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Abstract

This paper is concerned with some basic theorems of linear ther-
moelastodinamics for micropolar bodies. The uniqueness theorem and
continuous dependence theorems are proved with the aid of Lagrange
identity, with no definiteness assumptions on the thermoelastic coeffi-
cients
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1. Introduction

Previous papers on uniqueness and continuous dependence in elasticity or
thermoelasticity have been based almost exclusivelly on the assumptions
that the elasticity tensor or thermoelastic coefficients are positive definite.
So, Weiner in [2] was the first to establish a uniqueness theorem in ther-
moelastodynamics of homogeneous and isotropic bodies. This result was
extended in [3], to cover the anisotropic bodies. In other papers, the au-
thors recourse to the energy conservation law, in order to derive the unique-
ness or continuous dependence of the solutions. A uniqueness result was
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indicated in [4] by supplementing the restrictions arising from thermody-
namics with certain definiteness assumptions. Rusu in [5] applies the theory
of semigroups of linear operators to obtain the uniqueness of solutions for
the initial-boundary value problems in thermoelasticity of materials with
voids. Exceptions include a result of Brun which was the first to establish a
uniqueness result in the isothermal theory. The Lagrange identity method
has been used by Brun in conjuction with the energy conservation law. In
our studies [6] and [7] we have extended these results in order to cover the
thermoelasticity of bodies with microstructure. The this study objective is
to examine by a new approach the initial-boundary value problem concern-
ing thermoelasticity of micropolar bodies. The approach is developed on the
basis of the Lagrange identity and its consequences. So, we establish the
uniqueness and continuous dependence of the solutions with respect to the
body forces, body couples, and heat supply, for previous problems. We also
deduce the continuous dependence of solutions of our problems with respect
to initial data and, at last, to thermoelastic coeflicients. The results are
obtained for the bounded regions of the Euclidian three-dimensional space.
We point out, again, that the results are obtained without recourse to the
energy conservation law, or to any boundedness assumptions on the ther-
moelastic coefficients, and avoid the use of definiteness assumptions on the
thermoelastic coeflicients.

2. Basic equations

Let at time ¢ = 0 the body occupy a properly regular region B of the Euclid-
jan three-dimensional space. We denote the closure of B with B and suppose
that the boundary @B is a closed, bounded and piece-wise smooth surface.
We use a fixed system of rectangular Cartesian axes and adopt the Cartesian
tensor notation. The points of B are denoted by (z) and ¢t € [0,7] is time.
The usual summation and differentiation conventions are employed: Latin
subscripts are understood to range over the integers (1,2,3), summation
over repeated subscripts is implied, and a subscripts j preceded by a comma
denotes partial differentiation with respect to the Cartesian coordinate z;.
The basic equations of the linear theory of micropolar thermoelasticity are

- the equations of motion
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) tijj + oy = Qi}'ii
mij,; + eijktie + oM = L; @5
- the equation of energy
(2) Ton = ¢ + 013
- the constitutive equations
tij = Aijmnsmn + Bijmn’Y'mn - Eije,
(3) mi; = BijmnEmn + CijmnYmn — Dij0,
a
n = Eieij+ Dijvij + 70, 6 = kijhy;
0
- the goemetrical equations
(4) €ij = Wji + EjikPhy  Vij = Pii-

In these relations we have used the following notations: p - the constant mass
density; 7o - the constant absolute temperature of the body in its reference
state; u; - components of the displacement; ¢; - components of the micro-
rotation; ¢ - the temperature measured from the temperature Tp; €;;,7;; -
kinematic characteristics of the strain; ;; - components of the stress tensor;
m; - components of couple-stress tensor; F; - components of the body force;
M; - the components of the body couple; r - the heat supply per unit mass;
7 - the entropy per unit mass; ¢; - components of heat flux; ¢;; - alternative
symbol; I;; - coeficients of microinertia; a, A;jmn, Bijmn, Cijmn, Fij, Dij, kij
- the characteristics of the material, and they obey the symmetry relations

(5) Aijmn = Amnijy, Cijmn = Cmnij, kiy = kji, Lij = L.

Assume that there exists a positive constant Aq such that I;;£:€; > Aok,
V¢;. Also, the spatial argument and the time argument of a function will
be omitted when there is no likelihood of confusion. The Second Law of
Thermodynamics implies that k;;6;6; > 0. Along with eqs. (1) to (4), we
consider the initial conditions

ui(z,0) = a;(z), w:(z,0)=bi(z), piz,0)=ci(z),

(6) :
@i(z,0) = d'i(x)’ 0(1‘,0) = fo(z), (‘E) € B,
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where the functions a;, b;, ¢;, d; and 8y are prescribed. Also, we adjoin the
following standard boundary conditions

u; = 4; on By x [0,T), t; =t;yn; =t ondBf x|[0,T),
(7) wi=@; ondBy x[0,T), m; =min; =m; ondB; x[0,T),
=8 ondB: x[0,T), q=g¢gn; =¢ ondBx[0,T),

where n; are the components of the outward unit normal vector on 0 B; 0 B;
with their complements 9 B¢ that are subsets of JB such that

0B, N OB = 0B, MBS = 8B N OBS = 0,
OB, UBBE = B, U dBS = 0B3 U OB, = OB

and the functions 4;, @;, ™;, t;,  and q are prescribed. By introducing (3)
into (1) and (2), the following system of equations is obtained

0tl; = (AijmnEmn),j + (BijmnYmn),; — (Ei8) ; + oF,
1i; 3 = (Bunij€mn),j + (Cijmn¥mn),; — (Diz0) 5+

+€iik(AjkmnEmn + BijkmnYmn — Ejx0) + 0M;,

af + To( Eijéij + Dij¥ij) = (kij6.5)i + or.

(8)

By a solution of the initial boundary value problem of the micropolar ther-
moelasticity in the cylinder B x [0,7), we mean an order array (u;,p;,6)
which satisfies system (8) for all (z,t) € B x[0,T'), the initial conditions (6)
and the boundary conditions (7).

3. Basic results

Throughout this paper it is assumed that a twice continuous differentiable
solution (u;,;,0) exists. Let U;(z,t) and Vi(z,t) be functions assumed to
be twice continuously differentiable with respect to the time variable. We
have the following Lagrange identity

/ﬁ o(@)[Us(z, )Vilz, 1) = Ui, O)Vi(e, D)}V =
(9) = /t/ g(z)[Ui(z,s)fé(z,s) — Ui(m,s)V,‘(a:,.s)]dVds+
+/ &)Uz, 0)Vi(z, 0) — Ui(z, 0)Vi(, 0)]dV.
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Let us denote by (u *), gaga), 89), (@ = 1,2), solutions of the initial boundary
value problem (8), (6), (8) corresponding to the same boundary and initial

data but to the body forces, body couples and heat supplies (F(a M(a , (),
(2 _ (.1 i =

(a = 1,2), respectively. We introduce the notation v; = u; U,

goz(-Z) (1) , x = 82 — 8(1), Because of linearity, the difference (v;,%;,x)
represents the solution of an initial boundary value problem anallogous to

(8), (6) and (7), in which, we have G; = Fz-(z) - Fi(l), L; = Mi(z) - Mz-(l),
P=r@ —p() g = 5(2) ez(-;), and so on, and relation (6) and (7) be-
come homogeneous. By setting Ui(z,s) = vi(z,s), Vi(z,s) = vi(2,2t — s),
s €[0,2t],t € [0, L), then (9), after some straightforward calculus, becomes

10) 2 [ nrinav = [ [ et -9 - it - p(avas.

We shall eliminate the inertial terms on the right side of (10). In view of
(1);, we have .
o[vi(2t — 8)4;(s) — 8;(2t — s)vi(s)] =

= [vi(2t - 8)tij(8) — vi(s)tij (2t — 8)]; + [£:;(2t — 8)vj(s)—

—tij(8)v;,i(2t — 5)] — 0[Gi(s)vi(2t — 5) — Gi(2t — s)vi(s)],

and then, with the aid of egs. (4) and (3) we conclude

o[vi(2t — s)v;(s) — (2t — 8)v;(s)] =
= [0(2t — 8)ti;(s) — vi(8)ti;(2t — 8)] + o[Gi(8)vi(2t — 8)—
(11)—G {(2t = 8)vi(8)] + AijmnEjikl€mn(8)Vr(2t — 3) — €mn(2t — $)Yi(s)]+
+Bijmn[Ymn(2t — $)ei;(8) ~ ymn(8)eij(2t — )] + Eij{x(s)eij(2t — s)—
—x(2t — 8)ei;(8)] + BijmnEiik[Ymn(8)Vr(2t — 8) = Ymn (2t — 8)r(s)]+
+Eijejie[x(2t — 8)Pu(s) — x(s)¥u(2t — 5)).

On the other hand, because of symmetric relations of I;; it follows

Ty WHE5(8) — Wilen(0) = T Wity (1) — Wty 1),

Based on this equality, in view of the initial conditions, the following identity
is obtained

[ IsWie)s(0) - Wiltys(lav =

(12) )
[ [ 5sw)dis) - Wit ys(avas.
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By substituting W;(s) with ;(2t — s), s € [0,2¢], t € [0, %), we get
2 /b Litbi(t); (1)dV =
t . .
= [ izt = syby(s) = (2t = s)yby(s)dvs,
o JB _

We eliminate the inertial terms on the right side of relation (13) by means
of (1)2

(13)

Li2t — 8)4b(s) — u(2t — )(s)] =
(14) [mij(s)i(2t — 5) = ma;(2t — 8)¢i(s)],; + e[ Li(5)i(2t — s)
—Li(2t = s)vi(s)] + mij (2t — 8)7i5(s) — mij(s)7:i5(2t — s)+
+ekij[tij(s)Ye(2t — s) — (2t — s)Pr(s)].
Next, with the aid of eqs. (4) and (3) we conclude
Li[9i(2t = 5)du(s) — (2t — 8)phi(s)] =
= [mij(s)¥i(2t — 5) — m;i(2t — s)i(s)); + el Li(s)¥u(2t — 5)—
—Li(2t = 5)Pi(8)] + Bijmne:i(2t — 8)¥mn(s) = €i5(8)Vmn(2t — )]+
+D;;[x(s)7:;(2t — 8) — x(2t — 8)7:;(8)] + AijmnCrij[Emn(8)Vr(2t — 5)—
—emn (2t = 8)Pr(8)] + Bijmn&kij[Ymn(8)Pr(20 = 8) = Ymn (28 — s)¢i(s)]+
+Eijenii[x(2t — s)¥r(s) — x(s)¢r(2t — s)].

(15)
We now integrate eqs. (11) and (15) over B x [0,t] and, with the aid of
the divergence theorem and initial and boundary values, in view of (10) and

(13), it follows
/B(sz‘i)i + Ly )dV =

(16) = [, G2t~ ) + Lils)i(2t — 8) = G2t - $)uls)-
—Li(2t — s)pi(s)] + Eijlx(s)eij(2t — s) — x(2t — s)eqi(s)]+
+D;i[x(8)7:i(2t — 8) — x(2t — s)vi;(s)]}dV ds.
In view of equations (3)3 and (2), we obtain
Eij[x(s)eij(s)(2t — ) = x(2t — s)eij(8)] + Dijlx(s)7i (2t = s)

(17)
—x(2t = $)7ij(s)] = n(2t — s)x(s) — n(s)x(2t - s).
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It is easy to verify that
(2t — s)x(s) — n(s)x(2t - 5) =

= hlx(s) [ xa(de - x(et-9) [ xi(eer
1 s 2t—s

kil = s) [ xs(€de = xa(o) [ xs€)del

() [ PO~ X0t 5) [ (el

Based on the symmetry of k;;, we can write

/Ot/B Tl(;kij'j_s </08 Xi(ﬁ)dﬁ) </02t—s Xj(g)dg) dVds =
= [k ([ cerae) ([ wterde) av.

On the other hand, integrating by parts,

(20) / / To kij [ i(8) /Zt_SO (&)de — 6 (2t — s) /Zt_s B,i(g)dg] dVds

/ / To™ 9 ds </2t 89(5)‘15) (/Zt s"j(ﬁ)dﬁ) dVds,

and then, with the aid of (19) we get
/ / T kij [xj(s /sxz-(@d& — X,:(2t = s) /O%Sx,j(g)dg] dVds
[ ([0 ([ ) v
Thus (16), with the aid of egs. (17)-(21), may be restated as follows
2 [ lon(t)u(t) + L5 (0)aV +

+ [ ([ xacae) ([ xo@de) av =
(22) / / (8)0i(2t — ) + Li(s)i(2t — 5)—
~Gi(2t — s)vi(s) — Li(2t — s)y;(s)]dVds+

[ 2 (xo [T @ - xz-9) [ Pee) avas

Combining the above assertions, we obtain the following theorem

(18)

(19)
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Theorem 1. Let (uz(-a),npga),H("‘)), (@ = 1,2) be solutions of the problem
defined by (8), (6), and (7) and their difference v; = uz(-Z) 51), ;=

(2) 991(1) x = 02 — 8) which corresponds to the null data. Then the
Lagmnge identity has the form (22).

Based on the identity (22), we shall prove the uniqueness and continu-
ous dependence results. We proceed first to obtain the uniqueness of the
solution.

Theorem 2. Assume that the conductivity tensor k;; is positive definite in
the sense that there ezists a positive constant ko such that

(23) kij&:&; > kobiki, V&

If B3 is not empty or a(z) # 0 on B, then the mized problem of ther-
moelastodynamics in the linear theory of micropolar bodies has at most one
solution.

Proof. In other words, we shall prove that
(24)  wi(z,t) =0, ¢i(z,t)=0, x(z,t)=0, V(z,t)e B x[0,T).

Because the solutions (ufa), cpga),Oga)), correspond to the same body force,

body couple, and heat supply, it results that their differences correspond
to the null body force, body couple, and heat supply. Thus (22) may be
restated as follows

X . 1 [4 t _
2 [ loviss + Lwibdav + [ L, ( / x,i(g)dg) ( / x,](ﬁ)dﬁ) dv =0,
and then, by integrating on [0, 5], s € [0, ),
/B ovi(s)vi(s)dV + /B Listi(s)w;(s)dV +

+/ / T kij (/OTX,i(g)df) ([)Tx,j(g)dg) dVdr = 0

which proves that

25)  wila,t) =0, di(z,0)=0, xi(e8)=0 on Bx [o,%).
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If 8B3 is not empty, from (7) we deduce that (24) holds. If a(z) # 0, from
the energy equation we get x = 0. However, x vanishes initially, so that (24)
again hold true. If T is infinite, then the proof of Theorem 2 is complete. If
T is finite, then we set

S S
72 2

w(e,3) = (o ) = e, 3) = e, 3) = X,

[SIRe)
vy

and repeat the above procedure on [L, L + %] in order to extend the con-

clusion (24) on B x [0,2L), and so on. O

We are now ready to state and prove the continuous dependence theorem
upon body force, body couple and heat supply on the compact subintervals
of [0, T) for the solutions of the initial-boundary value problems defined by
(8), (6) and (7).

Theorem 3. Let (uga),goz(-a),O(a)), (e = 1,2) be solutions of the problem
defined by (8), (6) and (7) which correspond to the same boundary and initial
data, but to the body forces, body couples and heat supplies (Fi(a), Mi(a), r(o‘)),
(a = 1,2) respectively, where

F(z) F(l) + G, Wi(g) - Mi(l) + L, P2 =, L p

Then we have the following estimate

[ [en(e)0i(s) + Lywi(s)b(s))av+

+/ / T, ki (/ Xi( df) (/ X.(€ d{)dVds<
(26) < tuM [/t/ 0Gi(t dth]_+
I Le(f P(f)df) wal]’

, y

+t N +
+1.Q [/()t'/BgL,-(t)Li(t)dthr, s€ [0,5],




29 M.Marin

provided there exists t, € [0,T) such that

1w tu
/ / 0Gi(1)Gi(H)dVdt < M2, / / oLi(t) Li(t)dVdi < M2,
0 B 0 B

t t 2 “ t
e [ £ ([ o) avars v, [ [ antomavar < a,
o JBTo \Jo o JB
tw [
[ ] gxr@avae< w2, [7 [ nwsindva < @,
o J/BTp o JB
Proof. According to Schwarz’s inequality, it follows

/Ot/BQvi(Qt_S)Gi(S)dVdSS

<[] g@(s)a-(s)dws]% [/ gw(s)w(s)dvds]% <
<M [ /O t /B gGi(s)Gi(s)dVds]%,

where, at last, we use the substitution 2¢ — s — s. We proceed analogously
with the other integrals in (22), and then by integrating over [0, 5], s € [0, £]
we obtain estimate (26), and the proof of Theorem 3 is thus complete. O

Estimate (26) will be used to obtain a continuous result upon initial

data.

Theorem 4. Let (ugl),vl«(l),ﬂ(l)), (uz(-l) + w,—,gogl) + 7;,00) + &) be two so-
lutions of the problem (8), (6) and (7), which correspond to the same body
force, body couple, heat supply and boundary data, but to the initial data

(@®,60, ™, d, 657 and (a® + au, b + Bi, e + 71, d + 6,85 + ),
where the perturbations (a;, i, i, 6, @) obey the following restrictions

[, etacas+ 8800y < a2, [ ot +as)av < w2, [ Zogav <,
where we used the notation

no(z) = Eij(z)[oi(z) + ejieve(e)] + Dij(2)y;4(x) + %@(w)-
If we define

{ s
vi(:r,t):/o /0 wi(z,t)drds,

(28) t ors togrs
't,!)i(:c,t):/o /0 wi(z,t)drds, X(m,t)=/0 /0 o(z,t)drdt,
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then the estimate

/B [ovi(t)vi(t) + Lizbi(t);(t)dV+

+/ot/B —Y—%Kij </Os X&i(f)d€> </Os X,j(«f)d£> dVds <

12 12 ¢
< i 1 o Ix b
(29) <M ((t*+ 2)/Bgaza,dV+(2 + 3)/ng,bzdv) +

W=

2

12 12 12
+1.Q ((t* + 5*)/3 ocicidV + (5* + é)/BIijdididV) +
+NtE(20)F ( / Engdvf,
B @
holds, provided the perturbations (v;, i, x) (from (28)) satisfy (27).

Proof. Integrating by parts in (28), we deduce

vi(e, 1) = /Ot(t — sywi(z, s)ds, i(z,t) = /Ot(t — sz, s)ds,
x(z,t) = /Ot(t — s)o(z, s)ds.

It is easy to prove that the functions (w;,w;, o) satisfy the equations of
motion and energy with F; = M; = r = 0, and the initial conditions

wi(z,0) = ai(z), wi(z,0)= Bi(z), wi(z,0)= 7i(z),
wi(z,0) = 6;(z), o(z,0) = ¢(z).

A straightforward calculus proves that the functions (v;,;,8) defined in
(28) satisfy the equations of motion and the energy equation, in which

Fi(z,t) = ai(z) + tBi(z), Mi(z,t) = vi(z) + td;(z),
r(z,t) = To[Eij(z)aji(z) + €jin Eij(2)y6(z) + Dijvia(z) + gre(2)]t.
With these specifications, estimate (29) follows from (27). O

Finally, we obtain a continuous dependence result of the solution of
our problem, upon the thermoelastic coefficients, again as a consequence of
Theorem 3.
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Theorem 5. Let 8BS = dBS = 8BS = 0 and let (u!*), ¢!, 6(=)) be solu-
tions of the problem defined by (8), (6) and (7) corresponding to the same
boundary and initial data, same body force, body couple and heat supply, but
to the thermoelastic coefficients

(A B o) ) po

wymn? igmnd Tiggmn? iy Y g 0

k(l),a(l)),

1 1 1 Q1
(A() +-Azjmn7 1]31n+8ijmnsc() +CijmnyEi(j)+gz],-D )+Dz]7 (1)+Ol,

ymn ygymn
kz(-Jl-) + Ki;) respectively. If the perturbations (v;,v;,x) of solutions satisfy
(27), then any solution of the problem defined by (8), (6) and (7), for which

Ui Ui, + Ui jkUi gk + @00 + 0,565 + 0550 i+
(30) L( 1,7 1,7 Y 2,7 LPV_]LP,] 39,3 ,]k ,]k
+i, 5% + Pi i+ 6*)dVds < M?

depends continuously on the thermoelastic coefficients on [0, 521], in

/B [ovi(t)vi(t) + Lijtb(t)e;(1))dV +

+/0th %Okij (/Os X,i(ﬁ)dﬁ) (/Os x,j(ﬁ)dg) dVds.

Proof. In the usual way, we can prove that the perturbations (v;, %, x) of
two solutions, verify the equations of motion and energy with the following
body force, body couple, and heat supply

Fi = Aijmneﬁq)z + Bijmn’)'?(vf% - 51']'0(2), M; = B‘m’MJE'Sn'?‘L + Czymn%(m)m Dz‘je(Q)a

0 «(2) (2) i2) L @),
TO_T =& 8 +D1J7z] + —4» _ T(‘)’[sze' ],z-

Thus, the problem is analogous to that from Theorem 4. So, according to
(29) and (26), we obtain the desired result. O
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