DISTRIBUTION'S PARALLELISM AND GEODESICS IN THE $F(3,\varepsilon)$ -STRUCTURE LAGRANGIAN MANIFOLD

Jovanka Nikić

Faculty of Technical Sciences, University of Novi Sad Trg D. Obradovića 6, 21000 Novi Sad, Yugoslavia

Abstract

If an almost product structure P on the tangent space $T(E) = T_V(E) \oplus T_H(E)$ of Lagrangian 2n dimensional manifold E is defined, and if $f_v(3,\varepsilon)$ -structure on $T_V(E)$ is defined, then $f_h(3,\varepsilon)$ -structure on $T_H(E)$ are defined in the natural way. We can define $F(3,\varepsilon)$ -structure on T(E).

In the Lagrangian $F(3,\varepsilon)$ -manifold we have studied two linear connections, defined in [4] in terms of an arbitrary connection, distribution's parallelism and geodesic curve.

AMS Mathematics Subject Classification (1991): 53B40, 53C60 Key words and phrases: $F(3, \varepsilon)$ -structure, distribution's parallelism

1. Introduction

Let \mathcal{M} be an n-dimensional and E 2n-dimensional differentiable manifold and let $\eta = (E, \pi, \mathcal{M})$ be vector bundles and $\pi E = \mathcal{M}$. The differential structures (U, ϕ, R^{2n}) are vector charts of the vector bundles η . Hence the canonical coordinates on $\pi^{-1}(U)$ are $(x^1, \ldots, x^n, y^1, \ldots, y^n) = (x^i, y^a)$, $i = 1, 2, \ldots, n$; $a = 1, \ldots, n$. The transformation maps on E are $x^{i'} = 1$

$$x^{i'}(x^1,x^2,\ldots,x^n),\ y^{a'}=M_a^{a'}(x^1,\ldots,x^n)y^a\ \text{ and } \mathrm{rank}\left[\frac{\partial x^{i'}}{\partial x^i}\right]=\mathrm{rank}\left[\frac{\partial y^{a'}}{\partial y^a}\right]=\mathrm{rank}M_a^{a'}=n.$$

The inverse transformations are

$$x^i = x^i({x^1}', {x^2}', \dots, {x^n}'), \; y^a = M^a_{a'}(x^{i'}, \dots, {x^n}') y^{a'}, \; \text{where} \; M^a_{a'} M^{a'}_b = \delta^a_b.$$

The local natural bases of the tangent space T(E) are $\{\partial_i, \partial_a\}$

$$\partial_a = \frac{\partial}{\partial y^a} = M_a^{a'}(x^i)\partial_{a'}, \ \ \partial_i = \frac{\partial}{\partial x^i} = \frac{\partial x^{i'}}{\partial x^i}\partial_{i'} + (\partial_i M_b^{a'}(x^i))y^b\partial_{a'}.$$

The nonlinear connection on E is the distribution $N: u \in E \to N_u \subset T_u(E)$ which is supplementary to the distribution V,

$$(1.1) T_u(E) = N_u \oplus V_u, \quad \forall_u \in E.$$

They are locally determined by $\delta_i = \partial_i - N_i^a \partial_a$. The local basis adapted to decompositions in (1.1) is $\{\delta_i, \partial_a\}$.

It is easy to prove [3] that on $\{\delta_i, \partial_a\}$

$$\delta_{i'} = \delta_i \frac{\partial x^i}{\partial x^{i'}}, \quad \partial_{a'} = \frac{\partial y^a}{\partial y^{a'}} \partial_a.$$

The subspace of T(E) spanned by $\{\delta_i\}$ will be denoted by $T_H(E)$ and the subspace spaned by $\{\partial_a\}$ will be denoted by $T_V(E)$, $T(E) = T_H(E) \oplus T_V(E)$, dim $T_H(E) = n = \dim T_V(E)$.

Definition 1.1. If the Riemannian metrical structure on T(E) is given by $G = g_{ij}(x^i, y^a)dx^i \otimes dx^j + g_{ab}(x^i, y^a)\delta y^a \otimes \delta y^b$, where $g_{ij}(x^i, y^a) = g_{ij}(x^i)$, $g_{ab} = \frac{1}{2}\partial_a\partial_b L(x^i, y^a)$ and $L(x^i, y^a)$ is a Lagrange function, then such a space we call Lagrangian space.

Let $X \in T(E)$, then $X = X^i \delta_i + \bar{X}^a \partial_a$ and the automorphism $P : \mathcal{X}(T(E)) \to \mathcal{X}(T(E))$ defined by $PX = \bar{X}^i \delta_i + X^a \partial_a$ is the natural almost product structure on T(E) i.e, $P^2 = I$. If we denote by v and h the projection morphism of T(E) to $T_V(E)$ and $T_H(E)$ respectively, we have $P \circ h = v \circ P$.

2. $f(3,\varepsilon)$ -structures

Definition 2.1. We call Lagrange vertical $f_v(3,\varepsilon)$ -structure of rank r on $T_V(E)$ a non-null tensor field f_v of type (1,1) and of class C^{∞} such that $f_v^3 + \varepsilon f_v = 0$, $\varepsilon = \pm 1$, and rank $f_v = r$, where r is constant everywhere.

Definition 2.2. We call Lagrange horizontal $f_h(3,\varepsilon)$ -structure on $T_H(E)$ a non-null tensor field f_h on $T_H(E)$ of type (1,1) of class C^{∞} satisfying $f_h^3 + \varepsilon f_h = 0$, $\varepsilon = \pm 1$, rank $f_h = r$, where r is constant everywhere.

An $F(3,\varepsilon)$ -structure on T(E) is a non-null tensor field F of type $\binom{11}{11}$ such that $F^3 + \varepsilon F = 0$, $\varepsilon = \pm 1$, rank $F = 2r = \mathrm{const.}$

For our study it is very convenient to consider f_v or f_h as a morphism of vector bundles [1], [2]

$$f_v: \mathcal{X}(T_V(E)) \to \mathcal{X}(T_V(E)), \ f_h: \mathcal{X}(T_H(E)) \to \mathcal{X}(T_H(E)).$$

Let f_v be a Lagrange vertical $f_v(3,\varepsilon)$ -structure of rank r. We define the morphisms $\mathbf{l}_v = -\varepsilon f_v^2$ and $\mathbf{m}_v = \varepsilon f_v^2 + I_{T_V(E)}$, where $I_{T_V(E)}$ denotes the identity morphism on $T_V(E)$.

It is clear that $\mathbf{l}_v + \mathbf{m}_v = I$. Also we have $\mathbf{l}_v \mathbf{m}_v = \mathbf{m}_v \mathbf{l}_v = -f_v^4 - \varepsilon f_v^2 = -f_v(f_v^3 + \varepsilon f_v) = 0$, $\mathbf{m}_v^2 = \mathbf{m}_v$, $\mathbf{l}_v^2 = \mathbf{l}_v$.

Hence the morphisms \mathbf{l}_v , \mathbf{m}_v applied to the $\mathcal{X}(T_V(E))$ are complementary projection morphisms, then there exist complementary distributions L_v and M_v corresponding to the projection morphisms \mathbf{l}_v and \mathbf{m}_v , respectively, such that dim $L_v = r$ and dim $M_v = n - r$. It is easy to see that

(2.1)
$$\mathbf{l}_v f_v = f_v \mathbf{l}_v = f_v, \ \mathbf{m}_v f_v = f_v \mathbf{m}_v = 0,$$
$$f_v^2 \mathbf{l}_v = \mathbf{l}_v f_v^2 = -I, \ f_v^2 \mathbf{m}_v = 0,$$

Proposition 2.1. If a Lagrange $f_v(3,\varepsilon)$ -structure of rank r is defined on $T_V(E)$, then the horizontal $f_h(3,\varepsilon)$ -structure of rank r is defined on $T_H(E)$ by the natural almost product structure of T(E).

Proof. If we put

$$(2.2) f_h X = P f_v P X, \ \forall X \in T_H(E)$$

it is easy to see that $f_h^3X = Pf_v^3PX$ and $f_h^3 + \varepsilon f_h = 0$, and rank $f_h = r$.

Proposition 2.2. If a Lagrange $f_v(3,\varepsilon)$ -structure of rank r is defined on $T_V(E)$, then an $F(3,\varepsilon)$ -structure is defined on T(E) by the natural almost product structure of T(E).

Proof. We put
$$(2.3) F = f_h h + f_v v,$$

where f_h , is defined by (2.2), and h, v are the projection morphisms of T(E) to $T_H(E)$ and $T_V(E)$. Then it is easy to check that $F^2 = f_h^2 h + f_v^2 v$, $F^3 = f_h^3 h + f_v^3 v$. Thus $F^3 + \varepsilon F = 0$. It is clear that rank F = 2r.

If \mathbf{l}_h , \mathbf{m}_h are complementary projection morphisms of the horizontal $f_h(3,\varepsilon)$ -structure, which is defined by the natural almost product structure of T(E), we have

$$\mathbf{l}_{h}X = -\varepsilon f_{h}^{2}X = -\varepsilon P f_{v}^{2}PX = P\mathbf{l}_{v}PX, \forall X \in T_{H}(E)$$

$$\mathbf{m}_{h}X = (\varepsilon f_{h}^{2} + I_{T_{H}(E)})X = \varepsilon P f_{v}^{2}PX + PI_{T_{V}(E)}PX = P\mathbf{m}_{v}PX,$$

$$\mathbf{m}_{h}X = P\mathbf{m}_{v}PX, \ \forall X \in T_{H}(E).$$

If \mathbf{l} , \mathbf{m} are complementary projection morphism of the $F(3,\varepsilon)$ -structure on T(E), then we have

(2.4)
$$\mathbf{l} = -\varepsilon F^2 = -\varepsilon f_h^2 h - \varepsilon f_v^2 v = \mathbf{l}_h h + \mathbf{l}_v v$$
$$\mathbf{m} = \varepsilon F^2 + I_{T(E)} = \varepsilon f_h^2 h + \varepsilon f_v^2 v + I_{T_H(E)} h + I_{T_V(E)} v = \mathbf{m}_h h + \mathbf{m}_v v.$$

Thus, if there is given a Lagrange $f_v(3,\varepsilon)$ -structure on $T_V(E)$ of rank r, then there exist complementary distributions L_h , M_h of $T_H(E)$, corresponding to the morphisms \mathbf{l}_h , \mathbf{m}_h such that $L_h = PL_v$, $M_h = PM_v$. Thus we have the decompositions

$$(2.5) T(E) = T_H(E) \oplus T_V(E) = PL_v \oplus PM_v \oplus L_v \oplus M_v.$$

If L and M denote complementary distributions corresponding to the morphisms l and m respectively, then from (2.4) and (2.5) we have $L = PL_v \oplus L_v$, $M = PM_v \oplus M_v$.

Let \bar{g}_v be a pseudo-Riemannian metric tensor, which is symmetric, bilinear and non-degenerate on $T_V(E)$

$$\bar{g}_v: \mathcal{X}(T_V(E)) \times \mathcal{X}(T_V(E)) \to \mathcal{F}(T(E)).$$

(For examples \bar{q}_v can be the vertical part of a Lagrange metric structure).

The mapping $a_v: \mathcal{X}(T_V(E)) \times \mathcal{X}(T_V(E)) \to \mathcal{F}(T(E))$ which is defined by

$$a_v(X,Y) = \frac{1}{2} [\bar{g}(\mathbf{l}_v X, \mathbf{l}_v Y) + \bar{g}(\mathbf{m}_v X, \mathbf{m}_v Y)] \ \forall X, Y \in \mathcal{X}(T_V(E))$$

is a pseudo-Riemannian structure on T(E) such that $a_v(X,Y)=0, \ \forall X\in \mathcal{X}(L_v), \ Y\in \mathcal{X}(M_v).$

If a Lagrange $f_v(3,\varepsilon)$ -structure of rank r is defined on $T_V(E)$, then there exist a pseudo-Riemannian structure g_v of $T_V(E)$ with respect to which the complementary distributions L_v and M_v are orthogonal and f_v is an isometry on $T_V(E)$, [3].

$$g_v(X,Y) = \frac{1}{2}[a_v(X,Y) + a_v(f_vX, f_vY)].$$

We can define a metric structure g_h on $T_H(E)$: $g_h(X,Y) = g_v(PX,PY)$, $\forall X,Y \in \mathcal{X}(T_H(E))$. Using (2.5) the distributions L_h , M_h are orthogonal with respect to g_h and the horizontal $f_h(3,\varepsilon)$ -structure which is define by $f_hX = Pf_vPX$, $\forall X \in \mathcal{X}(T_H(E))$ is an isometry on $T_H(E)$ with respect to g_h .

We can also define a metric tensor G on T(E).

(2.6)
$$G(X,Y) = g_h(X,Y)h + g_v(X,Y)v.$$

The distributions L and M are orthogonal with respect to G and the $F(3,\varepsilon)$ -structure which is defined by $FX=f_hh+f_vv,\ X\in T(E)$ is an isometry on T(E) with respect to G.

3. Distribution's parallelism

Let E^{2n} be an $F(3,\varepsilon)$ -structure Lagrangian manifold as in Chapter 2.

The two operators [4] $\bar{\nabla}$ and $\tilde{\nabla}$, defined in terms of an arbitrary connection ∇ in E^{2n} and \mathbf{l} , \mathbf{m}

(3.1)
$$\bar{\nabla}_X Y = \mathbf{I} \nabla_X (\mathbf{I} Y) + \mathbf{m} \nabla_X (\mathbf{m} Y)$$

 $J.Niki\acute{c}$

and

(3.2) $\tilde{\nabla}_X Y = \mathbf{l}\nabla_{\mathbf{l}X}(\mathbf{l}Y) + \mathbf{m}\nabla_{\mathbf{m}X}(\mathbf{m}Y) + \mathbf{l}[\mathbf{m}X, lY] + \mathbf{m}[\mathbf{l}X, \mathbf{m}Y]$ are linear connections on E^{2n} .

Definition 3.1. The distribution D is ∇ -parallel if for $X \in D$ and $Y \in T(E)$ the vector field $\nabla_Y X \in D$, or equivalently ∇_Y , is a transformation of D for each $Y \in T(E)$.

Definition 3.2. The distribution D is ∇ -half parallel if for $X \in D$ and $Y \in T(E)$ the vector field $(\Delta F)(X,Y) \in D$ where

$$(3.3) \qquad (\Delta F)(X,Y) = F\nabla_X Y - F\nabla_Y X - \nabla_{FX} Y + \nabla_Y (FX).$$

Applying Definition 3.1 to the distributions M and L we have the following theorems:

Theorem 3.1. In an $F(3,\varepsilon)$ -manifold the distributions L and M are ∇ -parallel as well as ∇ -parallel.

Proof. Since ml = 0, we have by (3.1), (3.2)

$$\mathbf{m}\tilde{\nabla}_X Y = 0$$
, $\mathbf{m}\tilde{\nabla}_X Y = 0$, $X \in T(E)$, $Y \in L$.

Consequently, L is $\bar{\nabla}$ -parallel as well as $\tilde{\nabla}$ -parallel. The same can be shown for the distribution M (and for L_v , M_v and L_h , M_h too, with respect to \mathbf{l}_v , \mathbf{m}_v and \mathbf{l}_h , \mathbf{m}_h , respectively).

Theorem 3.2. In an $F(3,\varepsilon)$ -manifold the distributions L and M are ∇ -parallel if and only if the connections $\bar{\nabla}$ and $\tilde{\nabla}$ are equal.

Proof. If L and M are ∇ -parallel, then

$$\mathbf{m}\nabla_X(\mathbf{l}Y)=0,\ \mathbf{l}\nabla_X(\mathbf{m}Y)=0\ \text{for}\ X,Y\in T(E).$$

Therefore, since l + m = I,

$$\nabla_X(\mathbf{l}Y) = \mathbf{l}\nabla_X(\mathbf{l}Y), \ \nabla_X(\mathbf{m}Y) = \mathbf{m}\nabla_X(\mathbf{m}Y).$$

Since by (3.1), ∇ and $\bar{\nabla}$ are equal. In the same way, the converse can be shown.

Theorem 3.3. In an $F(3,\varepsilon)$ -manifold the distribution L is $\bar{\nabla}$ -half parallel if $\mathbf{m}\nabla_{FX}(\mathbf{m}Y) = 0$, for $X \in L$ and $Y \in T(E)$.

Proof. Since $\mathbf{m}F = 0$, according to (3.3)

$$\mathbf{m}(\Delta F)(X,Y) = -\mathbf{m}\bar{\nabla}_{FX} + \mathbf{m}\bar{\nabla}_{Y}(FX)$$
 for $X \in L$ and $Y \in T(E)$.

Thus, by (3.1), $\mathbf{m}(\Delta F)(X,Y) = -\mathbf{m}\nabla_{FX}(\mathbf{m}Y)$ which proves the theorem.

Theorem 3.4. In an $F(3,\varepsilon)$ -manifold the distribution M is $\overline{\nabla}$ -half parallel if $F\nabla_X(1Y)=0$, for $X\in M$ and $Y\in T(E)$.

Proof. According to (3.2) since 1F = F1,

$$l(\Delta F)(X,Y) = F\bar{\nabla}_X Y - F\bar{\nabla}_Y X - l\bar{\nabla}_{FX} Y + l\bar{\nabla}_Y (FX)$$
 for $X \in M, Y \in T(E)$.

Thus, by (3.1), (2.4) we have $l(\Delta F)(X,Y) = F\nabla_X(lY)$, which proves the theorem.

Theorem 3.5. In an $F(3,\varepsilon)$ -manifold the distribution L is $\tilde{\nabla}$ -half parallel if the vector field $[\mathbf{m}Y,FX] \in L$ for $X \in L$ and $Y \in T(E)$.

Proof. Taking account of the relation (3.3), and since $\mathbf{m}F = 0$, we have

$$\mathbf{m}(\Delta F)(X,Y) = -\mathbf{m}\tilde{\nabla}_{FX}Y + \mathbf{m}\tilde{\nabla}_{Y}(FX) \text{ for } X \in L, Y \in T(E).$$

Thus by (3.2) (2.4), we have $\mathbf{m}(\Delta F)(X,Y) = -\mathbf{m}[FX,\mathbf{m}Y]$ which proves the theorem.

4. Geodesic in E^{2n}

Let c be a curve in E^{2n} , Z a tangent vector field, and ∇ an arbitrary connection in E^{2n} .

Definition 4.1. The curve c is ∇ -geodesic if $\nabla_Z Z = 0$ along c.

Applying the above definition onto the connection $\bar{\nabla}$ and $\tilde{\nabla}$ we have the following results.

Theorem 4.1. The curve c is $\bar{\nabla}$ -geodesic if the vector field $(\nabla_Z Z - \nabla_Z (\mathbf{m} Z)) \in M$ and $\nabla_Z (\mathbf{m} Z) \in L$.

Proof. By (3.1) we have $\bar{\nabla}_Z Z = \mathbf{l} \nabla_Z (\mathbf{l} Z) + \mathbf{m} \nabla_Z (\mathbf{m} Z)$, and since $\mathbf{l} + \mathbf{m} = I$,

$$\bar{\nabla}_Z Z = \mathbf{l}(\nabla_Z Z - \mathbf{l}\nabla_Z(\mathbf{m}Z)) + \mathbf{m}\nabla_Z(\mathbf{m}Z)$$

which proves the theorem, as far as $l^2 = l$.

Similarly, by (3.2) and (3.1) we have

Theorem 4.2. The curve c is $\tilde{\nabla}$ -geodesic if the vector fields

$$\nabla_{\mathbf{l}Z}(\mathbf{l}Z) + [\mathbf{m}Z, \mathbf{l}Z] \in M \text{ and } \nabla_{\mathbf{m}Z}(\mathbf{m}Z) + [\mathbf{l}Z, \mathbf{m}Z] \in L.$$

$$\tilde{\nabla}_Z Z = \mathbf{l}\nabla_{\mathbf{l}Z}(\mathbf{l}Z) + \mathbf{m}\nabla_{\mathbf{m}Z}(\mathbf{m}Z) + \mathbf{l}[\mathbf{m}Z,\mathbf{l}Z) + \mathbf{m}[\mathbf{l}Z,\mathbf{m}Z].$$

Theorem 4.3. The (1,1) tensor fields \mathbf{l} and \mathbf{m} are $\bar{\nabla}$ -covariantly constant as well as $\bar{\nabla}$ -covariantly constant.

Proof. We have $\bar{\nabla}_X(\mathbf{l}Y) = (\bar{\nabla}_X\mathbf{l})Y + \mathbf{l}(\bar{\nabla}_XY)$.

Thus, by (3.1) $(\bar{\nabla}_X \mathbf{l})Y = 0$, $Y \in T(E)$. Similarly, $\bar{\nabla}_X \mathbf{m} = 0$, $\tilde{\nabla}_X \mathbf{l} = 0$, $\tilde{\nabla}_X \mathbf{m} = 0$.

References

- [1] Gouli Andreou, F., On a structure defined by a tensor field f of type (1,1) satisfying $f^5 + f = 0$, Tensor, N.S. 36 (1982), 79-84.
- [2] Ishihara, S., Yano, K., On integrability conditions of a structure satisfying $f^3 + f = 0$, Quart-J. Math. 15 (1964), 217-222.
- [3] Nikić, J., F(3,1)-structure on the Lagrangian Space and Invariant Subspaces, Proceedings of the Conference DGA, Brno 1995. (in print).

[4] Singh, K.D., Vohra, R.K., Linear Connection in an f(3, -1)-manifold, Computes Rendus de l'Academie Bulgare des Sciences, 26 (1973), 1305-1307.

Received by the editors February 22,1996.