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Abstract

Using a modification of the Kramer-Mesner method, 139 designs
with pairwise distinct parameters and with a projective symplectic
group as an automorphism group (i.e., as a subgroup of the full au-
tomorphism group) are constructed. Among them, there are 101 2-
designs and two 3-designs over 15 points with PSp(4,2) as an auto-
morphism group and 36 2-designs over 40 points with PSp(4,3) as
an automorphism group. In particular, each of the two groups gives
a Steiner system for ¢ = 2. Multiple appearances of the constructed
designs in orbit incidence matrices are counted.
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1. Introduction

An n-set is a set of cardinality n. Given a group G acting upon a
ground-set, an n-G-orbit is an orbit of n-subsets of the ground-set, which
arises by action of G. If G is fixed, then the denotation "n-G-orbit” will
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be shortened to "n-orbit”. A t-(v,k, ) design [4] is an incidence structure
on the wv-ground-set, which consists of some k-subsets (called blocks) of
the ground-set, without repetitions, and which satisfies the property that
each t-subset of the ground-set is contained in exactly A blocks.

1.1. The Kramer-Mesner method

The well-known Kramer-Mesner method [9] for constructing ¢-(v,k, A)
designs with a prescribed automorphism group & works as follows:

Let A;; ([4], pp. 185) denote the number of elements of the j-th k-G-
orbit, that contain an arbitrary fixed element of the i-th i-G-orbit, t < k.
This notion is well-defined, since each t-set of a {-G-orbit is contained in
the same number of k-sets of a k-G-orbit. '

The matrix (A;;) will be denoted here as A(G;t,k); the same matrix
was denoted as A(G; H;t k) in [9] and as A;x in [11]; this matrix can
be called orbit incidence matriz for t-orbits and k-orbits by action of G.
If n(G,¢) denotes the number of i-G-orbits, then the size of A(G;t,k) is
n(G,t) x n{G,k). The row sums in A(G;t, k) are uniform and are equal

v—1

k—t

to Amar =

The key idea of the method is to find a proper subset 5 (if exists) of
columns of A(G;t,k) with uniform row sums A. Blocks of the required
design are exactly all those k-subsets of the wv-ground-set that belong to
the k-G-orbits corresponding to columns of 5. In other words, a t-
(v,k,A) design with automorphism group G can be recognized as a proper
submatrix of A(G;t, k) that consists of whole columns and has uniform row
sums A in all n(G,1) rows. One easily concludes by using complementary

submatrices that it suffices to search for A < 3 Arnaz -

In this way, blocks of a ¢-(v, k, A) design are obtained as k-sets belongmg
to a union of several k-(G-orbits.

It is essential with the Kramer-Mesner method that it gives designs with
a prescribed group as an automorphism group. This follows from the facts
that the orbits are preserved under action of a group and that the family
of blocks is composed of whole orbits. Note, however, that the prescribed
group need not be the full automorphism group (see, e.g., [11]), that is, the
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group of all automorphisms of a design, the only one that may be denoted
by Aut(design).

2. On the groups PSp(2n,q)

Let V(2n,q) denote the non-degenerate symplectic 2n—dimensional
vector space over (G F(g), which is equipped with a bilinear alternative
scalar product (z,y)

( (y,2z) = —(z,y); there does not exist z s.t. (z,y)=0 forall y € V).

It is known that V(2n,q) can be represented as the orthogonal sum of
n hyperbolic (2-dimensional) planes Hj, ..., H, . Each one of the hyperbolic
planes has two vectors z, y with (z,y) =1, while each two vectors z,
y from different planes satisfy that (z,y)=0.

Let (z1,...,29,) and (¥1,...,¥2,) be the coordinates of vectors z and
y w.r.t. a basis (ey,...,e,) satisfying (eg;_1,€2;) =1 for 1 <i<n
and (e;,e;) =0 otherwise (the vectors ez;_; and ey belong to H; for
1 <i<n).

The bilinear alternative scalar product (z,y) is effectively constructed
according to the following scheme:

M=

(1‘7 y) = [$2z‘—1 T (ezi—l, 621‘) + T2i Y2i-1- (621', €2i—1)]

-.
1
-

(z2i—1 * Y2i — Toi - Y2i-1)-

il

ﬂ
1l
fan

The 2n-dimensional symplectic group over GF(q), denoted by Sp(2n,q),
is the linear group which preserves bilinear alternative scalar product, that
is, its elements are matrices M of the size 2n x 2n over GF(gq), which
satisfy (z,y) = (zeM,yM) for each z,y € V(2n,q).

Let the row-vectors of M be denoted by 7,...,79, . The vectors =M
and yM have the same coefficients w.r.t. the base ry,...,79, as z and
y have w.r.t. the initial base ey,...,eq,. The preservance of scalar product
implies that the vectors r; should fulfil the same conditions w.r.t. the
product as the vectors e; do.

Thus the group Sp(2n,¢) consists of 2n x 2n matrices over G F(q)
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with row-vectors 71,...,7a,, which satisfy (rgi—1,72;) =1 for 1 <i<n
and (r;,7;) =0 otherwise; the vectors 72,1 and ry; belong to the ¢-th
hyperbolic plane, for 1 <17 < n.

It is easy to show ([8], Lemma 9.13. Chap. II) that the cardinality of
Sp(2n,q) is equal to

1Sp(2n,¢)] = (¢ —1)- (@@ -1 (P = 1) g

The group PSp(2n,q) = 2n-dimensional projective symplectic group
over GF(q) is the-factor-group obtained from Sp(2n,¢) by reducing with
the subgroup of homotethies H = {M € Sp(2n,q),M = aE}.

Given z,y € V(2n,q) and M = aF € H, it holds that (zM,yM) =
a?(x,y). On the other hand, the definition of Sp(2n,q)gives that (=M, yM)
= (z,y) and so a? = 1. This equation has only trivial solution with the
fields of characteristic 2 and two solutions otherwise. Therefore the group
H has only one element in the first case and two elements in the second
one. Thus

|Sp(2n,q)], ¢=2F

|[PSp(2n.q)l = 4§ 1 :
5 |Sp(2n,q)], ¢ odd prime power

The group PSp(2n,q¢) actson the ground-set P(2n—1,¢) = (2n—1)-
dimensional projective space over GF(¢). The elements of P(2n — 1,q)
(projective points) correspond to the 1-dimensional subspaces of V(2n,q¢).

The projective space P(2n — 1,q) can be represented by the vectors
from V(2n,q) of theform (a1,...,a2,-%-1,1,0,...,0),for £=0,...,2n—1;

k
these vectors are canonical representatives of homotethy classes = projective

q2n_l

—1
V(2n,q) are partitioned into this number of homotethy classes.

points. It is obvious that |P(2n—1,¢q)| = ; non-zero vectors of

The algorithm for generating matrices of PSp(2n,¢) has the following
scheme:

BEGIN of algorithm
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Choose 7, to be an arbitrary element of P(2n — 1,¢), that is, the
canonical representative of a homotethy class within V' (2n, q);

(generally speaking, such a choice of the first row of matrices is sufficient
to establish projectivity of matrices of any projective linear group)

Choose 73 to be an arbitrary element of V(2n,¢) such that (rq,72) = 1;

(thus the projectivity is taken into account and the representatives of
the first hyperbolic plane are chosen)

FOR ::=2 TO n DO BEGIN

Choose r3;_1 to be an arbitrary non-zero element of V(2n,q) such
that
(rj.r2i-1) =0 for 1<j<2i—2;

(the first representative of the ¢-th hyperbolic plane is chosen)

Choose 79; to be an arbitrary non-zero element of V(2n,¢) such
that
(r2ic1,72) =1 and (rj,re) =0 for 1 <5 <2i—2

(the second representative of the ¢-th hyperbolic plane is chosen)

END
END of algorithm

We shall consider only the case n = 2. The points of P(3,q) will
be throughout denoted by natural numbers 1,2,...,¢° + ¢* + ¢ + 1. More
precisely, the following values 2n and ¢ will be considered in this paper:

2n ¢ ||P(2n—1,q)] |PSp(2n,q)|
i 2 15 720
4 3 40 25920

The groups PSp(4,2) and PSp(4,3) act on the 3-dimensional projec-
tive spaces of order 2 (and size 15), respectively of order 3 (and size 40).

The group PSp(4,2) coincides with the group Sp(4,2). The special
construction of the row-vector r; coincides with a general construction
in that case, since each homotethy class within V(4,2) contains a single
vector. On the other hand, there are two vectors in each homotethy class
of V(4,3) and two matrices in each homotethy class of Sp(4,3). Thus
the reduction factor in transition from Sp(4,3) to PSp(4,3) (the factor
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obtained by introducing projectivity into Sp(4,3)) is equal to 2. This
reduction factor remains valid with all groups SP(2,q), where ¢ is an odd
prime power. Although the cardinality of a homotethy class (1-dimensional
subspace) within a space V(2n,q) is equal to ¢ — 1, the cardinality of a
homotethy class within (matrices of) Sp(2,q) remains equal to 2 for ¢
odd prime power and equal to 1 for g of the form 2%,

Further, the group PSp(4,2) is known to be isomorphic with the sym-
metric group Se ([8], Chap II. 9.21, pp. 227). Nevertheless, its action is
not trivial, since it acts on the ground-set of cardinality 15.

A modification of the Kramer-Mesner method has been applied to the
projective symplectic groups G = PS5p(4,2) with 2 <t < k <6 and
G = PSp(4,3) with 2 <t < k < 4. Such a choice (and restriction)
of groups and design parameters to be considered was motivated by the
following arguments: '

— The group PSp(2,q) is isomorphic to the projective special linear
group PSL(2,q) (a consequence of Lemma 9.12, Chap. II, pp. 219,
[8]). Designs with PSIL(2,q) as an automorphism group are much
more investigated (e.g., [12]).

— Groups PSp(4,4) and PSp(6,2) are too large; according to the above
formula, their cardinalities are 979.200 and 1.451.520, respectively.

— Number of 7- PSp(4, 2)-orbits and 5-P.Sp(4, 3)-orbits is too high to allow
an exhaustive search for designs in a reasonable time.

These groups have been used for a computer-aided searching t-(15,k, A)
designs, respectively ¢-(40,k, ) designs.

2.1. Reduced orbits

Given an h-homogeneous group G ( h <t < k), the matrix A(G;t,k)
can be computed by using only those t-subsets and k-subsets of the ground-
set, which contain a fixed h-subset FS of the ground-set.

Namely, when constructing k-G-orbits, it suffices to consider only those
g+1—-nh

E_h k-subsets of the ground-set, which are supersets of the h-
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subset F'S; we call these k-subsets "special”. ”Special” k-subsets are
proportionally distributed among &-G-orbits; the number of ”special” k-
subsets within a k-G-orbit is obtained by multiplying the total number of its
g+1—h g+ 1
k-subsets by ( kE_h / k
must be an integer. ”"Special” k-subsets within a k-G-orbit constitute a
reduced k-G-orbit. An analogous reduction is applied to ¢-G-orbits.

; the result of this multiplication

Reduced k-G-orbits are constructed by applying elements of G to
their representative k-subsets; the image k-subsets are recorded iff they
are special. It suffices to keep in computer memory the ordinal numbers
of k-G-orbits containing ”special” k-subsets, together with the ordinal
numbers of these k-subsets in the lexicographic order.

Reduced t-G-orbits and reduced k-G-orbits are sufficient for construc-
tion of the matrix A(G;¢, k), since set-inclusion preserves "speciality”; that
is, all k-supersets of a ”special” {-subset are "special” k-subsets.

Groups PSp(2n,q) operate transitively (hence also 1-homogeneously)
on the ground-set P(2n — 1,q) (8] (Theorem 9.15 c), pp. 221.). We shall
choose FS = {1} with projective symplectic groups.

3. Designs
The main result of this paper reads:
Theorem 1. There exist

a) t-(15,kA) designs with PSp(4,2) as an automorphism group and with
(t,k) €{(2,3),(2,4),(2,5),(2,6),(3,5),(3,6)}.

b) ¢-(40,k)) designs with PSp(4,3) as an automorphism group and with
(t,k) €4(2,3),(2,4)}.

There are 103 distinct values of \ in case a) and 36 distinct values of
A in case

b) (these values are given below).

Proof. The proof will be given by exhibiting:
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— data necessary to identify the orbits under action of the considered
groups;
(Tables 1-8, subsection 3.1.)

— matrices A(PSp(4,2);t,k) for 2<t< k<6 and
A(PSp(4,3);t,k) for 2<t <k <4; (Tables 9-16, subsection 3.2.)

Column combinations (sets of columns) of orbit incidence matrices, which
correspond to the designs, will be explicitly given only in those cases that
we find to be particularly interesting.

3.1. Orbits

It turns out that there are 2 2-orbits, 5 3-orbits, 9 4-orbits, 15 5-orbits,
and 21
6-orbits under action of PSp(4,2). In addition, there are 2 2-orbits, 5
3-orbits, and
16 4-orbits under action of PSp(4,3).

In accordance with the discussion in subsection 2.1., 1-homogenicity of
the groups PSp(4,q) enables the representatives of all orbits to be ”special”
supersets of a fixed 1-set F§ = {1}.

In order to enable identification of the orbits of 4-subsets and 6-subsets
by action of the groups, associated with rows and columns of the matrices,
the following data will be given in Tables 1-8 for these orbits:

—  the ordinal number of an orbit, which is associated to the corresponding
row (column) of a matrix A(PSp(4,q);t,k).

— the elements of the lexicographically the first ”special” representative,
apart from the compulsory element 1.

— the number of "special” subsets within an orbit.

Example. The denotations in Table 2 and
[10]2 3 5 14]120] in Table 4 mean that the 2nd 3-orbit of PSp(4,2)

contains the representative {1,2,9} and the total of 4 "special” 3-subsets,
while the 10th 5-orbit of PSp(4,2) contains the representative {1,2,3,5,14}
and the total of 120 ”special” 5-subsets.
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[1]2]8]2]3]6]
Table 1. Data for 2-orbits of PSp(4,2)
112 336(2(2 9 3[2 10]12]
412 1336|513 13
Table 2. Data for 3-orbits of PSp(4,2)
112 3 44124212 3 5[9{3{2 3 696
412 3 948|512 3 1348|612 9 1316
712 10 11 8482 10 13161912 13 14|24
Table 3. Data for 4-orbits of PSp(4,2)
112 3 4 51204 2|2 3 4 9| 304 3|12 3 4 13| 15
412 3 5 T 40 512 3 5 8(120) 6{2 3 5 9| 60
712 3 5 1011204 &2 3 S5 12| 30| 912 3 S5 13120
102 8 5 14120112 3 6 13120001212 3 6 14| 24
1312 3 9 13, 601412 9 13 14| 20 15|2 10 11 12 2
Table 4. Data for 5-orbits of PSp(4,2)
112 3 4 5 6 24 212 3 4 5 17 72 312 3 4 5 8 72
412 3 4 5 9| 144 512 3 4 5 10 | 144 612 3 4 5 11| 144
T2 3 4 5 12| 144 812 3 4 5 13 | 144 912 3 4 9 10 6
1012 3 4 9 13 361112 3 5 7 9 24 11212 3 5 7 10| 144
13,2 3 5 7 1314444142 3 5 8 102881152 3 5 8 12| 72
162 3 5 8 13144172 3 5 8 14 144|182 3 5 9 14| 36
1942 3 5 10 15| 4812012 3 6 13 15| 24 |]21 |12 9 13 14 15 4
Table 5. Data for 6-orbits of PSp(4,2)
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[2]1]27][4][2]12]

Table 6. Data for 2-orbits of PSp(4,3)

172 3] 27|2]2 4324 3[2 6]216]

412 3716254 7| 12

Table 7. Data for 3-orbits of PSp(4,3)
112 3 4864 212 3 28 9 312 3 29| 288 412 3 37| 144
512 4 5216 612 4 6 432 712 4 7 144 812 4 10| 2592
912 4 11324102 4 201296 |11 |2 4 211296 122 4 37} 432
132 6 12|648 {1142 6 37| 288 |15]2 37 38| 162|164 7 37 4

Table 8. Data for 4-orbits of PSp(4,3)

3.2 Orbit incidence matrices

Results of our search are the following:

The group PSp(4,2) gives:

a 2-(15,3,1) design;

a 3-(15,5,30) design;
a 3-(15,6,100) design.

The group PSp(4,3) gives:

2-(15,4,)) designs for A € {6, 24, 30,36};

* a3 2-(40,3,2) design and a 2-(40,3,18) design;

2-(15,5,A) designs for 49 distinct values of A < A./2 = 286/2;

2-(15,6,)A) designs for 47 distinct values of A < Apur/2 = 715/2;
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o 2-(40,4,)) designs for 34 distinct values of A < A\02/2 = 703/2.

This subsection contains the used orbit incidence matrices. These ma-
trices will be in some cases listed together with some of the corresponding
designs. The designs are denoted with 0-1 incidence vectors for columns.
These vectors are written below the matrices and are separated from them
by horizontal lines. The blocks of a design are exactly those k-subsets of
the ground-set, that belong to the union of k-orbits corresponding to the
columns denoted by 1 in the incidence vectors. For example, blocks of the
only 2-(15,3,1) design in Table 9 are exactly all those 3-subsets of the
ground-set {1,2,...,15} that belong to the union of the 2nd and the 5th
3-orbit.

In addition to the matrix A(PSp(4,q);t, k), the following data are given
under the title "LISTS”, for each one of the considered pairs (t,k):

— the parameters ¢, v = ¢>+¢*+¢+1 and k of the constructed designs;

3 2 _
— the value of A4z = ( ¢ +q k+_qt+ 1~ );

the total number of column combinations in the orbit incidence matrix,
which correspond to the designs (they are shortly denoted as ”designs”
below };

— the number of corresponding distinct A-values < Apaz/2;

— ordered pairs (A, frequency())), where frequency(A) denotes the
number of column combinations corresponding to #-(¢*> + ¢ + ¢ +
1,k,)) designs for a fixed A. For example, data (6,2) (24,2) (30,2)
(36,3) in Table 10 mean that the number of column combinations of
A(PSp(4,2);2,4) corresponding to 2-(15,4,1) designs is equal to 2, 2,
2,3, for A equal to 6,24,30,36 respectively.

We point out the necessity to distinguish three meanings of the word
"design”, which correspond to three levels of a hierarchy:

parameter level — designs determined up to the parameters

This meaning is most generally known. The existence question for
designs corresponding to the quadruples t-(v,k,}) is by far the most
interesting one. :
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isomorphism level — designs determined up to an isomorphism
This meaning is related to the design enumeration problem, which has
been solved with a very small number of the known design parameters.
column combination level —

This meaning is a speciality of the Kramer-Mesner method. Each de-
sign obtained with this method corresponds to a column combination
with uniform row sums A within the orbit incidence matrix.

Parameters of a design that corresponds to a column combination
are immediately known. However, the isomophism question for some
two designs with the same parameters, that correspond to some two
distinct column combinations, remains hard.

The denotations ”design(s)” in the lists below, as well as the notion of
"frequency of designs with some A-value”, are used in the third, specific,
meaning,.

LISTS

2-(15,3,\): Amaz = 13; 1 design.

Table 9. Matrix A(PSp(4,2);2,3) and a 2-(15,3,1) design

Frequency: (1,1).
2-(15,4,)): Amaz = 78; 9 designs with 4 distinct A-values < Apy../2.

3 24 18 156 6 3 3 3 3
2 16 24 4 16 4 0 4 8

Table 10. Matrix A(PSp(4,2);2,4)
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Frequencies:  (6,2) (24,2) (30,2) (36,3) .

2- (15,5,)): Amaz = 286; 310 designs with 49 distinct A-values <
Amrﬂ‘l’/Q'

36 12 3 14 30 24 42 9 30 36 24 6 15 4 1
32 4 6 8 40 8 24 8 40 32 48 8 20 8

Table 11.  Matrix A(PSp(4,2);2,5)

Frequencies:

(16,1) (22,1) (24,1) (26,1) (30,2) (32,1) (34,1) (36,1) (40,3)
(42,1) (44,1) (46,3) (52,4) (54,3) (56,2) (60,5) (62,2) (64,2)
(66,2) (70,4) (72,3) (74,4) (76,7) (80,7) (82,10) (84,10) (86,5)
(90,11) (92.,8) (94,5) (96,6) (100,6) (102,4) (104,4) (106,13)
(110.8) (112,16) (114,16) (116,8) (120,18) (122,10) (124,10)
(126,10) (130,9) (132,10) (134,8) (136,18) (140,9) (142,16) .

2- (15,6,A): Amaz = T15; 12674 designs with 47 distinct A-values
S A"nCI.Z'/2‘

9 27 24 66 60 54 48 42 3 12 12 60 54 96 24 42 42 15 18 6 1
8 24 28 32 40 48 56 64 1 14 4 40 48 112 28 64 64 10 16 12 2

Table 12. Matrix A(PSp(4,2);2,6)

Frequencies:

(10,1) (15,1) (25,2) (30,3) (40,6) (45,6) (55,10) (60,13) (70,15) (75,15)
(85,16)

(90,20) (100,26) (105,28) (115,36) (120,40) (130,56) (135,52) (145,74)
(150,108) (160,110) (165,150) (175,146) (180,180) (190,240) (195,210)
(205,282) (210,264) (220,307) (225,306) (235,352) (240,455) (250,417)
(255,512) (265,462) (270,503) (280,630) (285,543) (295,675) (300,592)
(310,620) (315,624) (325,646) (330,785) (340,667) (345,300) (355,668)
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3-(15,5,}): Amaz = 66; 1 design.

12 3 1 2 6 4 10 2 8 8 6 2 2 0 o
0o 9 0] c o 9 18 o0 O 18 o0 O 9 3 O0
6 3 0o 8 6 12 12 3 6 6 0 O 3 0 1
6 O 1 2 12 i 4 2 8 8 12 2 5 3 0
0 0 6 0 0O 0O o0 0 24 0 24 0 12 0 o

Table 13. Matrix A(PSp(4,2);3,5) and a 3-(15,5,30) design
Frequency: (30,1) .

3-(15,6,)\): Amer = 220; 1 design.
4 8 820202018 16 1 3 2 16 14 28 6 14 10 4
0O 0 0363618 0 0 3 9 318 18 36 9 0 18 9
212 63018 12 12 6 1 3 10302424 6 6 6 ©6
2 810 6 10 14 16 18 0 4 1 12 14 36 11 22 24 3
0O 0 0O 0 O 02448 012 0 02448 02424 O

Table 14. Matrix A(PSp(4,2);3,6) and a 3-(15,6,100) design
Frequency: (100,1) .

2- (40,3,)): Amazr = 38; 2 designs with 2 distinct A-values < Apqes/2.

Table 15. Matrix A(PSp(4,3);2,3)
a 2-(40,3,2) design and a 2-(40, 3,18) design

Frequencies: (2,1) (18,1).
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2- (40,4,A): Amaz = 703; 156 designs with 34 distinct A-values <
Amaz [2-

80 1 32 8 16 40 8 192 24 72 120 16 72 16 6 0

36 0 0 18 18 18 18 216 27 162 54 72 0 36 27 1.

Table 16. Matrix A(PSp(4,3);2,4) and a 2-(40,4,1) design
Frequencies:

(1,1) (46.,3) (63,3) (72,4) (73,4) (81,4) (118,4) (126,4) (127 4)

(135,1) (136,3) (144,6) (145,6) (153,1) (190,6) (198,2) (199,2) (207,7)
(208,3) (216,4) (217,4) (225,7) (262,3) (270,6) (271,6) (279,6) (280,4)
(288,9) (289,9) (297,1) (334,13) (342,3) (343,3) (351,10) .

We have checked that the matrices A(PSp(4,2);3,4), A(PSp(4,2);4,5),
A(P5Sp(4,2);4,6),and A(PSp(4,3);3,4), have no proper submatrices with
uniform row sums. Consequently, we cannot use the Kramer-Mesner method
for searching 3-(15,4, 1), 4-(15,5,X), 4-(15,6,A) and 5-(15,6, ) designs
with PSp(4,2) as an automorphism group, as well as for searching 3-
(40,4, A) designs with PSp(4,3) as an automorphism group.

4. Data on some former constructions

Results of this paper show that the designs constructed here have PSp(4,2),
respectively PSp(4,3), as an automorphism group. An early draft of this
paper has been presented in [14]. We have applied some other modifications
of the Kramer-Mesner method in the papers [1], [2] and [3].

In this section we point out some data, taken from [6] and [4], on other
constructions of some of the designs with the same parameters as those that
we have found by using groups PSp(4,2) and PSp(4,3). It turned out
that the existence of designs over 15 points with the obtained parameters, as
well as the existence of a Steiner system 2-(40,4,1), has already been known.

The cited data are related to somewhat wider classes of design parame-
ters. For example, it has been formerly found (a consequence of the results



108 V.Mudrinski, D.Acketa

from [5]) that there are 2-(15,6,5s) designs with 71 distinct values of s
(1 < s <71). However, our construction gives that only 47 of these designs
have PSp(4,2) as an automorphism group.

On the other hand, we have constructed two 2-(40,3,)) designs, and
33 2-(40,4,)) designs with pairwise distinct parameters and with A > 1.
We are lacking information on former constructions of designs with these
parameters.

Among the constructed designs, there are two Steiner systems:
2-(15,3,1) and 2-(40,4,1).

According to [4] (Table F. ”Series of Steiner systems”, pp. 640, mainly due
to [16]), these two Steiner systems belong to two infinite families of Steiner
systems:

2-(v,3,1) for v = 1 or 3 mod 6, and 2-(v,4,1) for v = 1 or 4 mod 12.
Moreover, a complete enumeration of 80 non-isomorphic Steiner systems
2-(15,3,1) has been completed in [13].

The denotation "X «—— Y7 in Table 17. means that the existence of
a design X follows from the existence of a design Y. The denotation
"X <= Y in the same table means that the existence of a design X has
been proved in the reference Y.

For1 <s<6, 2-(153,) < [7].

For1 <s <6,
2.(15,4,65) —— 3-(16,5,65) — 4-(17,6,65) — 5-(18,7,65) <=
[10].
For 2 < s <71, 2:(155.25) «— 3-(16,6,25).
For2 <s <5, 3-(16,6,25) < [5].
For 6 <s <71, 3-(16,6,25) «— 4-(17,7,25) < [5].

For1 <s<7l, 2(156,5s) < [5].

For 2 < s <5, 3(15,5,6s), — 4-(16,6,6s).
4-(16,6,30) < [5).
For 2 <s<4, 4-(16,6,65) «— 5-(17,7,6s).
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For s ¢ {2,4}, 5-(17,7,6s) <= [5].
5-(17,7,18) = [15].

For 1<s<5, 3-(156,205) «— 4-(16,7,20s).
For s=1,2,3,5, 4-(16,7,20s) <= [5].
4-(16,7,80) — 5(17,8,80) <= [10].

Table 17. Origin of some design parameters
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