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Abstract

We prove that the digital paraboloid segments and their least squ-
ares paraboloid fits are in one-to-one correspondence, which gives a
simple representation of a digital paraboloid segment by its base de-
scription and coeflicients of the least squares paraboloid fit. This leads
to a first known constant space representation of digital paraboloid
segments.
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1. Introduction

Consider a paraboloid p in the three-dimensional Fuclidean space with the
equation z = Az? + By? 4+ Czy + Dz + Ey + F. The paraboloid p will be
digitized using the digitization scheme in which the first digital points (points
with integer coordinates, often referred to as pixels) below a given paraboloid
are taken. Obviously, it is equivalent to translating the paraboloid by —-0.5
in the vertical direction and rounding.

So, the associated set of digital points for the paraboloid p, called a
digital paraboloid, is defined as

P(p) = {(i, 4, |Ai* + Bj* + Cij + Di+ Ej + F|),i and j are integers},
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where |u| is the greatest integer not bigger than u. In general, we will
be dealing with finite subsets of P(p), or more precisely, with the digital
paraboloid segments which are obtained by digitizing parts of the paraboloids
whose projections on the zy-plane are bounded regions, called bases of digi-
tal paraboloid segments. So, if the paraboloid p is digitized and if a region ¢
in the zy-plane is given, then the digital paraboloid segment P(p, Q) (more
precisely, digital paraboloid segment with the base Q) is defined as:

P(p,Q) = {(,,|Ai* + Bj* + Cij + Di+ Ej+ F]),(3,5) € Q
where ¢ and j are integers}.

It is natural, for practical reasons, that the bases of digital paraboloid
segments are assumed to be squares. If

Q = Q(P, 9,7‘,5) = {(Z,])»P S ? < q,7 S ] <s, 7',] are integel‘S, qg—p= 5_7'},

then the digital paraboloid seqment P(p, Q) will be denoted by P(p, p,q,,s).
For convenience and without loss of generality, we can assume that p and
r are equal to zero (p = r = 0), while ¢ and s are equal to an integer, let
say m. Under the previous assumptions, the digital paraboloid segments
P(p,p,q,7,58) = P(p,0,m,0,m) will be denoted by P, (p).

The major contribution of this paper is to give a constant space repre-
sentation for digital paraboloid segments which have the constant space rep-
resentation of their bases. The representation consists of the base represen-
tation plus six coeflicients of the least squares paraboloid fit corresponding
to the observed digital paraboloid segment. For example, the representation
of digital paraboloid segments requires ten numbers.

The idea of using the least squares fitting techniques for representations
of digital objects is not new. Namely, Melter and Rosenfeld (1989) intro-
duced the concept of a noisy straight line segment, based on least squaress
line fitting and defined in terms of bounds on correlation coeflicients, and
showed that it is a generalization of a digital straight line. They posed
the following question: If a continuous line is digitized and least squaress
are applied to the points of the digital line segment, can the original line
be recovered? They gave a partial answer, for some special case. Melter,
Stojmenovié and Zunié (1993) answered positively the question for any line
segment. More precisely, they proved that the least squares line fit uniquely
determines the digital line on a segment. Thus any digital line segment
can be uniquely coded by four numbers (z4,n,bq,b,), where z; and n are
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its z-coordinate of the left endpoint and the number of digital points, re-
spectively, while by and b; are the coeflicients of the least squares line fit
Y = bo + 61X for the given digital line segment. It matches digital line
segments with their least squares line fits. Therefore they obtained a new
representation of digital line segments by four numbers. This representation
is an alternative to the well known representation of digital lines by adjacent
pairs given by Lindenbaum and Koplowitz (1991) and to the one suggested
by Dorst and Smeulders (1984).

While constant space representations for digital lines exist in the lit-
erature, no such representation currently is known for digital paraboloid
segments. The representation given in this paper is the first one.

2. Preliminaries

Suppose that we are given a finite set T of pixels in the three-dimensional
Euclidian space (denoted as R®). The least squaress paraboloid fit for T is a
paraboloid which minimizes the sum of the squares of the vertical distances
to all points in T. The method for determining such paraboloids is well-
known from statistics, (see e.g., Burr (1974)).

If T is given by {(z:, ¥, %), ¢ = 1,2,...,t} and if the equation of its least
squaress paraboloid fit is z = az? + by? + cxy+dz + ey + f, then the function
F(a,b,c,d,e, f) = 3% (az? + by? + cz;y; + dz; + ey; + f — 2)? should be
minimized.
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one can obtain the coefficients a, b, ¢, d, e and f of the least squares
paraboloid fit. The unique solution exists whenever the determinant of
the system (1) is nonzero (for example, if all pixels belong to a parabola
2z = az?+ 3z +7, then the solution is not unique). If T is a digital paraboloid
segment P, (p), then T consists of m? digital points (i, j, 2(i, j)), satisfying
0<i<m,0<j<mand 2(¢,j) = |42+ Bj2+ Cij+ Di+ Ej + F|, and
the system (1) becomes

a-Sqo+b-Spp+c-Ss1+d-Sso+e- S+ f-50= > 122(4, )
(4:4,2(1.))€Pm(p) -
a-Sap+b-Sso+c-Ss1+d-Sy+e-Sxp+ f-920= Z 7*2(4, )
(4,4,2(4,5)) € P (p)
a-831+b-S31+c-Spa+d-Soyt+e S+ f-5n= > i72(4, 7)
(152(5-§)) € Prm(0)
a-530+b-Sau+c-Su+d-S0+e- S+ f-Sw0= 3 i2(4,7)
(4,4,2(2,5))€Pm(p)
a-S+b-Ss0+c-Sa+d-Sii+e-So+f-Sw0= Z j2(3,7)
(4:3,2(1,1)) € Pm ()
a-Syp+b-Spo+c-S511+d-So+e-Swo+ -0 = > 2(4,7),
(4,4,2(4,3) )€ Pm(p)

where the coefficients §;; = Sj; fori+j < 4and¢,5=0,1,2,3,4 are defined
as follows:

t t
540 = Zx?:Zy?: Z ’i4: Z j4:
i=1 1=1

(i,j,z(i,j))EPm(p) (‘7]12(1’1))€Pm(p)
= m-(0*+1*+...+(m-1)H =
m?(m — 1)(2m - 1)(3m? — 3m — 1)

Sn= Y=Y ¥ P= ¥ =

=1 =1 (i,4,2(i,7)) € Pm(p) (4:3,2(1,5)) € Pm(p)
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30 — 12
= m-(0®+1°+...+(m-1)%) = 3—(—7%—1)— ;
t t
Ss1o= Y adyi=) iyl = > ’j = > ij° =
i=1 i=1 (4,3,2(3,7) )E P () (4,5,2(4,5)) € Pm(p)

= 0+14...+4(m-1)-(0*+1%4+...+(m=-1)*) =
m3*(m—-1)%
— 5
t t
S0 = ZT«?:Z?J?: Z it =
i=1 i=1 (4,5,2(4,3))EPm(p)
_m*m—-1)(2m~1)
= 5 ;
t 1
Su o= Yalu=Yadi= X = Y i
i=1 i=1 (4,4,2(3,7) ) EPm () (1,3,:2(3,3)) € Prm(p)
= 04+14...4(m-1)-(0*+12+...+(m-1)* =
m?*(m - 1)}(2m - 1)
12 ’
t
Sg2 = Zivfyf = Z 2§ =
=1 (4:3,2(1,3) )€ Prn(p)
= (0*+1%+...+(m-1H-(0*+12+...(m-1)?) =
m?(m - 1)2(2m — 1)?

= m-(024+ 12+ ...+ (m—-1)%

36 ;
t i
SlO —— Zaji:Zyi: Z 1 = Z ]:
=1 i=1 (4,5,2(3,5)) EPrm(p) (4,,2(1.))EPm(p)
20 —
= m-(0+1+...+(m—1)):T(L2L)

t
S = Zil?iyi = Z 1y =
i=1 (4,3,2(4,3))E Py (p)
m?(m — 1)2

= 0+1+...4(m=-1))-(0+14+...4(m-1)) = 1 ;

SOO = Zl: Z 1:m2.

i
i=1 (4,5,:2(3,5))EPm(p)

For the above identities see, e.g., Krechmar (1974).
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. . . 12 2__13\6 2 _a4y2
The previous system has the determinant equal to = ("27154)6‘&8}) 4” and

so, for m > 2 the coeflicients «a, b, ¢, d, e, and f are uniquely determined.
These coefficients give the least squares paraboloid fit L,.(p) for a given
digital paraboloid segment P,,(p).

As a consequence of the previous observation, we have the following
lemma.

Lemma 1. If the digital paraboloid segment P, (p) is given, then its least
squares paraboloid fit L.,(p) is uniquely determined whenever m > 2.

In the rest of the paper, the condition m > 2 will not be mentioned but
assumed. :

3. One-to-one correspondence between digital pa-
raboloid segments and least squares paraboloid
fits

In the previous section we showed that if a digital paraboloid segment P,,(p)
is given, then its least squares paraboloid fit, denoted as L,,(p), can be
determined uniquely.

A key question is whether there exist two different digital paraboloid
segments with the same corresponding least squares paraboloid fits. The
answer is no, and this implies that the digital paraboloid segments and their
least squares paraboloid fits are in one-to-one correspondence. This is the
main result of the paper.

Theorem 1. Let P,,(p) and P, (p') be two digital paraboloid segments and
let L,(p) and L(p') be their corresponding least squares paraboloid fits.
Then Pr(p) = Pm(p') is equivalent to Ly,(p) = Lu(p).

Proof. Let the paraboloids p and p’ be given by equations z = Az? + By? +
Czy+Dz+Ey+F and 2 = A'2?+ B'y? +C'zy+ D'z + E'y+ F', respectively.
Then their corresponding digital paraboloid segments are

P.(p) = {(i,j,|Ai*+ Bj? + Cij + Di+ Ej+ F|),0 <i < m,0 <j<m}=
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= {(4,5,2(4,4)),0 <4 < m,0 < j < m},

and

Pn(p) = {(4,7,|A'?+B'j24+C"ij+ Di+E'j4+F']),0< i <m,0 < j < m} =
={(4,7,2(4,5)),0< i <m,0 < j < m}.

Also, let the paraboloids L,,(p) and L,(p') have the equations z = az? +
by? +cxy+dztey+fand z = a'22 + by  +c/xy+d'z+e'y+ f, respectively.

The implication
Pu(p) = Pn(p') = Lm(p) = Lin(p")

follows from Lemma 1.
The opposite direction will be proved by a contradiction.

Suppose that P, (p) and P, (p') are two different digital paraboloid seg-
ments with the same associated least squares paraboloid fits L,,(p) and

L. (p), ie.,

a=d and b=b and c=¢ and d=d and e=¢ and f=/f".

Since @, b and ¢, as well as @/, ¥’ and ¢’ are the solutions of system (2),
it follows that .

(2) > 2(i,5) = > 2(1,5)

(,5,2(2,3) ) €EPm (p) (4.5,2' (1,3)) EPm{p")
(3) > i2(i,5) = > iZ(3,5)
(3,5,2(3,3)) € Pm(p) (4,4,2' (1,4) ) EPm(p")

(4) > 72(3,7) = > JZ(,5)

(4:3,2(117))€Pm (p) (63,2 (1,1)) €Pm (o")

(5) > ij2(i,5) = > ij2(i,5)

(i,j,z(‘i,j))EPm(p) (i,j,z’(z',j))EPm(p’)

(6) > i22(i,5) = > 22(i,5)

(4.5,2(2,7) )€ Pm(p) (33,2 (4,7))€Pm (o")
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(7) 3 722(i,5) = S 72 (5,5)

(ivjvz(i7j))€Pm(p) (i,j,z’(i,j))EPm(p')
are satisfied.

Without loss of generality, we may assume that z(z,j) and 2'(i, j) are
strictly positive integers (for 0 < ¢ < m and 0 < j < m), otherwise, both
paraboloids p and p’ can be translated by a positive integer in the vertical
direction, until all z-coordinates become positive. This process will increase
all quantities (2)-(7) for both paraboloids by an equal amount.

Let S denote the set of all digital points (z, y, z) lying below the paraboloid
p and above the zy-plane, satisfying 0 < 2 < m and 0 < y < m, while 5’
denotes the set of all digital points (z,y, 2) lying below the paraboloid p’
and above the zy-plane, also satisfying 0 < z < mand 0 < y < m (z, y and
z are integers).

In order to make a contradiction we start by interpretations of equalities

(2)-(7)-

- (2) implies that the number of digital points belonging to S and the
number of digital points belonging to S’ is the same. Moreover, we can
write that the cardinality of the set S\.S” and the cardinality of the set
S’\§ is the same and different from zero, i.e., #(5\9’) = #(5\S) # 0
(the inequality follows because P,(p) # Pn(p’)).

(8) >o1= > 1L

(z,y,2)ES\S’ (z,y,2)ES\S

~ (3) implies that the sum of z-coordinates of all digital points from
S coincides with the sum of all digital points from $’. Namely, sup-
pose that each digital point (z,y, z) receives “weight” . The sum of
weights of digital points from 5 is 3, , -)es ¢ (there are z(%, j) points
with the weight 4, for fixed ¢ and 7). Similary, the sum of weights of
digital points from S’ is equal to 3=, , .)esr «. Further, after removing
common points from both sides, we have

(9) Y 2= 3 e

(z,y,2)€S\S" (z,v,2)€S'\S

— Analogously to the previous item one can derive (from (4), (5), (6)
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and (7)),

(10) ooy= >y,
(z,y,2)ES\S’ (z,y,2)€S'\S

(11) Y ey= ), zy
(2,y.2)ES\S" (z,y.2)E€S'\S

(12) Z z? = Z z?
(z,y,2)ES\S’ (z,v,2)€S'\S

(13) X v= X ¥
(z,y,2)€S\S’ (z,y,2) €S\ S

The projection of the intersection of the paraboloids p and p’ on the zy-
plane is the conic curve (A — A)z?+ (B - B)y? +(C - Czy+(D - D)z +
(E—FE)y = F - F'. This conic curve separates the projections of the points
from S\S” and S’\S on zy-plane. Without loss of generality, suppose that
the digital points from S\.9’ satisfy the inequality (A — A")z?+(B— B')y*+
(C=Chzy+(D—-D")a+(E—E")y < F—F’, while those from 5’\ 5, satisfy
the opposite inequality (A — A")z2 + (B - B )y*+(C -~ C")zy+ (D - D')z +
(E-F)y>F—F.

Consider the expression

S = (A-4)- > *+(B-B) > $#F+(C-C) D ay+

(z,y,2)€S\S’ (z.y,2)€S\S (:L‘,y,z)ES\S’
+(D-D")- > z+(E-E) > y=
(z,y,2)€S'\S (z,y,2)€S\S’

= > (A-AN2?+ (B-B)y ' +(C-Cay+
(z:y,2)€S\S’

+(D-Dz+(E~-EYy<

< Y F—-F=(F-F) #\5).

(z,y,2)ES\S’
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On the oher hand, by using (8)-(13),

S =(A-A)- Y 22+B-B) Y S+(C-C) Y ay+
(z,y,2)ES\S’ (z.y,2)€ES'\S (z,y,2)ES\S’

+HD-D")- > z+(E-E)- > y=

(z,,2)€S'\S (z:9,2)€S\S’

=(A-4) 3 2*+(B-B) Y y+(C-C) Y ay+

(z9,2)ES\S (zy,2)€S\S’ (z,y,2)€S'\S

+HD-D")- > z+(E-E)- Y y=

(z,y,2)ES\S’ (z,y,2)ES'\S

= Y (A-AN2 4+ (B- By +(C—-Cay+
(2,9,2)€S"\S

+(D - DYz + (E—~E")y>

> > F- (F — F')-#(5'\9),
(z,9,2)ES\S’

which leads to the contradiction
(F—F')-#(5\8) < § < (F—-F)-#(5'\9),

because #(S5\S5’) is equal to #(S5\9). O

4, Conclusion

In this paper the least squares fitting technique is applied for digital paraboloid
segments. It is shown that digital paraboloid segments and their least
squares paraboloid fits are in one-to-one correspondence if the base for digi-
tal paraboloid segments is fixed. This result enables the first known constant
space representation for digital paraboloid segments with bases which can
be represented with a finite number of parameters. For such a representa-
tion it is enough to have the parameters for the base representation plus six
parameters which are the coefficients of their least squares paraboloid fit.
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The situation where the bases are assumed to be squares in the zy-plane
is studied in detail. It is easy to extend the result to the cases when the bases
are of some other shape representable by a constant number of parameters.

References

[1] Burr, I.W., Applied Statistical Methods, Academic Press, New York,
1974.

[2] Dorst, L., Smeulders, A.W.M., Discrete representation of straight lines,
IEEE Trans. PAMI, (1984), 450-463.

[3] Krechmar, V.A., A Problem Book in Algebra, Mir Publishers, Moscow,
1974.

[4] Lindenbaum, M., Koplowitz J., A new parametrization of digital
straight lines, IEEE Trans. PAMI, 13 (1991), No.4, 847-852.

[5] Melter, R.A., Rosenfeld, A., New views of linearity and connectedness
in digital geometry, Pattern Recognition Letters, 10 (1989), 9-16.

[6] Melter R.A., Stojmenovié I., Zunié J., A new characterization of digital
lines by least squares fits, Pattern Recognition Letters 14 (1993), 83-88.

Received by the editors July 10, 1995.



