INTEGRATED SEMIGROUPS, RELATIONS WITH GENERATORS

Milorad Mijatović, Stevan Pilipović

Institute of Mathematics, University of Novi Sad Trg Dositeja Obradovića 4 21000 Novi Sad, Yugoslavia

Abstract

If $S_n = T * f_n$ and T is a C_0 - semigroup then the corresponding generator A is determined by $Ax = (n+1)! \lim_{h\downarrow 0} \frac{S_n(h)x - \frac{h^n}{n!}x}{h^{n+1}}$, $x \in D(A)$.

The same holds for a general *n*-times integrated exponentially bounded semigroup if its infinitesimal generator is densely defined.

AMS Mathematics Subject Classification (1991): 47D03 Key words and phrases: C_0 - semigroups, integrated semigroups, distributional semigroups.

1. Introduction

Integrated exponentially bounded semigroup of operators on Banach spaces were introduced by Arendt [2] and applied on abstract Cauchy problems with generators which do not generate C_0 semigroups (cf. [5], [7], [11], [16]). In [8], [9], [10] we studied this class of semigroups in relation to distributional semigroups. In this paper we analyse relations between an integrated semigroup and the corresponding infinitesimal generator. Using the fact that the n-th distribution derivative of an n-times integrated semigroup, with densely defined infinitesimal generator, is a distribution semigroup, we find A as a limit given in Abstract.

2. Preliminaries from the semigroup theory

We denote by E a Banach space with the norm $\|\cdot\|$; L(E) = L(E, E) is a space of bounded linear operators from E into E. A family $(T(t))_{t\geq 0}$ in L(E) is a semigroup of bounded linear operators on E if

- (i) T(t)T(s) = T(t+s), for any $t, s \ge 0$,
- (ii) T(0) = I, where I is the identity operator on E.

If for a semigroup $(T(t))_{t\geq 0}$ the following condition holds:

(iii)
$$\lim_{t \downarrow 0} T(t)x = x$$
, for any $x \in E$,

then $(T(t))_{t\geq 0}$ is said to be a strong continuous semigroup or, simply, a C_0 -semigroup. A linear operator A, defined on the set

$$D(A) = \left\{ x \in E : \lim_{t \downarrow 0} \frac{T(t)x - x}{t} \text{ exists } \right\}$$

by

$$Ax = \lim_{t\downarrow 0} \left. \frac{T(t)x - x}{t} = \frac{d^+T(t)x}{dt} \right|_{t=0}, \quad x \in D(A),$$

is the infinitesimal generator of the semigroup $(T(t))_{t\geq 0}$; D(A) is the domain of A.

Let A be a linear operator E and let $(T(t))_{t\geq 0}$ be a C_0 – semigroup. It is well known that A is the infinitesimal generator of this semigroup iff there exists $\omega \in \mathbb{R}$ such that $(\omega, \infty) \subset \rho(A)$ and $R : \{\lambda \in \mathbb{C}; Re\lambda > \omega\} \to L(E)$, defined by $R(\lambda) = (\lambda I - A)^{-1} = \mathcal{L}(T)(\lambda), Re\lambda > \omega$, where $\mathcal{L}(T)$ is the Laplace transformation of $(T(t))_{t\geq 0}$.

3. Preliminaries from the distribution theory

For the properties of spaces $\mathcal{D}(\mathbb{R})$, $\mathcal{E}(\mathbb{R})$, $\mathcal{E}(\mathbb{R})$, their strong duals and $\mathcal{S}'(E) = L(\mathcal{S}(\mathbb{R}), E)$ we refer to [14], [15], [17] and for the space $S_+ = \{\varphi : | t^k \varphi^{(\nu)}(t) | < C_{k,\nu}, t \in [0,\infty), \ k,\nu \in \mathbb{N}_0\}$, $(\mathbb{N}_0 = \mathbb{N} \cup \{0\})$ and its dual \mathcal{S}'_+ , which consists of tempered distributions supported by $[0,\infty)$, we refer to [18].

Let S'(E) = L(S, E) us denote the space of continuous linear functions $S \to E$ with respect to the topology of uniform convergence on bounded sets

of S. Denote $S'_{+}(E) = L(S_{+}, E)$. It is a subspace of S'(E) with elements supported by $[0, \infty)$. There holds:

Proposition 1. $S'(E) = S'(\mathbb{R}) \hat{\otimes} E = L(S, E)$ where the symbol $\hat{\otimes}$ means the completion of tensor product with respect to the ε - topology (which is equal to the π - topology since $S'(\mathbb{R})$ is nuclear). Also, $S'_{+}(E) = S'_{+} \hat{\otimes} E$.

Proof. It follows from [17], pp. 533-534.

The convolution of $f \in \mathcal{S}'_+(E)$ and $g \in \mathcal{S}'_+$ is defined by $\langle f * g, \varphi \rangle = \langle f, \check{g} * \varphi \rangle$, $\varphi \in \mathcal{S}(\mathbb{R})$, $(\check{g}(t) = g(-t))$. One can prove that $f * g = g * f \in \mathcal{S}'_+(E)$.

4. Distribution semigroups

Denote by \mathcal{D}_{-} a subset of $C^{\infty}(\mathbb{R})$ which consists of elements φ with $\operatorname{supp} \varphi \subset (-\infty, a]$, $a \in \mathbb{R}$. By $\mathcal{D}'_{+}(E)$ is denoted the space $L(\mathcal{D}_{-}, E)$. Denote by \mathcal{D}_{0} a subset of C_{0}^{∞} whose elements are supported by $[0, \infty)$.

J.Lions (cf. [6]) introduced the notion of a distribution semigroup. Recall, an L(E) valued distribution G is a distribution semigroup or SGD, if the following conditions are satisfied:

(D1.)
$$G \in \mathcal{D}'_{+}(L(E))$$
,

(D.2)
$$G(\varphi * \psi, \cdot) = G(\varphi, G(\psi, \cdot)), \ \varphi, \psi \in \mathcal{D}_0,$$

$$(\mathrm{D.3}) \bigcap_{\varphi \in \mathcal{D}_0} N(G(\varphi, \cdot)) = \{0\},\$$

(D.4) The linear hull
$$\Re$$
 of $\bigcup_{\varphi \in \mathcal{D}_0} R(G(\varphi, \cdot))$ is dense in E ,

(D.5) For every $x \in \Re$ there exists a function $u : \mathbb{R} \to E$ such that suppu $\subset [0,\infty), \ u(0) = x$ and u is continuous for $t \geq 0$ and $G(\varphi,x) = \int_{-\infty}^{\infty} \varphi(t)u(t)dt$ for any $\varphi \in \mathcal{D}_0$.

If, in addition, there exists $\xi_0 \in \mathbb{R}$ such that

(D.6)
$$e^{-\xi t}G \in \mathcal{S}'_{+}(L(E))$$
, for $\xi > \xi_0$,

then it is called the exponential distribution semigroup or SGDE.

5. Integrated semigroups

We involve the family of distributions

$$f_n(t) = \begin{cases} \frac{H(t)t^{n-1}}{(n-1)!}, & n \in \mathbb{N}, \\ f_{n+n_1}^{(n_1)}(t), & -n \in \mathbb{N}_0, \ n_1 \in \mathbb{N}, \ n+n_1 > 0, \ t \in \mathbb{R}, \end{cases}$$

where H is Heaviside's function.

Let $(T(t))_{t>0}$ be a C_0 -semigroup with the infinitesimal generator A. Put

(1)
$$S_n(t) = (T(s) * f_n(s))(t) = \frac{1}{(n-1)!} \int_0^t (t-s)^{n-1} T(s) ds, \ t \ge 0, \ n \in \mathbb{N},$$

where the integral is taken in Bochner's sense.

Then, we have

$$\mathcal{L}(S_n)(\lambda) = \mathcal{L}(T)(\lambda) \cdot \mathcal{L}(f_n)(\lambda) = \frac{1}{\lambda^n} \int_{0}^{\infty} e^{-\lambda t} T(t) dt, \quad Re\lambda > \omega,$$

which gives

$$\mathcal{L}(S_n)(\lambda) = \frac{1}{\lambda^n} R(\lambda, A), \quad Re\lambda > \omega.$$

Following W.Arendt [2], a strongly continuous family $(S_n(t))_{t\geq 0}\subset L(E)$ is called the *n*-times integrated semigroup, $n\in\mathbb{N}$, if

(2)
$$S_n(t, S_n(s, x)) = \frac{1}{(n-1)!} \left[\int_t^{t+s} (t+s-r)^{n-1} S_n(r, x) dr - \int_0^s (t+s-r)^{n-1} S_n(r, x) dr \right], \quad t, s \ge 0 \text{ and } S_n(0, x) = 0, \ x \in E.$$

It is non-degenerate if $S_n(t,x)=0$ for all $t\geq 0$ implies x=0. It is exponentially bounded if there exists M>0 and $\omega\in\mathbb{R}$ such that $\|S_n(t)\|\leq Me^{\omega t},\ t\geq 0$.

In particular, if $(T(t))_{t\geq 0}\subset L(E)$ is a C_0 semigroup, then S_n defined by (1) satisfies (2).

Let $(S_n(t))_{t\geq 0}$ be an n-times integrated semigroup, where $n\in\mathbb{N}$. Let $R(\lambda)=\lambda^n\mathcal{L}(S_n)$, where $Re\lambda>\omega$. Then, by the resolvent equation, $\ker R(\lambda)$ is independed of $Re\lambda>\omega$. Hence, by the uniqueness theorem, $R(\lambda)$ is injective iff $(S_n(t))_{t\geq 0}$ is non-degenerate. In this case there exists a unique operator A satisfying $(\omega,\infty)\subset\rho(A)$ such that $R(\lambda)=(\lambda I-A)^{-1}$ for all λ with $Re\lambda>\omega$. This operator is called the *generator* of $(S_n(t))_{t\geq 0}$. We put this in the following definition.

Definition 1 Let $n \in \mathbb{N}$. An operator A is the generator of an n-times integrated semigroup $(S_n(t))_{t\geq 0}$ iff $(a,\infty) \subset \rho(A)$ for some $a \in \mathbb{R}$ and the function $\lambda \to \frac{(\lambda I - A)^{-1}}{\lambda^n} = \mathcal{L}(S_n)(\lambda)$, $Re\lambda > a$, is injective.

6. Relations between A and $S_n(t)$

First we consider an *n*-times integrated semigroup of the form $T * f_n$ where T is a C_0 - semigroup.

Theorem 1 (Special form) Let $(S_n(t))_{t\geq 0} \subset L(E)$ be an n-times integrated exponentially bounded semigroup where

$$S_n(t) = (T(s) * f_n(s))(t) = \frac{1}{(n-1)!} \int_0^t (t-s)^{n-1} T(s) ds, \quad t \ge 0, \quad n \in \mathbb{N},$$

(the integral is taken in Bochner's sense) and $(T(t))_{t\geq 0}$ is a C_0 semigroup. Let A be the densely defined generator of $(S_n(t))_{t>0}$. Then

$$Ax = (n+1)! \lim_{h \downarrow 0} \frac{S_n(h)x - \frac{h^n}{n!}x}{h^{n+1}}, \quad x \in D(A).$$

Proof. Let $x \in E$. We have to show

$$A\frac{R(\lambda)}{\lambda^n}x = \lambda \frac{R(\lambda)}{\lambda^n}x - \frac{1}{\lambda^n}x,$$

where

$$\frac{R(\lambda)}{\lambda^n}x = \int\limits_0^\infty e^{-\lambda t} S_n(t)xdt, \quad Re\lambda > \omega.$$

Then

$$(n+1)! \frac{S_n(h) - \frac{h^n}{n!}}{h^{n+1}} \int_0^\infty e^{-\lambda t} S_n(t) x \, dt$$

$$= \frac{(n+1)!}{h^{n+1}} \int_0^\infty e^{-\lambda t} S_n(h) S_n(t) x dt - \frac{n+1}{h} \int_0^\infty e^{-\lambda t} S_n(t) x dt$$

$$= \frac{(n+1)!}{h^{n+1}} \int_0^\infty e^{-\lambda t} \frac{1}{(n-1)!} \left[\int_h^{h+t} (h+t-r)^{n-1} S_n(r) dr - \int_0^t (h+t-r)^{n-1} S_n(r) dr \right] x dt$$

$$- \frac{n+1}{h} \frac{R(\lambda)}{\lambda^n} = \frac{(n+1)n}{h^{n+1}} \int_0^\infty e^{-\lambda t} \int_h^{h+t} (h+t-r)^{n-1} S_n(r) x dr dt$$

$$- \frac{(n+1)n}{h^{n+1}} \int_0^\infty e^{-\lambda t} \int_0^t (h+t-r)^{n-1} S_n(r) x dr dt - I_3 = I_1 - I_2 - I_3.$$

$$I_1 = \frac{(n+1)n}{h^{n+1}} \int_0^\infty e^{-\lambda t} \int_h^{h+t} (h+t-r)^{n-1} S_n(r) x dr dt$$

$$= \frac{(n+1)n}{h^{n+1}} \int_h^\infty S_n(r) \int_{r-h}^\infty (h+t-r)^{n-1} e^{-\lambda t} x dt dr$$

$$= \left| h+t-r=u \right| = \frac{(n+1)n}{h^{n+1}} \int_h^\infty S_n(r) \int_0^\infty u^{n-1} e^{-\lambda (u+r-h)} x du dr$$

$$= \frac{(n+1)n}{h^{n+1}} e^{\lambda h} \int_h^\infty e^{-\lambda r} S_n(r) \int_0^\infty u^{n-1} e^{-\lambda u} x du dr$$

$$= \frac{(n+1)ne^{\lambda h}}{h^{n+1}} \frac{(n-1)!}{\lambda^n} \int_h^\infty e^{-\lambda r} S_n(r) x dr.$$

$$\begin{split} I_2 &= \frac{(n+1)n}{h^{n+1}} \int\limits_0^\infty e^{-\lambda t} \int\limits_0^t (h+t-r)^{n-1} S_n(r) x dr dt \\ &= \frac{(n+1)n}{h^{n+1}} \int\limits_0^\infty S_n(r) \int\limits_h^\infty (h+t-r)^{n-1} e^{-\lambda t} x dt dr = \left| \begin{matrix} h+t-r=u \\ dt=du \end{matrix} \right| \\ &= \frac{(n+1)n}{h^{n+1}} \int\limits_0^\infty S_n(r) \int\limits_h^\infty u^{n-1} e^{-\lambda t} x dt dr \\ &= \frac{(n+1)!}{h^{n+1}} e^{\lambda h} \int\limits_0^\infty e^{-\lambda r} S_n(r) \int\limits_h^\infty u^{n-1} e^{-\lambda u} x du dr \\ &= \frac{(n+1)!}{h^{n+1}} e^{\lambda h} \int\limits_0^\infty e^{-\lambda r} S_n(r) \int\limits_h^\infty u^{n-1} e^{-\lambda u} x du dr \\ &= \frac{(n+1)ne^{\lambda h}}{h^{n+1}} \frac{R(\lambda)}{\lambda^n} \int\limits_h^\infty u^{n-1} e^{-\lambda u} x du. \end{split}$$

Therefore,

$$(n+1)! \frac{S_n(h) - \frac{h^n}{n!}}{h^{n+1}} \int_0^\infty e^{-\lambda t} S_n(t) x dt$$

$$= \frac{(n+1)!}{h^{n+1}} \frac{e^{\lambda h}}{\lambda^n} \int_h^\infty e^{-\lambda \tau} S_n(r) x dr - \frac{(n+1)ne^{\lambda h}}{h^{n+1}} \frac{R(\lambda)}{\lambda^n} \int_h^\infty u^{n-1} e^{-\lambda u} x du - \frac{n+1}{h} \frac{R(\lambda)}{\lambda^n}$$

$$= \frac{(n+1)! e^{\lambda h} \int_h^\infty e^{-\lambda \tau} S_n(r) x dr - (n+1)ne^{\lambda h} R(\lambda) \int_h^\infty u^{n-1} e^{-\lambda u} x du - (n+1)h^n R(\lambda) x}{h^{n+1} \lambda^n}$$

Now by L'Hospital rule, if $h \downarrow 0$, we obtain

$$A\frac{R(\lambda)}{\lambda^n}x = \lambda \frac{R(\lambda)}{\lambda^n}x - \frac{1}{\lambda^n}x.$$

For $x \in D(A)$, using $S_n(t)S_n(s) = S_n(s)S_n(t)$, $t, s \ge 0$, one can prove

$$\frac{R(\lambda)}{\lambda^n}Ax = \lambda \frac{R(\lambda)}{\lambda^n}x - \frac{1}{\lambda^n}x,$$

and A is the generator of an integrated semigroup $(S_n(t))_{t>0} \subset L(E)$.

Let T be a distribution semigroup. Recall the definition of T(f,x), $x \in D(T(f))$ where $f \in \mathcal{E}'(\mathbb{R})$, supp $f \subset [0,\infty)([6])$. The domain of $T(f,\cdot)$, $D(T(f)) \subset$

E, is the set of x for which there exists a sequence $\{\rho_{\nu}\}$ in C_0^{∞} , with $\operatorname{supp} \rho_{\nu} \subset [0, \infty), \ \nu \in \mathbb{N}$, such that

$$ho_
u
ightarrow \delta, \
u
ightarrow \infty \ ext{and} \ T(
ho_
u, x)
ightarrow x, \ T(f *
ho_
u, x) \ ext{converges when} \
u
ightarrow \infty.$$

Then, $\lim_{\nu\to\infty} T(f*\rho_{\nu},x)$ does not depended on ρ_{ν} and it is the value of $T(f,\cdot)$ at x. As usual we define $\overline{T(f,\cdot)}$ as the closure of $T(f,\cdot)$ (cf. [6]). Note D(T(f)) is dense in E. We have

$$\overline{T(-\delta',x)} = Ax, \ x \in D(A), \ \overline{T(\delta,x)} = x, \ x \in E.$$

Proposition 2. Let $f \in \mathcal{K}'_{1+}(E)$. Then, there exists $n_0 \in \mathbb{N}$ such that for every $n \geq n_0$, there exist a strongly continuous function $F_n : \mathbb{R} \to E$, supp $F_n \subset [0,\infty)$, and positive constants m_n and C_n , such that

 $||F_n(t)|| \le C_n e^{m_n t}, \quad t \ge 0, \quad f = F_n^{(n)}$ ((n) is the distribution n-th derivative).

Let
$$S_n(\cdot, x) = T(\cdot, x) * f_n, \quad n \in \mathbb{N},$$

$$\langle S_n(s, x), \varphi(s) \rangle = \langle T(s, x), (\check{f}_n * \varphi)(s) \rangle, \qquad \varphi \in \mathcal{D}_-, \ x \in E,$$

where

$$(\check{f}_n * \varphi)(x) = \frac{1}{(n-1)!} \int_x^{\infty} (t-x)^{n-1} \varphi(t) dt, \quad x \in \mathbb{R}.$$

Using Proposition 2 one can simply prove

$$S_n(t,x) = \lim_{\nu \to \infty} \langle S_n(s,x), \rho_{\nu}(t-s) \rangle, \quad t > 0,$$

$$S_n(\varphi^{(n)}, x) = (-1)^n T(\varphi, x), \qquad \varphi \in \mathcal{D}_0, \ x \in E.$$

As above, we define $D(S_n(f))$ for an $f \in \mathcal{E}'(\mathbb{R})$, supp $f \subset [0, \infty)$. Then, $D(T(f)) = D(S_n(f^{(n)}))$ and

$$\overline{S_n(f^{(n)}, x)} = (-1)^n \overline{T(f, x)}, \ x \in D(T(f)),$$
$$\overline{S_n(h, x)} = \overline{S_n(\delta(t - h), x)}, \ x \in E.$$

In particular

$$(-1)^n \overline{S_n(\delta^{(n)}, x)} = x, \qquad x \in E,$$

$$(-1)^n \overline{S_n(-\delta^{(n+1)}, x)} = Ax, \qquad x \in D(A).$$

Arendt (see [2]) remarked that a densely defined operator A is the generator of an exponentially bounded distribution semigroup if and only if A generates an n-times integrated, non-degenerated, exponentially bounded semigroup for same $n \in \mathbb{N}_0$. This follows from his results in [2] and Sova's results in [13].

Now we will consider the general case.

Theorem 2. (General) Let $(S_n(t))_{t\geq 0}$ be an n-times integrated exponentially bounded semigroup, $n \in \mathbb{N}_0$ and A be its densely defined generator. Then

$$Ax = (n+1)! \lim_{h \downarrow 0} \frac{S_n(h)x - \frac{h^n}{n!}}{h^{n+1}}, \qquad x \in D(A).$$

Proof. Let $\varphi \in \mathcal{D}$. Since,

$$\frac{(n+1)!}{h^{n+1}} \left(\varphi(h) - \frac{h^n}{n!} \varphi^{(n)}(0) \right) \to \varphi^{(n+1)}(0), \quad \text{as} \quad h \to 0,$$

it follows

$$\frac{(n+1)!}{h^{n+1}} \left\langle \delta(t-h) - \frac{h^n}{n!} (-1)^n \delta^{(n)}(t), \varphi(t) \right\rangle \to (-1)^{n+1} \left\langle \delta^{(n+1)}(t), \varphi(t) \right\rangle, \quad \varphi \in \mathcal{D} \quad \text{as } h \to 0.$$

Then, we have,

$$(n+1)! \lim_{h \downarrow 0} \frac{S_n(h,x) - \frac{h^n}{n!}x}{h^{n+1}} = (n+1)! \lim_{h \downarrow 0} \frac{\overline{S_n(\delta(t-h),x)} - \overline{S_n\left(\frac{h^n}{n!}(-1)^n\delta^{(n)}(t),x\right)}}{h^{n+1}}$$

$$= (n+1)! \lim_{h \downarrow 0} \frac{\overline{S_n\left(\delta(t-h) - \frac{h^n}{n!}(-1)^n\delta^{(n)}(t),x\right)}}{h^{n+1}}$$

$$= \overline{S_n((-1)^{n+1}\delta^{(n+1)}(t),x)} = \overline{S_0(-\delta,x)} = Ax.$$

References

- [1] Arendt, W., Resolvent positive operators and integrated semigroups, Proc. London Math. Soc., (3) 54 (1987), 321-349.
- [2] Arendt, W., Vector valued Laplace transforms and Cauchy problems, Israel J. Math., 59 (1987), 327-352.
- [3] Balabane, R., Emamirad, H.A., Smooth distribution group and Schrödinger equation in $L^p(\mathbb{R}^n)$, J. Math. Anal. Appl., 70 No 1, (1979), 61-71.
- [4] Fujiwara, D., A characterization of exponential distribution semigroups, J. Math. Soc., 18 (1966), 267-274.
- [5] Kellermann, H., Hieber, M., Integrated semigroups, J. Func. Anal., 84, (1989), 160-180.
- [6] Lions, J.L., Semi-groupes distributions, Portugal. Math. 19 (1960), 141-164.
- [7] Lumer, G., Evolution equations. Solutions for irregular evolution problems via generalized initial values. Applications to periodic shocks models, Ann. Univ. Saraviensis, vol. 5, No 1. Saarbrücken, 1994.
- [8] Mijatović, M., Pilipović, S., Integrated and distribution semigroups, preprint.
- [9] Mijatović, M., Pilipović, S., Vajzović, F., α -times integrated semigroups $(\alpha \in \mathbb{R}^+)$, J. Math. Anal. Appl., 210 (1997), 790-803.
- [10] Mijatović, M., Pilipović, S., A class of distribution exponentially bounded semigroups, preprint.
- [11] Neubrander, F., Integrated semigroups and their applications to the abstract Cauchy problem, Pac. J. Math. 135 (1988), 111-155.
- [12] Pazy, A., Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer Verlag, Berlin, New York, 1983.
- [13] Sova, M., Probléms de Cauchy paraboliques de classes supérieurs et les semi-groupes distributions, Ricerche Mat. 18 (1969), 215-238.

- [14] Schwartz, L., Théorie des distributions, 2 vols., Hermann, Paris, (1950 1951).
- [15] Schwartz, L., Théorie des distributions à valeurs vectorielles, Annales Inst. Fourier, 1^{ére} partie: 7 (1957), 1-141; 2^{éme} partie: 8 (1958), 1-207.
- [16] Thieme, H., Integrated semigroups and integrated solutions to abstract Cauchy problems, J. Math. Anal. Appl. 152 (1990), 416-447.
- [17] Treves, F., Topological Vector Spaces, Distributions and Kernels, Acad. Press, New York, (1967).
- [18] Vladimirov, V.S., Generalized Functions in Mathematical Physics, Mir, Moscow, (1979).
- [19] Vladimirov, V.S., Drožžinov, Y.N., Zavialov, B.I., Multidimensional Tauberian Theorems for Generalized Functions, Nauk, Moscow, (1986), (In Russian).

Received by the editors May 15, 1996.