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Abstract

For a two-side quaternion normed space X, we prove that the left
dual space X', and similarly the second left dual space X', are two-
side quaternion Banach spaces. The corresponding property for the left
quaternion normed spaces fails. Using a nonstandard construction, we
succeed to embed the space X two-linearly and isometrically into the
second dual space X”'. Consequently, the notion of reflexivity can be
introduced in a natural way in such spaces.
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1. Let @ = {a=a+bi+cj+dk|a,b,ec,d € R} be the noncommutative
division ring of real quaternions. Here i® = j%2 = k% = —1, and ij = —ji =
k,jk=—-kj=1i,ki = —ik = j. @ = a—bi—cj — dk will denote the conjugate
of o, and |a| = Va2 + b2 + c2 + d? the absolute value of . R = {a|b=c=
d = 0} can be identified with the real field, and € = {a|c = d = 0} with
the complex field. If @ = a + bt + ¢j + dk, then a = Re () is called the real
part of a. Every quaternion « satisfies the identity

o = Re(a) +iRe(—ia) + jRe(—ja) + k Re(-ka).
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o

If a # 0, then ™! = . For arbitrary quaternions « and g, we have

2
Re (af) = Re(fa).

)

2. We note that the quaternion Banach and Hilbert spaces have not
been treated much in the literature. See for instance [3], [4], [5], and very
interesting monograph [1], where other references about this subject have
been cited.

In the sequel, welet X # {0} be an arbitrary two-side quaternion normed
space, which in particular has the properties

re = 7 (z € X,r € R),

||| leall = lol [lz]] (2 € X,ae€Q).

Next, let X’ be the space of all bounded left linear functionals on X with
the norm

/Il = sup{lf(2)l:2 € X, ||| = 1},
that is the left dual space of X.
Define:
(ef)(z) = f(za) , (fa)(z)= f(2)a,

for any ¢ € X, f € X' and o € @. Then, as is easily seen, the space X’
becomes a two-side quaternion Banach space. In particular, we have

Tf=f’l‘ (fEXI,TER),

and

lafll = lifall = lal{lfll  (fe X' ae)

We note that two-side quaternion spaces seem to be more convenient for
our purpose, since the corresponding left dual space X’ becomes also a two-
side quaternion space. Otherwise, the dual space X’ is only a real Banach
space, without quaternionic structure, and no fine definition of reflexivity
can be given.
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Next, let X* be the second dual space of the space X, that is the set of
all bounded left linear functionals on X', with the norm

| F|] = sup{|F(g)|:9 € X',]|gl| = 1}.

Then X" is also a two-side quaternion Banach space. We note that scalar
multiplication in the space X" is introduced by

(aF)(g) = F(ga),(Fa)(g) = F(g)a,

for any functional ¥ € X", g € X’ and any a € Q.

3. Now, we shall define, in a nonstandard way, a canonical embedding of
the space X into the second dual space X”. For an arbitrary z € X, define
a functional F,. on X' by

Fr(g) = Re (g(x)) — i Re(g(xi)) — jRe(g(xj)) — k Re (g(xk))

for any g € X’'. It is easily seen that the functional F, has the following
properties:

Fo(g+g1) = Fa(g) + Fz(g1),
FI(Tg) = TFx(g) ) Fx(ig) = iFZ‘(g)’
Fo(jg) = 3ta(9) , Fa(kg) = kF:(g)

for any g,g1 € X’ and r € R. Whence we get that F, is left linear on the
dual space X'

Besides, we have

| Fx(g)|” Re *(g(x)) + Re *(g(xd)) + Re *(g(xj)) + Re?(g(xk))
lg(@)I” + lg(21)|* + |g(2)|* + |g(zk)[?
Il l1? + gl Pzl + gl 1P)lzd11* + gl | <k
allglPli=ll* (g € X",

{l

IAIA

2

Il

whence we have
[Fe(9)l < 2ll=llllgll (9 € X7),
thus [|F;]] < 2||z||. Therefore, F,, € X" for every z € X.

Hence, the mapping 7: X — X" defined by n(z) = F; is an embedding
of the space X into the second dual space X”.
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Proposition 1. The mapping 7 is two-linear and isometric.

Proof. Since
Foiy(g) = Fr(g) + Fy(g),

for any ¢ € X' and 2,y € X, that is Fyy, = F; + F},, 7 is an additive
mapping.

Next, we easily find that

Fra(g) = rFu(g9) = (rF:)(g)

an:(g) = F’c(gz) = (le)(g)~
Fie(g) = (GF)9), Fralg) = (kF:)(9) (g€ X',z € X),

whence
F,.=aF, (zeX,ae).

Thus, 7 is a left linear mapping on X. In the proofs of the above relations
we used the fact that Re (af) = Re (fa) for any two quaternions a and /3.

Similarly, one can find that
Fro = Fra (z € X,a€Q),

whence 7 is also right linear on X, thus it is two-linear on X.

We still have to prove that = is isometric, that is

E| = ll=ll (= € X).

Since

| F=(9)l

V/Re(g(x)) + Re 2(g(xi)) + Re 2(g(xj)) + Re2(g(xk))
|Re (g(x))];

v

we obviously have that

(1) £l sup{|Fx(g)l:9 € X', llgll = 1}

sup{|Re(g(x))l:g € X', [gl|l = 1}.

fl

v



On reflexivity of a quaternion normed space 61

Now, we shall prove that

(2) sup{|Re (g(x))|:g € X', |lgl| = 1} = [[x]].
We have that

[Re (g(x))] < lgCOl < [lglHIx[] = [l

if g € X', ||g]l = 1, so that

sup{[Re (g(x))| :g € X', [|g|l = 1} < {Ix]].

If « = 0, then (2) is obviouisly true. If  # 0, then by a consequence
of the quaternion Hahn-Banach theorem, there is a functional ¢ € X’ such
that [|¢g]|| = 1 and g(z) = ||z||. Hence, we obtain (2) again.

Relation (1) now gives
(3) HE=]] 2 (|-

Next, let g, € X’ (n € N) be a sequence of functionals such that ||g,|| =
lforall n € N and
| F2(gn)] = || Fx]l-

Since the case F, = 0 is trivial, we can assume that F # 0. Put
Fx(gn) = Ana

and observe that A, # 0 (n > ng). If we take A\, = |4,|A4;! (n > ng), then
|/\TL' = la H/\ngnll =1 (TZ. Z n0)7 and

Fx(/\ngn) = /\an(gn) = |An| - HFI'”
as n — o0. Taking A,gn = hy (n > ng), we get [[hpl| =1 (n > np). and
Fp(hn) = |An] = Re (hy(x)) (n > no).

Since
Re (h“(x)) = lAnl - HFXH

as n — oo, we obviously get that

(4) llz|l = sup{|Re(g(x))| :g € X', [|g|l = 1} 2 |[FxI.
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Combining (3) and (4), the last relation gives
el = Il (2 € X).

This completes the proof.
By the above proposition, the image
(X)) = {Flz € X}

of the space X under the mapping =, is a left/right subspace of the Banach
space X”. If 7(X) = X", X is called reflezive space, otherwise it is called
nonreflexive.

For instance, every finite dimensional quaternionic normed space is re-
flexive, as well as every quaternion Hilbert space, and all quaternion spaces
2 (p>1).

4. The main question now is the connection of the above notion of
reflexivity with the corresponding notion of the real symplectic image X,
of the space X. We remember that real normed space X, has the same
elements and the same norm as X, while left (or right) scalar multiplication
by reals is induced by real quaternions.

Denote by X the real dual space of the space X, and by X the second
dual space of the space X,. X, is areal subspace of the real Banach space X
under the canonical mapping z — T, defined by T.(¢,) = g-(2) (9. € X]).
The space X is called R-reflezive if the space X, is reflexive, thusif X = X/.

Also note that the space X/ has the structure of a left quaternion Banach
space, if we define

(ag-)(z) = g.(za) (9. € X/, 0 € Q).

Proposition 2. A two-side quaternion Banach space X is reflezive if and
only if it is R-reflexive.

Proof. (1) Assume, first, that X is a reflexive space, and consider an arbitrary
functional T € X/.

Denote by #: X’ — X! the mapping defined by
(89)(z) = Re(g(x)) = g:(x) (g€ X', x€X),



On reflexivity of a quaternion normed space 63

whence
9(z) = g-(z) — i g,(1z) — j 9,(Jz) — k g, (kz).
Tt is not difficult to see that 6 is a quaternionic left linear, bijective, and
isometric mapping from the space X’ onto the space X7.

Consider the functional F on X’ defined by

(5) F(g) = T(g,) — iT(ig,) — iT(jgr) — kT (kg),
where g, = 6(g) for any g € X"

It is a routine job to see that F' is left linear on the space X’. Also, since
[lgll = |lgr|l, it is not difficult to see that F' is bounded on X’, and moreover
||F|| = ||T|]. Therefore, F € X".

Since X is a reflexive space, there exists an # € X such that

F(g) = Fi(9)=
(6) = Re(g(x)) — iRe(g(xi)) — jRe(g(xj)) — k Re (g(xk))
gr(z) - ’ig,-(.’l?i) - Jgr(z]) - kgr(zk)'

From relations (5) and (6), we get

T(gr) = g,-((L') (gT € X7I')7

so that X, is a reflexive space.

(ii) Conversely, assume that X, is a reflexive space. Choose an arbitrary
functional F' € X", and consider the functional 7" on X defined by

T(9,) = Re(F(g)) (& € X0))
where g = 67 1(g,).

T is obviously R-linear on X/, and we have ||T|| = || F||. Hence T € X”.
Since X, is a reflexive space, there is an ¢ € X, = X such that

T(g;) = g-(x)  (gr € X,).

Next, since

F(g) = Re (F(g)) — iRe(F(ig)) - jRe (F(jg)) — k Re (F(kg)),
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and
Re (F(ag)) = T(8(cg)) = T(ab(g)) = (ag)(x) = g(xa),
for any a € (), we find that

F(g) = gr(m) - ig,.(x?:) - Jgr(zj) - kg,.(zk)

Re (g(x)) — 1Re (g(xi)) — jRe (g(xj)) — k Re (g(xk))
Fz(g) (g€ X’).

Hence, X is a reflexive space.

This completes the proof.
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