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Abstract

We prove some axiomatizability results about the so-called generic
multi-algebras, which are connected with operator of generating sub-
algebras in some universal algebra.
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1. Introduction

Multi-algebras are known in the literature under several different names:
multi-algebras, poly-algebras, hyper-algebras. There are more than one
hundred papers concerning some special type of multi-algebras, such as
multi-groups, multi-rings, multi-semigroups, multi-groupoids... In papers
[3], [4], [6], various aspects of the general theory of multi-algebras are stud-
ied. There is, of course, a special interest to study multi-algebras which are
in some way connected with the basic constructions in universal algebra. In
the present paper we are investigating multi-algebras which are connected
with the operator of generating subalgebras in some universal algebra.
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2. Preliminaries

Let us recall some basic notions. Let A be a non-empty set. A multi-
operation of arity n is a mapping from A™ into the family P(A) of all subsets
of A. Roughly speaking, a multi-algebra is a non-empty set with some multi-
operations. Precisely, we have the following definition.

Definition 1. Let F be a type i.e. a non-empty disjoint union of some
sets F,, n € N. The elements of F we call functional symbols, and the
arity of f € F, is n (we write ar(f) = n). A multi-algebra of type F is
an ordered pair A = (A, F4), where A is a non-empty set (the basis of A),
and FA = {fA: f € F} is a family of multi-operations on A, such that
the, so-called, interpretation fA of the functional symbol f € F,, is an n-ary
multi-operation on A.

The notion of F-terms over X, (X #0, FN X = 0), is defined in the usual
way. The interpretations of F-terms on a multi-algebra A = (A4, F*) are
multi-functions such that:

(i) If ¢ is a variable, then the interpretation is the unary multi-function
tA: A — P(A), such that t4(a) = {a}, for all @ € A;

(i) If terms t1(Z1),...,tn(Z,) are interpreted by multi-functions t(z,),
L t(Z,), and f € F,, then term t = f(t1(%1),...,t.(Z,)) has the
interpretation t#4, such that

tA(d1, ... 8n) = | J{fA(er, - hen) i €84(@), 1< i< n).

Depending on the language of the theory of multi-algebras of type F, we
consider the following two possibilities:

1) Calculus I: the pure predicate calculus (of type F), in which the atomic
formulas are of the form t; ~ ty (¢; and t; are F-terms), where &
interprets as the usual equality of two sets.

2) Calculus II: the pure predicate calculus (of type F), in which instead
of equality of two terms of type F, the atomic formulas have the form
t1 C ty. In this case, we interpret C in these atomic formulas as the
usual set-theoretical inclusion.
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Of course, calculus II is ”richer” than calculus I.

If A = (A, F*)is a universal algebra, X C A, then with (X)4 we denote
the basic set of the subalgebra of A, generated by X.

Definition 2. Let A = (A, F*) be a universal algebra. The generic multi-
algebra corresponding to A is the multi-algebra G(A) of type & = {p1,p2, .- .,
P}, ar(py) = n, n > 1, with basis A, such that for alln > 1, a4,...,a, €
A,

G(A

D, )(al,...,an) = {{a1,...,an}) A

In the sequel, ¥ will always denote the type {p1,...,Pn,.-.}, where ar(p,) =
n, for n > 1.

3. Results

The first natural question which arises is whether the class of all generic
multi-algebras can be described (in the class of all multi-algebras of type %)
by some formulas (identities, quasi-identities,...) of calculus I or II.

Theorem 1. The class of all generic multi-algebras is not aziomatizable in
calculus I.

Proof. We have to prove that there is no set of first-order formulas in calculus
I which would describe the class of all generic algebras within the class of
all multi-algebras of type X.

Let A be the algebra (Z; g, h), where Z is the set of all integers, and for
any a € Z,
gla)=a+1, hla)=a-1.

Then, in generic multi-algebra G(A) we have that
pG(A)(al,. cyap) = 2.

Let N denote the set of all natural numbers, and define A’ as the multi-
algebra of type X, with basis Z, such that for all n > 1, and ay,...,a, € Z

pﬁ'(al, coey@n) = N.
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Of course, A’ is not a generic multi-algebra, because, for example, {—-1} €
p{"(—l). On the other hand, multi-algebras G(A) and A’ satisfy the same

atomic formulas in calculus I. Precisely, if ¢t; = t1(z1,...,2,) and t2 =
to(z1,...,%,) are some terms of type ¥, and ay,...,a, € Z, we have

G(A G(A ! !

tl( )(al,...,an) = tz( )(al,...,an) &t (ay,...,a,) =5 (ag,...,a,).

In this way, multi-algebras G(A) and A’ satisfy the same first-order formulas
in calculus I. Hence, the class of all generic multi-algebras is not axiomatiz-
able in calculus I. OO

Now we shall prove that the class of all generic multi-algebras is axiom-
atizable in calculus II. Moreover, we shall give explicitly a set of defining
axioms.

Definition 3. Let (P1), (P2), (P3) be the following lists of formulas of type
3 in calculus II:

(P1) ; Cpp(®1,. -y &iy-..sTy), foralln > 1 and 1 <1 < ny

(P2) pn(21,...52n) C pe(y1s-..5 k), for all n,k > 1 and all z4,...,2,,
Yis---, Yk such that {z1,...,2,} C {v1,-..,Uk};

(Pg) pn(x17' "5xn—17pm(y17'-~7ym)) = pn+m—1($17' - ~7-Tn—17yl,---7ym) fOT‘
alln,m > 1.

Theorem 2. A multi-algebra B of type ¥ is a generic multi-algebra iff B
identically satisfies the system of formulas (P1), (P2), (P3). So, the class
of all generic multi-algebras is aziomatizable in calculus I1.

Proof. Of course, every generic multi-algebra satisfies (P1), (P2), (P3).
Conversely, let B be a multi-algebra with basis A, such that (P1), (P2),
(P3) hold. Then, there is an algebra A such that B = G(A). Namely, let us
define a mapping ¢ : P(A) — P(A) in the following way: for any X C A,

(,D(X)ZU{])TL?(CLI,...,(L,L): G;],--.,GHEX, n > 1}

Then, ¢ will be an algebraic closure operator on A, i.e. for any X,Y C 4
we have:

(C1) X € p(X),
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(C2) p(p(X)) = p(X),
(C3) X CY = p(X) C o(Y),
(C4) p(X)=UH{p(Z2)| Z C X and Z is finite }.

Namely, (C1) follows from (P1), (C3) folows from (P2), and (C1) follows
from the definition of ¢. To prove (C2), let us note that the inclusion
(X)) C ¢(p(X)) holds because of (C1) and (C3). Conversely, p(p(X)) C
¢(X), since (using (P3)) we have:

Pp(X)) = U{pB(a1,.- an) @i € p(X),1<i<n, n> 1} =
= U{pB(a;s,...,as) 1 a; € U{Pm(b1,...,bm):b; € X,

1<j<m,m>1}1<i<n,n>1}C

{pe(er,..,ex) 1 € X, 1<i<k, k>1} =¢(X).

N

According to Theorem of Birkhoff and Frink ([1]), there is an algebra A,
with basis A, such that for all X C A, o(X) = (X)a. As ¢({a1,...,an}) =
pP(ay,...,a,), we have that B = G(A). O

As a consequence of the last theorem, we can prove the compactness
theorem for the class of all generic multi-algebras in calculus II.

Corollary 1. Let T be a set of first-order formulas of type ¥ in calculus IL.
If every finite subset of T holds on some generic multi-algebra, then there is
a generic multi-algebra which satisfies T

Proof. Let C be a multi-algebra of type %, with the basis C. We define an
algebraic system II(C) with the basis CUP(C), in the language X' = ZU{P, €
}, where P and € are relational symbols of arity 1 and 2, respectively, in
the following way:

o forn>1, p, € 8y, a1,...,a, € C, b€ P(C),
pg(c)(al,...,an) = biff p5(a1,...,a,) = b

o for n > 1, p, € X, and if some elements from a,,...,a, are from
P(C), then
pyl}(c)(ala vy an) = @;

e I(C) = P(a) iff @ € P(C);
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o ¢ interprets in II(C) as the usual set-theory relation €.

Let II be the class of all algebraic systems which are isomorphic to II(C),
for some multi-algebra C of type X. Note that for every D € Il we can find
a unique multi-algebra C, such that D = II(C). Obviously, the class II of
algebraic systems is elementary (i.e. axiomatizable in the first-order predi-
cate calculus). Since the class of all generic multi-algebras is axiomatizable
in calculus I (T2), we have that class

g ={A: A2 IU(G(B)), B is a universal algehra}

is elementary too. This fact, and the Compactness Theorem for the usual
first-order predicate calculus imply the claim of our corollary. O
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