Novi Sap J. MaTH. 117

Vor. 27, No. 2, 1997, 117-125

DISTRIBUTION’S PARALLELISM AND GEODESICS
IN THE F(3,¢)-STRUCTURE LAGRANGIAN
MANIFOLD

Jovanka Nikié
Faculty of Technical Sciences, University of Novi Sad
Trg D. Obradovi¢a 6, 21000 Novi Sad, Yugoslavia

Abstract

If an almost product structure P on the tangent space T(E) =
Tv(E) ® Ty (E) of Lagrangian 2n dimensional manifold E is defined,
and if f,(3,¢)-structure on Ty (E) is defined, then f3(3, €)-structure on
Ty (E) are defined in the natural way. We can define F'(3, ¢)-structure
on T(E).

In the Lagrangian F'(3, ¢)-manifold we have studied two linear con-
nections, defined in [4] in terms of an arbitrary connection, distribu-
tion’s parallelism and geodesic curve.
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1. Introduction

Let M be an n-dimensional and F 2n-dimensional differentiable manifold
and let = (E,m, M) be vector bundles and 7F = M. The differen-
tial structures (U, ¢, R?") are vector charts of the vector bundles 7. Hence
the canonical coordinates on 7~ 4(U) are (z',...,z%,9%,...,9™) = (2%, y®),
i =1,2,...,n; a =1,...,n The transformation maps on E are z% =
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) ' I i af
zt (zt, 2%, .. 2"), y* = M (21,...,2")y® and rank [——%ﬁ,] = raﬂk[%ia] =
'
rankM?2 = n.

The inverse transformations are

: ; ! ! I 43 ! I 1
gt =zt (e, 2%, ™), ¥t = MS(2b, ..., 2™ )y®, where M5 MP = §f.

The local natural bases of the tangent space T(F) are {8;,0,}

0 L 0 8(1)il 1o b
80, = - = Ma ! 8(11’ i — ST = 0y 81Ma ' 8al.
aya a (CC ) 0 At At 0 + ( b (:l: ))y
The nonlinear connection on F is the distribution N : w € F — N, C T,(F)
which is supplementary to the distribution V,

(1.1) T.(E)=N,®V,, V,€E.

They are locally determined by §; = 8; — N#0,. The local basis adapted to
decompositions in (1.1) is {6;,0,}.

It is easy to prove [3] that on {é;,0,}

oz’ dy°
1@'7 au.’ - a_ya_:aa-

by =6
The subspace of T(E) spanned by {é;} will be denoted by Tx(E) and the
subspace spaned by {9,} will be denoted by Ty (E), T(E) = Tu(E)®Tv(E),
dim Tg(E) = n = dim Ty (E).

Definition 1.1. If the Riemannian metrical structure on T(FE) is given by
G = gij(a},y*)de’ ® da? + gap(a*, y*)8y* @ 6y, where gij(2%,y*) = gi;("),
gab = 50,0, L(z*,y*) and L(z*,y*) is a Lagrange function, then such a space
we call Lagrangian space.

Let X € T(E), then X = X'6; + X°9, and the automorphism P :
X(T(E)) — X(T(E)) defined by PX = X'6; + X9, is the natural al-
most product structure on T(E) i.e, P2 = I. If we denote by v and h the
projection morphism of T(FE) to Ty (E) and Ty (E) respectively, we have
Poh=woP.
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2. f(3,¢)-structures

Definition 2.1. We call Lagrange vertical f,(3,¢)-structure of rank v on
Tv(E) a non-null tensor field f, of type (1,1) and of elass C* such that
f2+¢ef, =0, e =+1, and rank f, = r, where 1 is constant everywhere.

Definition 2.2. We call Lagrange horizontal f(3,¢)-structure on
Tu(F) a non-null tensor field fr, on Tu(E) of type (1,1) of class C* satis-
fying f7 + €fn =0, ¢ = £1, rank fy = r, where r is constant everywhere.

An F(3,¢)-structure on T(FE) is a non-null tensor field F of type (ﬂ)
such that F® +¢F = 0, ¢ = 1, rank F = 27 =const.

For our study it is very convenient to consider f, or f; as a morphism
of vector bundles [1], [2]

fo : X(Tv(E)) = X(Tv(E)), fu:X(Tu(E))— X(Tu(E)).

Let f, be a Lagrange vertical f,(3,¢)-structure of rank r. We define the
morphisms 1, = —¢f? and m, = ¢f? + It, (@), where I, (g denotes the
identity morphism on Tv(E).

It is clear that 1, + m, = I. Also we have l,m, = m,l, = —f —¢f2 =
_'fu(f‘i,3 + é:f‘u) =0, m-?; = My, 112; =L,.

Hence the morphisms 1,, m, applied to the X'(Ty(F)) are complemen-
tary projection morphisms, then there exist complementary distributions L,
and M, corresponding to the projection morphisms 1, and m,, respectively,
such that dim L, = r and dim M, = n — r. [t is easy to see that

(2'1) Lf, = folh = fo, mfy, = fum, =0,
f-gl'u = l'uf3 = -1, fgm‘u =0,
Proposition 2.1. If a Lagrange f,(3,¢)-structure of rank r is defined on

Ty (FE), then the horizontal fi(3,¢)-structure of rank r is defined on T(E)
by the natural almost product structure of T(FE).

Proof. If we put
(2.2) frX =Pf,PX, VX € Ty(FE)

it is easy to see that fX = Pf3PX and f? + ¢f, = 0, and rank f, = 7.
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Proposition 2.2. If a Lagrange f,(3,¢)-structure of rank r is defined on
Tv(FE), then an F(3,¢)-structure is defined on T(E) by the natural almost
product structure of T(E).

Proof. We put
(2.3) F = fih + fuv,

where f;, is defined by (2.2), and h, v are the projection morphisms of
T(F) to Ty(E) and Ty(E). Then it is easy to check that F? = f2h + f2v,
F? = f2h + f3v. Thus F3 + ¢F = 0. It is clear that

rank F = 2r.

If 1, my are complementary projection morphisms of the horizontal
(3, ¢€)-structure, which is defined by the natural almost product structure
of T(E), we have

WX = —effX = —~ePf}PX = PLLPX,VX € Ty(E)
my X = (ef} + Iryg))X = ePf}PX + PIy,(gyPX = Pm,PX,
mpX = Pm,PX, VX € Ty(E).

If 1, m are complementary projection morphism of the F'(3,¢)-structure
on T(FE), then we have

(2.4) 1= —eF? = —cffh—eflvo=1h + 1w
m=c¢F? + IT(E) = Ef;.?h + Effv + ITH(E)h + ITV(E)'U = mph + m,v.

Thus, if there is given a Lagrange f,(3,¢)-structure on Ty (FE) of rank 7,
then there exist complementary distributions Ly, M}y, of Ty (E), correspond-
ing to the morphisms 1y, my such that L, = PL, , M, = PM,. Thus we
have the decompositions

(2.5) T(E) = Ty(E)® Tv(E) = PL, ® PM, & L, & M,.

If L and M denote complementary distributions corresponding to the mor-
phisms 1 and m respectively, then from (2.4) and (2.5) we have L = PL,®L,,
M =PM,d M,.

Let g, be a pseudo-Riemannian metric tensor, which is symmetric, bi-
linear and non-degenerate on Ty (E)

gv : X(Tv(E)) x X(Tv(E)) — F(T(E)).
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(For examples g, can be the vertical part of a Lagrange metric structure).

The mapping a, : X(Tv(E)) x X(Tv(E)) — F(T(F)) which is defined
by

(X, Y) = %[g(le,le) + §(myX, m,Y)] VX,¥ € X(Ty(E))

is a pseudo-Riemannian structure on T'(F) such that a,(X,Y) =0, VX €
X(Ly), Y € X(M,).

-If a Lagrange f,(3, ¢)-structure of rank r is defined on 7Ty (E), then there
exist a pseudo-Riemannian structure g, of Ty (FE) with respect to which
the complementary distributions L, and M, are orthogonal and f, is an
isometry on Ty (E), [3].

Bu(X,¥) = 30X, V) + (£ X, £V

We can define a metric structure g on Tg(FE): gn(X,Y) = ¢g,(PX, PY),
VX,Y € X(Ty(F)). Using (2.5) the distributions Ly, M} are orthogonal
with respect to gp, and the horizontal f;(3,¢)-structure which is define by
WX = PfPX,VX € X(Ty(FE)) is an isometry on Ty (FE) with respect to
Gh-

We can also define a metric tensor G on T'(FE).

(2.6) G(X,Y) = gn(X,Y)h + go(X, Y)v.

The distributions L and M are orthogonal with respect to G' and the
F(3,¢)-structure which is defined by FX = frh + fov, X € T(F) is an
isometry on T(FE) with respect to G.

3. Distribution’s parallelism

Let E?" be an F(3,¢)-structure Lagrangian manifold as in Chapter 2.

The two operators [4] V and V, defined in terms of an arbitrary connec-
tion Vin E?* and 1, m

(3.1) VxY =1Vx(lY) + mVx(mY)
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and

(3.2) VxY =1Vix(1Y)+ mVy,x(mY) + [mX, Y] + m[lX, mY]

are linear connections on E?7,

Definition 3.1. The distribution D is V-parallel if for X € D and Y €

T(FE) the vector field Vy X € D, or equivalently Vy, is a transformation of
D for each Y € T(E).

Definition 3.2. The distribution D is V-half parallel if for X € D and
Y € T(F) the vector field (AF)(X,Y) € D where
(3.3) (AF)(X,Y):FVXY—-FVyX~—VFXy+Vy(FX).

Applying Definition 3.1 to the distributions M and L we have the fol-
lowing theorems:

Theorem 3.1. In an F(3,c)-manifold the distributions L and M are V-
parallel as well as V-parallel.
Proof. Since ml = 0, we have by (3.1), (3.2)
mVxY =0, mVyY =0, X ¢ T(E), Y € L.
Consequently, L is V-parallel as well as V-parallel. The same can be

shown for the distribution M (and for L,, M, and Ly, M}, too, with respect
to l,, m, and l,, my, respectively).

Theorem 3.2. In an F(3,¢)-manifold the distributions L and M are V-
parallel if and only if the connections V and V are equal.
Proof. If L and M are V-parallel, then

mVx(1Y) =0, 1IVx(mY)=0for X,Y € T(F).

Therefore, since 1+ m = I,
Vx(IY) = 1Vx(lY), Vx(mY) = mVx(mY).

Since by (3.1), V and V are equal. In the same way, the converse can be
shown.
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Theorem 3.3. In an F(3,¢)-manifold the distribution L is V-half parallel
dmVex(mY)=0, for X € L andY € T(E).

Proof. Since mF = 0, according to (3.3)
m(AF)X,Y)= -mVpx + mVy(FX)for X € Land Y € T(E).

Thus, by (3.1), m(AF)(X,Y) = —mVpx(mY) which proves the theorem.

Theorem 3.4. In an F(3,¢)-manifold the distribution M is V-half parallel
FFVx(Y)=0,for X e M andY € T(E).

Proof. According to (3.2) since 1F = F1,
](AF)(X, Y)= vay - Fva —WVexY + ]vy(FX)

for Xe M, Y eT(E).

Thus, by (3.1), (2.4) we have (AF)(X,Y) = FVx(1Y), which proves the
theorem.

Theorem 3.5. In an F(3,¢)-manifold the distribution L is V -half parallel
if the vector field ( mY, FX|€ L for X € L and Y € T(F).

Proof. Taking account of the relation (3.3), and since m#F = 0, we have
m(AF)X,Y)= —mVpxY + mVy(FX)for X € L, Y € T(E).
Thus by (3.2) (2.4), we have m(AF)(X,Y) = —m[FX, mY] which proves

the theorem.

4. Geodesic in E?*

Let ¢ be a curve in E?", Z a tangent vector field, and V an arbitrary
connection in E?".

Definition 4.1. The curve ¢ is V-geodesic if VzZ = 0 along c.
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Applying the above definition onto the connection V and V we have the
following results.

Theorem 4.1. The curve c is V-geodesic if the vector field (V zZ—V z(mZ)) €
M and Vz(mZ) € L.

Proof. By (3.1) we have VzZ =1V z(1Z2)+ mV z(mZ), and since 14+ m = I,
@ZZ = I(VZZ — IVZ(mZ)) + va(mZ)
which proves the theorem, as far as 1 = L
Similarly, by (3.2) and (3.1) we have
Theorem 4.2. The curve ¢ is V-geodesic if the vector fields

Viz(1Z) + [mZ,1Z} € M and Vimz(mZ) + [1Z,mZ] € L.

VzZ =1WVz(1Z2) + mVmz(mZ) + [mZ,1Z) + m[1Z, mZ].

Theorem 4.3. The (1,1) tensor fields1 and m are V -covariantly constant
as well as V-covariantly constant.

Proof. We have V(1Y) = (Vx1)Y + (VxY).

_ Thus, by (3.1) (Vx1)Y =0, Y € T(E). Similarly, Vxm = 0, VxI = 0,
Vxm = 0. '
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