the maping of the set $\{i | i \in N \land i \ge p \land i \le q\}$ into the set $S : \emptyset \notin S$. Then:

$$a_p^q \; ext{ stands for } \left\{ egin{array}{ll} a_p\,,...,a_q\;; & p < q \ a_p\;; & p = q \ ext{ empty sequence}\;(=\emptyset)\;; & p > q. \end{array}
ight.$$

For example:

$$A(a_1^{j-1},A(a_j^{j+n-1}),a_{j+n}^{2n-1}),\;j\in\{1,...,n\},\;n\in N\backslash\{1,2\},\;\text{for}\;j=n$$

stands for

$$A(a_1,...,a_{n-1},A(a_n,...,a_{2n-1})).$$

Besides, in some situations instead of a_p^q we write $(a_i)_{i=p}^q$ (briefly: $(a_i)_p^q$).

For example:

$$(\forall x_i \in Q)_1^q$$

for q > 1 stands for

$$\forall x_1 \in Q... \forall x_q \in Q$$

[usually, we write: $(\forall x_1 \in Q)...(\forall x_q \in Q)$], for q = 1 stands for

$$\forall x_1 \in Q$$

[usually, we write: $(\forall x_1 \in Q)$], and for q = 0 it stands for an empty sequence $(= \emptyset)$.

In some cases, instead of a_p^q only, we write: sequence a_p^q (sequence a_p^q over a set S). For example: ... for every sequence a_p^q over a set S And if $p \leq q$, we usually write: $a_p^q \in S$.

1.2. About n-groups

Let A: $Q^n \to Q$ and $n \in N \setminus \{1\}$. Then:

1) (Q, A) is said to be an *n*-semigroup iff for every $i \in \{2, ..., n\}$ and for every $x_1^{2n-1} \in Q$ the equality

$$A(A(x_1^n), x_{n+1}^{2n-1}) = A(x_1^{i-1}, A(x_i^{i+n-1}), x_{i+n}^{2n-1})$$

is satisfied;

2) (Q, A) is said to be an *n*-quasigroup iff for every $i \in \{1, ..., n\}$ and for every $a_1^n \in Q$ there is exactly one $x_i \in Q$ such that the equality

$$A(a_1^{i-1}, x_i, a_i^{n-1}) = a_n$$

holds; and

3) (Q, A) is said to be an *n*-group iff it is both *n*-semigroup and *n*-quasigroup. For n = 2 it is a group. The notion of an *n*-group has been introduced in [1].

1.3. On a $\{1,n\}$ -neutral operation in an n-groupoid

Let (Q, A) be an n-groupoid and $n \in N \setminus \{1\}$. Let also \mathbf{e} be an (n-2)-ary operation in Q; for n=2 this is a nullary operation. We say that \mathbf{e} is a $\{1, n\}$ -neutral operation in the n-groupoid (Q, A) iff the following holds:

(1)
$$(\forall a_i \in Q)_1^{n-2}(\forall x \in Q)$$

 $(A(\mathbf{e}(a_1^{n-2}), a_1^{n-2}, x) = x \land A(x, a_1^{n-2}, \mathbf{e}(a_1^{n-2})) = x).$

For n=2, $\mathbf{e}(a_1^0)(=\mathbf{e}(\emptyset))=\mathbf{e}\in Q$ is a neutral element of the groupoid (Q,A). The notion of an $\{i,j\}$ -neutral operation of an n-groupoid $(:n\in N\setminus\{1\},\{i,j\}\subseteq\{1,...,n\},\ i\neq j)$ has been introduced in [3]. The following propositions hold:

- 1.3.1 [3]: In an n-groupoid $(n \in N \setminus \{1\})$ there is at most one $\{1, n\}$ -neutral operation;
 - 1.3.2 [3]: In every n-group there is a $\{1, n\}$ -neutral operation¹;
 - 1.3.3 [3]: For $n \geq 3$, an n-semigroup (Q, A) is an n-group iff (Q, A)

¹The cases $\{i, j\} \neq \{1, n\} \ (n \geq 3)$ were described in [5]

has a $\{1, n\}$ -neutral operation

Therefore, an algebra $(Q, \{A, e\})$ satisfying (1) and

(2)
$$(\forall x_i \in Q)_1^{2n-1} (\bigwedge_{j=2}^n A(A(x_1^n), x_{n+1}^{2n-1}) = A(x_1^{j-1}, A(x_j^{j+n-1}), x_{j+n}^{2n-1})),$$

for $n \geq 3$, is also taken to be an n-group.

1.4 t On inversing operation in an n-group

The following proposition holds:

- 1.4.1 [4]: Let (Q, A) be an n-semigroup and $n \in N \setminus \{1\}$. Then:
- a) There is at most one (n-1)-ary operation f in Q such that the following formulas hold

(3)
$$(\forall a_i \in Q)_1^{n-2} (\forall a \in Q) (\forall x \in Q)$$

 $A(f(a_1^{n-2}, a), a_1^{n-2}, A(a, a_1^{n-2}, x)) = x$

and

(4)
$$(\forall a_i \in Q)_1^{n-2} (\forall a \in Q) (\forall x \in Q)$$

 $A(A(x, a_1^{n-2}, a), a_1^{n-2}, f(a_1^{n-2}, a)) = x;$

- b) If there is an (n-1)-ary operation f in Q such that the formulas (3) and (4) are satisfied, then (Q, A) is an n-group; and
- c) If (Q, A) is an n-group, then there is an (n-1)-ary operation f in Q such that the formulas (3) and (4) hold.²

Therefore, an algebra $(Q, \{A, f\})$ satisfying (2), (3) and (4) is also taken to be an n-group.

As for the case n=2 we say that the operation f is an inversing operation in the n-group (Q,A); [4]. The following propositions hold:

 $^{^{2}}f(a_{1}^{n-2},a)\stackrel{def}{=} \mathsf{E}(a_{1}^{n-2},a,a_{1}^{n-2}),$ where E is a $\{1,2n-1\}$ -neutral operation of a (2n-1)-group $(Q,\stackrel{2}{A});\stackrel{2}{A}(x_{1}^{2n-1})\stackrel{def}{=} A(A(x_{1}^{n}),x_{n+1}^{2n-1}).$ We note that for n=2, this is the inversing in a group.

1.4.2 [4]: Let (Q, A) be an n-group, e its $\{1, n\}$ -neutral operation, f its inversing operation and $n \in N \setminus \{1\}$. Then the following formula holds:

$$(\forall a_i \in Q)_1^{n-2}(\forall a \in Q)(A(f(a_1^{n-2}, a), a_1^{n-2}, a) = \mathbf{e}(a_1^{n-2}) \land A(a, a_1^{n-2}, f(a_1^{n-2}, a)) = \mathbf{e}(a_1^{n-2}));$$

and

1.4.3 [4] Let (Q, A) be an n-group, e its $\{1, n\}$ -neutral operation, f its inversing operation and $n \in N \setminus \{1\}$. Then the formula holds:

$$(\forall x \in Q)(\forall y \in Q)(\forall a_i \in Q)_1^{n-2}(\forall b_i \in Q)_1^{n-2}$$
$$A(x, b_1^{n-2}, y) = A(A(x, a_1^{n-2}, f(a_1^{n-2}, \mathbf{e}(b_1^{n-2}))), a_1^{n-2}, y)^3$$

1.5. On congruences in an m-groupoid

Let (Q, F) be an m-groupoid and $m \in N$. Let also Θ be an equivalence relation in the set Q. Then, Θ is a *congruence relation* on the m-groupoid (Q, F) iff the following holds:

$$(\forall a_j \in Q)_1^m (\forall b_j \in Q)_1^m ((\bigwedge_{i=1}^m a_i \Theta b_i) \Longrightarrow F(a_1^m) \Theta F(b_1^m)).$$

The following proposition is true: Θ is a *congruence* on an *m*-groupoid (Q, F) iff the following holds:

$$(\forall a \in Q)(\forall b \in Q)(\forall c_j \in Q)_1^{m-1}$$
$$(\bigwedge_{i=1}^m (a\Theta b \Longrightarrow F(c_1^{i-1}, a, c_i^{m-1})\Theta F(c_1^{i-1}, b, c_i^{m-1}))).$$

A congruence relation Θ on an m-groupoid (Q, F) is said to be normal iff the following holds:

$$(\forall a \in Q)(\forall b \in Q)(\forall c_j \in Q)_1^{m-1}$$
$$(\bigwedge_{i=1}^m (F(c_1^{i-1}, a, c_i^{m-1}) \Theta F(c_1^{i-1}, b, c_i^{m-1}) \Longrightarrow a\Theta b)).$$

Thus, an equivalence relation Θ in a set Q is a normal congruence relation on an m-groupoid (Q, F) iff the following holds:

$$(\forall a \in Q)(\forall b \in Q)(\forall c_j \in Q)_1^{m-1}$$

For n = 2: $(\forall x \in Q)(\forall y \in Q)A(x, y) = A(x, y)$.

$$(\bigwedge_{i=1}^m (a\Theta b \Longleftrightarrow F(c_1^{i-1},a,c_i^{m-1})\Theta F(c_1^{i-1},b,c_i^{m-1})))^4.$$

2. Main result

Theorem 2.1. Let (Q, A) be an n-group, e its $\{1, n\}$ -neutral operation, f its inversing operation and $n \in N \setminus \{1, 2\}$. Let also Θ be an equivalence relation on Q satisfying:

(0)
$$(\forall a \in Q)(\forall b \in Q)(\forall c_j \in Q)_1^{n-1}$$

 $(\bigwedge_{i=1}^n (a\Theta b \Longrightarrow A(c_1^{i-1}, a, c_i^{n-1})\Theta A(c_1^{i-1}, b, c_i^{n-1}))).^5$

Then, the following statements hold:

(1)
$$(\forall a \in Q)(\forall b \in Q)(\forall c_j \in Q)_1^{n-1}$$
$$(\bigwedge_{i=1}^n (a\Theta b \iff A(c_1^{i-1}, a, c_i^{n-1})\Theta A(c_1^{i-1}, b, c_i^{n-1})));$$

(2)
$$(\forall a \in Q)(\forall b \in Q)(\forall c_j \in Q)_1^{n-2}$$

 $(a\Theta b \iff f(c_1^{n-2}, a)\Theta f(c_1^{n-2}, b));$

(3)
$$(\forall a \in Q)(\forall b \in Q)(\forall c_j \in Q)_1^{n-3}$$

 $(\bigwedge_{i=1}^{n-2}(a\Theta b \iff \mathbf{e}(c_1^{i-1}, a, c_i^{n-3})\Theta \mathbf{e}(c_1^{i-1}, b, c_i^{n-3}))); and$

(4)
$$(\forall a \in Q)(\forall b \in Q)(\forall c_j \in Q)_1^{n-2}$$

 $(\bigwedge_{i=1}^{n-1} (a\Theta b \Longrightarrow f(c_1^{i-1}, a, c_i^{n-2})\Theta f(c_1^{i-1}, b, c_i^{n-2}))).$

Proof.

1) The following holds:

$$(0') \quad (\forall a \in Q)(\forall b \in Q)(\forall c_j \in Q)_1^{n-1}$$
$$(\bigwedge_{i=1}^n (A(c_1^{i-1}, a, c_i^{n-1})\Theta A(c_1^{i-1}, b, c_i^{n-1}) \Longrightarrow a\Theta b)).$$

Indeed:

⁴ For m = 2 e.g. in [2].

⁵ To see : 1.5.

Let a, b, c_1^{n-1} be arbitrary elements of the set Q such that

$$A(c_1^{i-1}, a, c_i^{n-1})\Theta A(c_1^{i-1}, b, c_i^{n-1}); i \in \{1, ..., n\}.$$

We shall consider, respectively, the cases: $i=1,\ i=n$ and $i\in\{1,\ldots,n\}\backslash\{1,n\}$.

i=1: By the assumption (0) and 1.4.1, we have the following sequence of implications

$$\begin{split} &A(a,c_1^{n-1})\Theta A(b,c_1^{n-1})\Longrightarrow\\ &A(A(a,c_1^{n-1}),c_1^{n-2},f(c_1^{n-1}))\Theta A(A(b,c_1^{n-1}),c_1^{n-2},f(c_1^{n-1}))\Longrightarrow\\ &a\Theta b, \end{split}$$

hence

$$A(a, c_1^{n-1})\Theta A(b, c_1^{n-1}) \Longrightarrow a\Theta b,$$

i=n: By the assumption (0) and 1.4.1, we have the following implications:

$$A(c_1^{n-1}, a)\Theta A(c_1^{n-1}, b) \Longrightarrow A(f(c_2^{n-1}, c_1), c_2^{n-1}, A(c_1^{n-1}, b))\Theta A(f(c_2^{n-1}, c_1), c_2^{n-1}, A(c_1^{n-1}, b)) \Longrightarrow a\Theta b.$$

and thereby

$$A(c_1^{n-1}, a) \Theta A(c_1^{n-1}, b)) \Longrightarrow a\Theta b.$$

 $i \in \{1,...,n\} \setminus \{1,n\}$: By the assumption (0), and since (Q,A) is an n-semigroup, and also by (0') for i=1 and i=n, we have the implications

$$\begin{split} A(c_1^{i-1},a,c_i^{n-1}) \Theta A(c_1^{i-1},b,c_i^{n-1}) &\Longrightarrow \\ A(d_i^{n-1},A(c_1^{i-1},a,c_i^{n-1}),d_1^{i-1}) \Theta A(d_i^{n-1},A(c_1^{i-1},b,c_i^{n-1}),d_1^{i-1}) &\Longrightarrow \\ A(A(d_i^{n-1},c_1^{i-1},a),c_i^{n-1},d_1^{i-1}) \Theta A(A(d_i^{n-1},c_1^{i-1},b),c_i^{n-1},d_1^{i-1}) &\Longrightarrow \\ A(d_i^{n-1},c_1^{i-1},a) \Theta A(d_i^{n-1},c_1^{i-1},b) &\Longrightarrow \\ A(d_i^{n-1},c_1^{i-1},a) \Theta A(d_i^{n-1},c_1^{i-1},b) &\Longrightarrow \\ a\Theta b, \end{split}$$

and hence

$$A(c_1^{i-1},a,c_i^{n-1})\Theta A(c_1^{i-1},b,c_i^{n-1}) \Longrightarrow a\Theta b.$$

Since the conjuction of (0) and (0') is equivalent with (1), we conclude that (1) holds.

2) By (just proved) proposition (1), by 1.2, by 1.4 (:Proposition 1.4.2), and by 1.3, the following sequence of equivalences hold

$$\begin{split} &f(c_1^{n-2},a)\Theta f(c_1^{n-2},b) \Longleftrightarrow \\ &A(a,c_1^{n-2},f(c_1^{n-2},a))\Theta A(a,c_1^{n-2},f(c_1^{n-2},b)) \Longleftrightarrow \\ &A(A(a,c_1^{n-2},f(c_1^{n-2},a)),c_1^{n-2},b)\Theta A(A(a,c_1^{n-2},f(c_1^{n-2},b)),c_1^{n-2},b) \Longleftrightarrow \\ &A(A(a,c_1^{n-2},f(c_1^{n-2},a)),c_1^{n-2},b)\Theta A(a,c_1^{n-2},A(f(c_1^{n-2},b),c_1^{n-2},b)) \Longleftrightarrow \\ &A(\mathbf{e}(c_1^{n-2}),c_1^{n-2},b)\Theta A(a,c_1^{n-2},\mathbf{e}(c_1^{n-2})) \Longleftrightarrow \\ &b\Theta a \end{split}$$

for all $a, b, c_1^{n-2} \in Q$, and hence (2) holds.

3) By (1), by 1.4.3 and by (2), we have the following sequence of equivalences

$$\begin{split} &a\Theta b \iff A(x,c_1^{i-1},a,c_i^{n-3},y)\Theta A(x,c_1^{i-1},b,c_j^{n-3},y)^6 \iff \\ &A(A(x,a_1^{n-2},f(a_1^{n-2},\mathbf{e}(c_1^{i-1},a,c_i^{n-3}))),a_1^{n-2},y)\Theta \\ &A(A(x,a_1^{n-2},f(a_1^{n-2},\mathbf{e}(c_1^{i-1},b,c_i^{n-3}))),a_1^{n-2},y) \iff \\ &A(x,a_1^{n-2},f(a_1^{n-2},\mathbf{e}(c_1^{i-1},a,c_i^{n-3})))\Theta A(x,a_1^{n-2},f(a_1^{n-2},\mathbf{e}(c_1^{i-1},b,c_i^{n-3}))) \iff \\ &f(a_1^{n-2},\mathbf{e}(c_1^{i-1},a,c_i^{n-3}))\Theta f(a_1^{n-2},\mathbf{e}(c_1^{i-1},b,c_i^{n-3})) \iff \\ &\mathbf{e}(c_1^{i-1},a,c_i^{n-3})\Theta \mathbf{e}(c_1^{i-1},b,c_i^{n-3}), \end{split}$$

and hence, (3) holds.

4) By (3) and since $f(a_1^{n-2}, a) \stackrel{def}{=} \mathsf{E}(a_1^{n-2}, a, a_1^{n-2}),$

where E is a $\{1, 2n-1\}$ -neutral operation of the (2n-1)-group $(Q, \overset{2}{A})$

 $^{^{6}}i \in \{1, ..., n-2\}; n \in N \setminus \{1, 2\}.$

(:footnote at 1.4.1), we have the following implications

$$a\Theta b \Longrightarrow$$

$$\mathsf{E}(c_1^{i-1}, a, c_i^{n-3}, c, c_1^{i-1}, a, c_i^{n-3})^7\Theta$$

$$\mathsf{E}(c_1^{i-1}, b, c_i^{n-3}, c, c_1^{i-1}, a, c_i^{n-3})$$
 and

$$a\Theta b \Longrightarrow$$

$$\mathsf{E}(c_1^{i-1},b,c_i^{n-3},c,c_1^{i-1},a,c_i^{n-3})\Theta$$

$$\mathsf{E}(c_1^{i-1}, b, c_i^{n-3}, c, c_1^{i-1}, b, c_i^{n-3})$$

for all $a, b, c, c_1^{n-3} \in Q$, and hence we have the implication

$$a\Theta b \Longrightarrow f(c_1^{i-1},a,c_i^{n-3},c)\Theta f(c_1^{i-1},b,c_i^{n-3},c)$$

for every $i \in \{1, ..., n-2\}$ and for every sequence a, b, c, c_1^{n-3} over a set Q, i.e. (4) holds. \square

3. Example

The groupoid $(\{1,2,3,4\},\cdot)$ represented in Table 1 is a cyclic group. $(\{1,2,3,4\},A)$, where

$$A(x_1^3) \stackrel{def}{=} x_1 \cdot x_2 \cdot x_3 \cdot 2$$

for all $x_1^3 \in \{1, 2, 3, 4\}$, is a 3-group: tables $2_1 - 2_4$; $A_1(x, y) \stackrel{def}{=} 1 \cdot x \cdot y \cdot 2 = 2 \cdot (x \cdot y)$,

$$A_2(x,y) \stackrel{def}{=} 2 \cdot x \cdot y \cdot 2 = x \cdot y, A_3(x,y) \stackrel{def}{=} 3 \cdot x \cdot y \cdot 2 = 4 \cdot (x \cdot y),$$

$$A_4(x,y) \stackrel{def}{=} 4 \cdot x \cdot y \cdot 2 = 3 \cdot (x \cdot y).$$

٠	1	2	3	4
1	1	2	3	4
2	2	1	4	3
3	3	4	2	1
4	4	3	1	2

Table 1

Table 2₁

 $^{{}^{7}}i \in \{1, ..., n-2\}; n \in N \setminus \{1, 2\}.$

A_2	1	2	3	4
1	1	2	3	4
2	2	1	4	3
3	3	4	2	1
$\overline{4}$	4	3	1	2

A_3	1	2	3	4
1	4	3	1	2
2	3	4	2	1
3	1	2	3	4
4	2	1	4	3

A_4	1	2	3	4
1	3	4	2	1
2	4	3	1	2
3	2	1	4	3
4	1	2	3	4

Table 2_2

Table 2_3

Table 2₄

The equivalence relation Θ in the set $\{1, 2, 3, 4\}$ given by

$$\{1,2,3,4\}/\Theta=\{\{1,2\},\{3,4\}\}$$

is a congruence on the 3-group $(\{1, 2, 3, 4\}, A)$; 1.5. The coresponding factor 3-groupoid $(\{1, 2, 3, 4\}/\Theta, \mathbf{A})$ is given in Tables 3_1 and 3_2 .

	$\{1, 2\}$	
$\{1, 2\}$	$\{1, 2\}$	$\{3, 4\}$
$\{3,4\}$	$\{3, 4\}$	$\{1, 2\}$

Table 3₁

Table 3_2

A_1	1	2
1	2	1
2	1	2

A_2	1	2
1	1	2
2	2	1

$$\begin{array}{c|cccc}
A_4 & 3 & 4 \\
\hline
3 & 4 & 3 \\
\hline
4 & 3 & 4
\end{array}$$

Table 4_1

Table 4_2

Table 5_1

Table 5₂

 $(\{1,2\},A)$ and $(\{3,4\},A)$ are 3-subgroups of the 3-group $(\{1,2,3,4\},A)$; respectively Tables 4_1 - 4_2 and Tables 5_1 - 5_2 .

f	1	2	3	4
1	1	2	4	3
2	1	2	4	3
3	2	1	3	4
4	2	1	3	4

Table 6

The inversing operation f in the 3-group $(\{1, 2, 3, 4\}, A)$ is represented in Table 6. (See footnote at 1.4; here:

$$f(x,y) = \mathsf{E}(x,y,x), \mathsf{E}(x_1^3) = (x_1 \cdot x_2 \cdot x_3)^{-1}, \ \stackrel{2}{A}(x_1^5) = A(A(x_1^3), x_4^5) = (x_1 \cdot x_2 \cdot x_3 \cdot 2) \cdot x_4 \cdot x_5 \cdot 2 = x_1 \cdot x_2 \cdot x_3 \cdot x_4 \cdot x_5.)$$

4. Remark

- 4.1: By 1.5, the part of Theorem 2.1 can be formulated also in the following way: Let (Q, A) be an *n*-group, **e** its $\{1, n\}$ -neutral operation, Θ its congruence and $n \in N \setminus \{1, 2\}$. Then Θ is a normal congruence relation on the algebra $(Q, \{A, \mathbf{e}\})$.
- 4.2: Theorem 2.1 is proved under the assumption that $n \geq 3$. However, on analyzing the proof, one can easily see that (1) and (2) hold also for n = 2. Therefore, the following proposition holds: Let (Q, A) be an n-group, f its inversing operation, Θ its congruence and $n \in N \setminus \{1\}$. Then, for n = 2, Θ is a normal congruence relation on the algebra $(Q, \{A, f\})$.
 - 4.3: From Table 6 we can see that the following proposition holds: $f(1,3)\Theta f(3,3) \wedge 1\Theta 3$.

Hence, Θ is not a normal congruence of the groupoid $(\{1,2,3,4\},f)$. (Note that Θ is a congruence on the groupoid $(\{1,2,3,4\},f)$ indeed.)

References

- [1] Dörnte W., Untersuchengen über einen verallgemeinerten Gruppenbegriff, Math. Z., 29 (1928), 1-19.
- [2] Belousov V. D., Foundation of the theory of quasigroups and loops, Nauka, Moscow, 1967 (In Russian)
- [3] Ušan J., Neutral operations of n-groupoids, Rev. of Research, Fac. of Sci. Univ. of Novi Sad, Math. Ser., 18-2, 1988, 117-126. (In Russian)
- [4] Ušan J., A comment on n-groups, Rev. of Research, Fac. of Sci. Univ. of Novi Sad, Math. Ser., 24,1 (1994), 281-288.

[5] Ušan J., On n-groups with $\{i,j\}$ -neutral operation for $\{i,j\} \neq \{1,n\}$, Rev. of Research, Fac. of Sci. Univ. of Novi Sad, Math. Ser., 25,2 (1995), 167-178.

Received by the editors August 5, 1996.