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Abstract

We are concerned with the second order neutral differential equa-
tions with variable coefficients and give some sufficient conditions such
that all solutions are oscillatory or else tend to zero.
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1. Introduction

In this paper we are concerned with the oscillatory behaviour of the solutions
of nonlinear second order neutral differential equations of the form

where a(z),a’(z) are continuous functions such that a(z) > 0, ¢(z) > 0
is continuous and not identically equal to zero in any neighbourhood of
infinity. Functions p;(z) are twice differentiable and mh_’rr;(7 pi(z) = p; > 0 for
t =0,1,...,k. The function f satisfies the condition

(0) f is cont., differentiable, nondecreasing, and zf(z) > 0 for = # 0.
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Constants a;, ¢t = 0,1, ..., k are positive.

A real function g(2) has some property eventually if there exists 7 > 0
such that g(2) has this property for 2 > T.

A nontrivial solution of (1) is said to be oscillatory if y(z) is not of
the same sign eventually. Otherwise, y is said to be nonoscillatory. An
equation is called oscillatory if its every solution is oscillatory. Otherwise
it is called nonoscillatory.

For a neutral differential equation the highest derivative of the unknown
function appears with the argument z (the present state of the system) as
well as with the one or more retarded arguments (the past state of the sys-
tem). Investigations of such equations or systems, besides of their theoretical
interest, have some importance in applications (see [1] and [2]).

A first paper concerning oscillations of neutral differential equations was
published in 1980 ([3]). There is much current interest in oscillatory theory
of such kind of equations ([4], [5], [6] and [7]). However, not much has
been done in the nounlinear case and continuous coefficients. This was the
motivation for our paper.

2. Preliminaries

In what follows we shall use the following lemmas which give useful infor-
mation about the bonds for nonoscillatory solutions of the next equation:

(2) (a(2)2/(2)) + q(2)f(x(2)) = 0, @ 2 0.

Lemma 1. (/8]) Consider (2) subject to the conditions (0),
(3) g(®) > 0, g(x) is continuous and not eventually zero,

a(z) is positive and continuous and

[«

(4) / 9 o

/ a(z)

Then, every nonoscillatory solution y of (2) satisfies eventually the following
estimate

Ap(z) < |y(z)| < B
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for some positive constants A and B (depending on y), where

o0

() =/%-

xT

Lemma 2. ([9]) Consider (2) subject to conditions (0), (3), a(z) > 0 and

(5) 7&?;) -

Then, every nonoscillatory solution y of (2) satisfies eventually the following
estimate

C < y(e)| < DR(z)

for some positive constants C' and D (depending on y), where
[ dt
R(e) = / -
a(t
/
In addition to these a prior: estimates, we need

Lemma 3. Suppose that y(z) > 0 eventually, Tanéopi(x) =p,t=0,1,..,k
and define ‘

k
(6) #(2) = po(2)y() + 2 _pil)y(z — 22).

k
Ifpo> Y pi=p >0, then xlim z(z) = ¢ > 0 if and only +f lim y(z) =

po+p

Proof. Suppose that lim z(z) = c. Let
L—00

- . _ c+ q;
lim y(z) = lim y(z,) =
and
C—q

lim,_, z) = lim y(z, ) = .
lim, —ooy(z) = lim y(z,) = ==
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We shall prove that ¢; = g2 = 0.
a) Suppose that ¢; > g2 > 0 and ¢; > 0. Taking = = Z,, (6) implies that

k
c+q1 . _
c= +§ ; lim y(2, —2;) >
Pot+p z.=1p n-*OOy( " 02

k
c+q c—qy—¢€
> Po+ p pPi———— = @p+E€pP 2> q1po-
po+p ; " po+p

Choosing ¢ = (po — P we get
2p
pod  pn . @po _ P(2¢2~ q1)  Pog2
< —_— = <
t1po < g2p + 2 5 5 = 2 < 5
contradiction.

b) Suppose that g2 > ¢1 and ¢z > 0. Taking « = g,,, (6) implies that

c+ q2
potp

k
c= po+ Y pi lim y(z, — ;) <
1=1

k
C— q2 ct+q1+¢
< Pot+ ) pi——— = q2po < pq1 + Ep.
Po+p ,; " po+p

(po — P)g2
2p

As the existence of linéo y(z) implies the existence of x].im y(z — z;), the
ooy —00

Choosing ¢ = we get g2 < qq, an immediate contradiction.
proof in the opposite direction is obvious.

Remark 1. If py = p, y(z) = 2+sin = for appropriate z; could be a counter
- example to the assertion of Lemma 3.

Remark 2. The assertion of Lemma 3 is the same if instead of y(z — z;) in
(6) we put y(z — z;(z)) where z;(z) > 0 and = — z;(z) — o0,  — oc. The
proof is similar.

3. Oscillation

Consider the second order neutral differential equation (1). We can prove
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Theorem 1. If

/q(:c )dz =00 and / /q(t)dt

then every solution y(x) of (1) is either oscillatory or else y(z) — 0 as
T — oo.

Proof. Let y(z) be a nonoscillatory solution of (1). Suppose, without loss
of generality, that y(z) > 0 eventually. This implies that y(z — z;) >
0 eventually for ¢ = 1,2,...,k. From (6) it follows that z(z) > po(z)y(z)
eventually.

According to (1) we have (a(z)z'(z)) < 0 eventually. Thus, either
2'(z) > 0 or 2/(z) < 0 eventually.

a) Assume that z'(z) > 0 eventually. It follows that 2/(z — zg) > 0
eventually and by (6)

k
polz — 20)y(z — w0) = 2(x — 20) = Y pi(® — zo)y(w = & — 20) >

k T —ZTp)2\ T — Xy — X — T0)2(T — X
Zz(x_zo)_zpl( 0)( i )>Z(CL' 1:0) Zp‘i )( )

~ po(z — z; — o) =~ po(z — z; — 20)

It implies that

(7) y(z — z0) > p*2(z — o)
eventually, for some constant p* > 0. Define a positive function w(z) such
that (2)2(z)
a(z)2(x
w(e) = Z—————,
f(pz(z — z0))
then

(a(2)2'(2))"  a(z)2'(2)f'(p"2(z — 20))p"2'(z — 20)
f(p*2(z — 20)) FA(p*2(z - 20))

Condition (0) together with (7) yield

w'(z) =

w'(z) < —q(z),
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which, after integration from 2y to z, gives

xr

w(z) < w(to) - [ a(t)d.

to
Letting z — oo we get that w(z) — —oo, which is a contradiction.

b) Assume that z'(z) < 0 eventually. Then Jim z(z) = ¢ and suppose

that ¢ > 0. According to Lemma 3 lim y(z — o) = ° _ which implies
00 Po +

that y(z — zo) > eventually. Thus
P

[
2po +
C
2po +p

(a(2)?(2))" < —q(=)f( )= —ciq(z) (e >0),

eventually. Integrating the above inequality from %, to z, we get

T

a(2)7(z) < a(to)?(to) — c1 / g($)dt < —c1 / g(t)dt.

to

Dividing by a(z) and integrating again from o to z, we get

z(z) < z(tg) — clj%jq(s)ds.

Letting ¢ — oo, the right side of the last inequality tends to —oo which is a
contradiction to the fact that 2(z) — ¢ > 0, and the proof is complete.

The next theorem shows when equation (1) is oscillatory.

Theorem 2. If

Zq(z)dm =00 and j% =00

then the equation (1) is oscillatory.

Proof. Let y(z) be a nonoscillatory solution of (1). Without loss of generality
we may suppose that y(z) > 0 eventually. As was shown in [9], the second
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condition of the theorem implies that z'(z) > 0. Now, the proof follows the
same line as in case a) Theorem 1, and it will be omitted.

. oo
The question is what happens when [ i converges. The answer gives

o a(z)

Theorem 3. If

b/‘:Z) < oo and b/a—‘zi—)b/q(s)ds = o0,

then every solution y(z) of (1) is either oscillatory or else y(z) — 0 as
T — 00.

Proof. As in the proof of Theorem 1 we introduce z(z) and distinguish two
cases:

a) Assume that z’(z) > 0 eventually. According to Lemma 1 we have
c

Pot+P

o0
the estimate (7). The conditions of our theorem imply that [ ¢(z)dz = oo,
tg

and we can proceed as in the proof of case a) of Theorem 1.

that lim z(z) = ¢ > 0, which by Lemma 3 gives zljngo y(z) = and

b) Assume that z'(z) < 0 eventually. According to the observation given
in case a) the proof follows the same line as the proof of case b) of Theorem
1, and it will be omitted.

Remark 3. In the light of Remark 2 we are able to prove all above theorems
in the case of more general differential equation than (1).

Theorems 1 and 2 are improvements and generalizations of Theorems 1
and 2 in the paper [4].
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