ON GENERIC MULTI-ALGEBRAS

A. Pinus

Novosibirsk State Technical University Novosibirsk, Russia

Rozália Sz. Madarász

Institute of Mathematics, University of Novi Sad Trg Dositeja Obradovića 4, Novi sad, Yugoslavia

Abstract

We prove some axiomatizability results about the so-called generic multi-algebras, which are connected with operator of generating subalgebras in some universal algebra.

AMS Mathematics Subject Classification (1991): 08A99 Key words and phrases: multi-algebras, poly-algebras, hyper-algebras, axiomatizability

1. Introduction

Multi-algebras are known in the literature under several different names: multi-algebras, poly-algebras, hyper-algebras. There are more than one hundred papers concerning some special type of multi-algebras, such as multi-groups, multi-rings, multi-semigroups, multi-groupoids... In papers [3], [4], [6], various aspects of the general theory of multi-algebras are studied. There is, of course, a special interest to study multi-algebras which are in some way connected with the basic constructions in universal algebra. In the present paper we are investigating multi-algebras which are connected with the operator of generating subalgebras in some universal algebra.

2. Preliminaries

Let us recall some basic notions. Let A be a non-empty set. A multioperation of arity n is a mapping from A^n into the family $\mathcal{P}(A)$ of all subsets of A. Roughly speaking, a multi-algebra is a non-empty set with some multioperations. Precisely, we have the following definition.

Definition 1. Let \mathcal{F} be a type i.e. a non-empty disjoint union of some sets \mathcal{F}_n , $n \in \mathbb{N}$. The elements of \mathcal{F} we call functional symbols, and the arity of $f \in \mathcal{F}_n$ is n (we write ar(f) = n). A multi-algebra of type \mathcal{F} is an ordered pair $\mathcal{A} = (A, \mathcal{F}^A)$, where A is a non-empty set (the basis of A), and $\mathcal{F}^A = \{f^A : f \in \mathcal{F}\}$ is a family of multi-operations on A, such that the, so-called, interpretation f^A of the functional symbol $f \in \mathcal{F}_n$ is an n-ary multi-operation on A.

The notion of \mathcal{F} -terms over X, $(X \neq \emptyset, \mathcal{F} \cap X = \emptyset)$, is defined in the usual way. The *interpretations* of \mathcal{F} -terms on a multi-algebra $\mathcal{A} = (A, \mathcal{F}^{\mathcal{A}})$ are multi-functions such that:

- (i) If t is a variable, then the interpretation is the unary multi-function $t^{\mathcal{A}}: A \to \mathcal{P}(A)$, such that $t^{\mathcal{A}}(a) = \{a\}$, for all $a \in A$;
- (ii) If terms $t_1(\bar{x}_1), \ldots, t_n(\bar{x}_n)$ are interpreted by multi-functions $t_n^{\mathcal{A}}(\bar{x}_n)$, $\ldots, t_n^{\mathcal{A}}(\bar{x}_n)$, and $f \in \mathcal{F}_n$, then term $t = f(t_1(\bar{x}_1), \ldots, t_n(\bar{x}_n))$ has the interpretation $t^{\mathcal{A}}$, such that

$$t^{\mathcal{A}}(\bar{a_1},\ldots,\bar{a_n}) = \bigcup \{f^{\mathcal{A}}(c_1,\ldots,c_n): c_i \in t^{\mathcal{A}}(\bar{a_i}), 1 \le i \le n\}.$$

Depending on the language of the theory of multi-algebras of type \mathcal{F} , we consider the following two possibilities:

- 1) Calculus I: the pure predicate calculus (of type \mathcal{F}), in which the atomic formulas are of the form $t_1 \approx t_2$ (t_1 and t_2 are \mathcal{F} -terms), where \approx interprets as the usual equality of two sets.
- 2) Calculus II: the pure predicate calculus (of type \mathcal{F}), in which instead of equality of two terms of type \mathcal{F} , the atomic formulas have the form $t_1 \subseteq t_2$. In this case, we interpret \subseteq in these atomic formulas as the usual set-theoretical inclusion.

Of course, calculus II is "richer" than calculus I.

If $\mathcal{A} = (A, \mathcal{F}^{\mathcal{A}})$ is a universal algebra, $X \subseteq A$, then with $\langle X \rangle_{\mathcal{A}}$ we denote the basic set of the subalgebra of \mathcal{A} , generated by X.

Definition 2. Let $A = (A, \mathcal{F}^A)$ be a universal algebra. The generic multialgebra corresponding to A is the multi-algebra G(A) of type $\Sigma = \{p_1, p_2, \ldots, p_n \ldots\}$, $ar(p_n) = n$, $n \geq 1$, with basis A, such that for all $n \geq 1$, $a_1, \ldots, a_n \in A$,

$$p_n^{G(\mathcal{A})}(a_1,\ldots,a_n)=\langle \{a_1,\ldots,a_n\}\rangle_{\mathcal{A}}.$$

In the sequel, Σ will always denote the type $\{p_1, \ldots, p_n, \ldots\}$, where $ar(p_n) = n$, for $n \geq 1$.

3. Results

The first natural question which arises is whether the class of all generic multi-algebras can be described (in the class of all multi-algebras of type Σ) by some formulas (identities, quasi-identities,...) of calculus I or II.

Theorem 1. The class of all generic multi-algebras is not axiomatizable in calculus I.

Proof. We have to prove that there is no set of first-order formulas in calculus I which would describe the class of all generic algebras within the class of all multi-algebras of type Σ .

Let \mathcal{A} be the algebra $(\mathbf{Z}; g, h)$, where \mathbf{Z} is the set of all integers, and for any $a \in \mathbf{Z}$,

$$g(a) = a + 1, h(a) = a - 1.$$

Then, in generic multi-algebra G(A) we have that

$$p^{G(\mathcal{A})}(a_1,\ldots,a_n)=\mathbf{Z}.$$

Let N denote the set of all natural numbers, and define \mathcal{A}' as the multialgebra of type Σ , with basis \mathbf{Z} , such that for all $n \geq 1$, and $a_1, \ldots, a_n \in \mathbf{Z}$

$$p_n^{\mathcal{A}'}(a_1,\ldots,a_n)=\mathbf{N}.$$

Of course, \mathcal{A}' is not a generic multi-algebra, because, for example, $\{-1\} \not\subseteq p_1^{\mathcal{A}'}(-1)$. On the other hand, multi-algebras $G(\mathcal{A})$ and \mathcal{A}' satisfy the same atomic formulas in calculus I. Precisely, if $t_1 = t_1(x_1, \ldots, x_n)$ and $t_2 = t_2(x_1, \ldots, x_n)$ are some terms of type Σ , and $a_1, \ldots, a_n \in \mathbb{Z}$, we have

$$t_1^{G(\mathcal{A})}(a_1,\ldots,a_n)=t_2^{G(\mathcal{A})}(a_1,\ldots,a_n)\Leftrightarrow t_1^{\mathcal{A}'}(a_1,\ldots,a_n)=t_2^{\mathcal{A}'}(a_1,\ldots,a_n).$$

In this way, multi-algebras $G(\mathcal{A})$ and \mathcal{A}' satisfy the same first-order formulas in calculus I. Hence, the class of all generic multi-algebras is not axiomatizable in calculus I. \square

Now we shall prove that the class of all generic multi-algebras is axiomatizable in calculus II. Moreover, we shall give explicitly a set of defining axioms.

Definition 3. Let (P1), (P2), (P3) be the following lists of formulas of type Σ in calculus II:

- (P1) $x_i \subseteq p_n(x_1, \ldots, x_i, \ldots, x_n)$, for all $n \ge 1$ and $1 \le i \le n$;
- (P2) $p_n(x_1,...,x_n) \subseteq p_k(y_1,...,y_k)$, for all $n,k \ge 1$ and all $x_1,...,x_n$, $y_1,...,y_k$ such that $\{x_1,...,x_n\} \subseteq \{y_1,...,y_k\}$;
- (P3) $p_n(x_1,\ldots,x_{n-1},p_m(y_1,\ldots,y_m)) = p_{n+m-1}(x_1,\ldots,x_{n-1},y_1,\ldots,y_m)$ for all $n,m \ge 1$.

Theorem 2. A multi-algebra \mathcal{B} of type Σ is a generic multi-algebra iff \mathcal{B} identically satisfies the system of formulas (P1), (P2), (P3). So, the class of all generic multi-algebras is axiomatizable in calculus II.

Proof. Of course, every generic multi-algebra satisfies (P1), (P2), (P3). Conversely, let \mathcal{B} be a multi-algebra with basis A, such that (P1), (P2), (P3) hold. Then, there is an algebra \mathcal{A} such that $\mathcal{B} = G(\mathcal{A})$. Namely, let us define a mapping $\varphi : \mathcal{P}(A) \to \mathcal{P}(A)$ in the following way: for any $X \subseteq A$,

$$\varphi(X) = \{ \{ p_n^{\mathcal{B}}(a_1, \dots, a_n) : a_1, \dots, a_n \in X, n \ge 1 \}.$$

Then, φ will be an algebraic closure operator on A, i.e. for any $X,Y\subseteq A$ we have:

(C1)
$$X \subseteq \varphi(X)$$
,

(C2)
$$\varphi(\varphi(X)) = \varphi(X)$$
,

(C3)
$$X \subseteq Y \Rightarrow \varphi(X) \subseteq \varphi(Y)$$
,

(C4)
$$\varphi(X) = \bigcup \{\varphi(Z) | Z \subseteq X \text{ and } Z \text{ is finite } \}.$$

Namely, (C1) follows from (P1), (C3) follows from (P2), and (C1) follows from the definition of φ . To prove (C2), let us note that the inclusion $\varphi(X) \subseteq \varphi(\varphi(X))$ holds because of (C1) and (C3). Conversely, $\varphi(\varphi(X)) \subseteq \varphi(X)$, since (using (P3)) we have:

$$\begin{split} \varphi(\varphi(X)) &= & \bigcup \{p_n^{\mathcal{B}}(a_1, \dots, a_n) : a_i \in \varphi(X), \ 1 \leq i \leq n, \ n \geq 1\} = \\ &= & \bigcup \{p_n^{\mathcal{B}}(a_1, \dots, a_n) : a_i \in \bigcup \{p_m(b_1, \dots, b_m) : b_j \in X, \\ & 1 \leq j \leq m, \ m \geq 1\}, \ 1 \leq i \leq n, \ n \geq 1\} \subseteq \\ &\subseteq & \{p_k(c_1, \dots, c_k) : c_i \in X, \ 1 \leq i \leq k, \ k \geq 1\} = \varphi(X). \end{split}$$

According to Theorem of Birkhoff and Frink ([1]), there is an algebra \mathcal{A} , with basis A, such that for all $X \subseteq A$, $\varphi(X) = \langle X \rangle_{\mathcal{A}}$. As $\varphi(\{a_1, \ldots, a_n\}) = p_n^B(a_1, \ldots, a_n)$, we have that $\mathcal{B} = G(\mathcal{A})$. \square

As a consequence of the last theorem, we can prove the compactness theorem for the class of all generic multi-algebras in calculus II.

Corollary 1. Let T be a set of first-order formulas of type Σ in calculus II. If every finite subset of T holds on some generic multi-algebra, then there is a generic multi-algebra which satisfies T.

Proof. Let \mathcal{C} be a multi-algebra of type Σ , with the basis C. We define an algebraic system $\Pi(\mathcal{C})$ with the basis $C \cup \mathcal{P}(C)$, in the language $\Sigma' = \Sigma \cup \{P, \in \}$, where P and \in are relational symbols of arity 1 and 2, respectively, in the following way:

- for $n \geq 1$, $p_n \in \Sigma_n$, $a_1, \ldots, a_n \in C$, $b \in \mathcal{P}(C)$, $p_n^{\Pi(C)}(a_1, \ldots, a_n) = b$ iff $p_n^{C}(a_1, \ldots, a_n) = b$;
- for $n \geq 1$, $p_n \in \Sigma_n$, and if some elements from a_1, \ldots, a_n are from $\mathcal{P}(C)$, then

$$p_n^{\Pi(\mathcal{C})}(a_1,\ldots,a_n)=\emptyset;$$

• $\Pi(\mathcal{C}) \models P(a) \text{ iff } a \in \mathcal{P}(C)$;

• \in interprets in $\Pi(\mathcal{C})$ as the usual set-theory relation \in .

Let Π be the class of all algebraic systems which are isomorphic to $\Pi(\mathcal{C})$, for some multi-algebra \mathcal{C} of type Σ . Note that for every $\mathcal{D} \in \Pi$ we can find a unique multi-algebra \mathcal{C} , such that $\mathcal{D} \cong \Pi(\mathcal{C})$. Obviously, the class Π of algebraic systems is elementary (i.e. axiomatizable in the first-order predicate calculus). Since the class of all generic multi-algebras is axiomatizable in calculus Π (T2), we have that class

$$\Pi_G = \{ \mathcal{A} : \mathcal{A} \cong \Pi(G(\mathcal{B})), \mathcal{B} \text{ is a universal algebra} \}$$

is elementary too. This fact, and the Compactness Theorem for the usual first-order predicate calculus imply the claim of our corollary. \Box

References

- Birkhoff, G., Frink, O., Representations of lattices by sets, Trans. Amer. Math. Soc., v. 64 (1948), 299-316.
- [2] Bruck, R. H., A Survey of Binary Systems, Springer-Verlag, Berlin-Gottingen-Heidelberg, 1958.
- [3] Čupona, G., Madarász, Sz. R., Free poly-algebras, Univ. u Novom Sadu, Zb. Rad. Prirod.-Mat. Fak. Ser. Mat. 23, 2 (1993), 245-261.
- [4] Čupona, G., Madarász, Sz. R., On poly-algebras, Univ. u Novom Sadu, Zb. Rad. Prirod.-Mat. Fak. Ser. Mat. 21, 2 (1991), 141-156.
- [5] Dresher, M., Ore, M., Theory of multigroups, Amer. J. Math. 60 (1938), 705-733.
- [6] Vaš, L., Madarász, Sz. R., A note about multi-algebras, power-algebras and identities, Proceed. of IX Conf. on Appl. Math., Novi Sad, 1995, 147-153.

Received by the editors October 24, 1996.