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Abstract

We investigate determinants of rectangular matrices and general-
ized inverses. Moreover, the correlation between induced generalized
inverses, the Moore-Penrose inverse and the well-known determinantal
representation of the Moore-Penrose inverse is considered.
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1. Introduction

Let C™ be the n-dimensional complex vector space, C™*™ the set of m x n
complex matrices, and C7**" = {X € C™*" : rank(X) = r}. The adjun-
gate matrix of a square matrix B is denoted by adj(B), and its determinant
is denoted det(B). Conjugate, transposed and conjugate-transposed matrix
of A is denoted by A, AT and A*, respectively. Minor of A containing rows

aj,...,a; and columns fBi,..., 3 is denoted by A ( gi ;t ),and
t
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Recall that for A € C™*" there exists a unique matrix At = X € C"*™
such that

(1.1) AXA=A
(1.2) XAX = X
(1.3) (AX)* = AX
(1.4) (XA = XA,

known as the Moore-Penrose inverse of A [7]. A matrix satisfying the con-
dition (1.1) is called a generalized inverse of A and is denoted by AL, A
matrix which satisfies conditions (1.1) and (1.2) is called a reflexive general-
ized inverse of A, and is denoted by A(1:2). A matrix satisfying the conditions
(1.1), (1.2) and (1.3) is called a right (left) normalized generalized inverse of
A, and is denoted by A(1:2:3), Similarly, a matrix satysfying the conditions
(1.1), (1.2) and (1.4) is called a left normalized generalized inverse of A, and
is denoted by A(1:2:4),

The set of matrices satisfying the conditions (1.7),(1.5),...,(1.]) is denoted
by A{¢,7,...,1}. A matrix A € C™*" is said to be left (respectively, right)

invertible if there exists a matrix A;* (respectively A;! ) from C™*™ such
that AI_IA = I, (respectively, AA7! = I, ). A matrix Al_l (respectively
A1) satisfying this condition is called left (respectively, right) inverse of
A. ( I, denotes a unit matrix of the order m x m ).

Theorem 1.1. [1] Let A € C™*" be a full-rank matriz. If rank(A) = m <
n the system

(1.5) AX = Im;

(1.6) (XA =XA

has a unique solution X = At. Similarly, if m > n = rank(A), then the
following system has a unique solution X = At:

(1.7) XA=1,;

(1.8) (AX)* = AX.
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Determinantal representation of the Moore-Penrose inverse is studied
in [1], [2], [3], [4], [6]. The main result of these papers is:

(+,7) 1<i<n
Theorem 1.2. [2], [3], [4], [6] Flement a{", ( 13isn

row and j-column of the Moore-Penrose pseudoinverse of a given matrix A € C**"
is given by

_ ver J .. oy o1 ... .. Oy
. A .
At 1(ﬂ1<z<ﬂ,.<n< Fo TR S & ) ’ ( B 1 . B )

(+,r) _ <a;<...<arlm

) lying on the -

a; " = N =
Mmoo v Ng( T
A A
1561<¥<6,-Sn (51 5,-) ((51 (S,-)

111 <...<vrEm

We denote by adj(+7)(A) matrix whose (i, j)th element is A;-:“T).

General forms of generalized inverses are described in the following the-
orem.

Theorem 1.3. [8] If A € C*™ has a full-rank factorization A = PQ,

PeCrmxr Qe Cr ™, Wy e C™" and Wy € C™*™ are some matrices such
that rank(QWy) = rank(Wy P) = rank(A), then

AY = QUQQ)T(PP) TP =Qt Pt

A{1,2} = {(W(QW1){(WoP) "W, = Q71 P}
A{1,2,3} = {Wy(@Wy) Y(P*P)'P* = Q;'P*}
A{1,2,4} = {Q*(QQ")'(WoP)"'W,=QVP '}

The notion of determinants of rectangular matrices has been introduced
in [9], [10], [11] by M. Stojakovié¢ and M. Radié. Their definitions are con-
tained in the following definition:

Definition 1.1. Determinat of A € C**" is a function det( ) : C™*" —
C defined by:

det(ep)(A) = > elerttap)H(Bitth) A ( 58 ) , Jor
a1<...<opfi1<...<Bp fo... ﬂp

p < min{m, n}, and det(.,)(4A) = 0, otherwise.
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For ¢ = 1 we get the Stojakovi¢ determinant, denoted by det(s;)(A). Sim-
ilarly, for € = —1, we get the determinant introduced by M. Radié (it is
denoted by det(r ) (A) )-

Later, in [5], V.N. Joshi has defined a determinant of rectangular full-

rank matrices, as follows.

Definition 1.2. Let m, p1,...,Pn be integers which satisfy the following
conditions:

(z) m<m
(i) p;e{l,...,n} forall i€{l,...,m}
(353) p1 < ...< Dm.

For an integer d, 1<d < (n—m+ 1) consider the set
Sa = {eap = (d,p2,--,Pm) | d <Pz <...<pm < n}.

For a rectangular matriz A € C™*" (m < n) let Ag, be m x m submatriz
whose columns conform to the ordering of integers in

eipy 1Sd<n—m+1, 13p3Nd=(T’;‘_‘i).

Determinant of A is the number

n—m+1 Ng

det(J,m)(A) = Z Z det (Ad,p) .

d=1 p=1

For an m x n matrix (m > n), det(j,)(A) is equal to det(J|n)(AT).

2. Determinants of rectangular matrices

In this section we investigate connections between the presented definitions
of the rectangular determinants and their main properties.

Theorem 2.1. For A € C™*" v = min{m,n} is valid

det(J,,.)(A) = det(sﬁ)(A).
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Proof. Suppose that m < n. By (ii) and (iii) we get eq, are the combinations

of m elements selected from the set {1,...,n} which start with the number
d = p;. Thus,
1 . Le.om 1 ... m
(4a) (d Pz .- Pm) (Pl Pm> h

pe< ... <pm<mn, 1<d<n-m+1.

Hence,

Zp: 1Nddet(Ad7p): Z A( 1 ... m )7 1<d<n—mtl,

d=p1 <...<pm<n Pr e Pm
and finally,
» n—m+1 Ng 1 m
detgmy(A)= D D det(Aap)= >, A ( ) = det(5,)(A).
d=1 p=1 1<¢1 <...<qm<n @ dm
(]

Corollary 2.1. If A€ C"*", then

det(j,)(A) = det(pp) (A®) , where A® = [(—1)i+ja.,-j] and p<r.
Proof. The proof is an easy consequence of Theorem 2.1. and the following
relation, which is proved in [9], [10]: det(p ,)(A) = det(s,) (A®). m]

In [5], [9], [10], [11] are presented some important properties of rectan-
gular determinants for full-rank matrices. The following lemma is valid for
an arbitrary matrix

Lemma 2.1. For A€ C*™ and p < r is valid:

a) det(e_p)(cA) = cpdet(evp)(A), ceC. b) det(i,p)(A*) = det(e,p)(A).

The multiplicative property of rectangular determinants is proved in [11].
A similar claim, presented in [10] is not valid. We prove this property using
an original proof.
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Lemma 2.2. For A € C**", B € CT*" and r < min{m,n} the following
relation can be proved

det(e’r)(AB) = det(c’,.)(A)det(C,,.)(B).

Proof. According to Definition 1.1 we obtain

det(g,r)(AB) = E €(i1+...+ir)+(j1+...+jr)(AB) ( ;1 - z,,, ) _
1 ...

1<711<...<gr&n
1<i; <. <ipr <M

Z €(i1+...+ir)+(j1+...+jr)A( R )B( 1 e T ) _
1 ... r N o Jr

1<751 <..-<jr<n
1<i1 <...<ip <M

= { E €(i1+...+ir)+(1+...+r)A( 1 ee. Ip )} .
1 ... r

1<i; <...<ip<m

Z L1ttt +dr) g ( 1 s 1‘ ):l — det(c,r)(A) . det(e,r)(B)-

1<j1<...<jr<n e Jr

. In the following example is shown the existence of the matrices A and B
such that det(. ,)(AB) # det(c p)(A)det(cp)(B), for some p < r = rank(A) =

rank(B).
SR £ T B
Example 2.1. Consider matrices A= | 0 | ¥ ] and B=
o 1oy %)
-1 3 0
0 1 2
-2 2 1
5
5 10

Then, det(s,g)(AB) = 111252 o 3186341 _ oy o\ (A)det(s 2)( B).

In [5], [10], [11] is developed a generalization of the cofactor expansion.
We prove the same theorem using a short proof.
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Theorem 2.2. For a full-rank matriz A € C™*® is valid Laplace’s devel-
opment:

det(e,m)(A) E a’zch(e m) i=1,....,my, m<mn

det(cn)(A) = E aikAgfin), t=1,...,n, n<m
k=1 :

where A‘(-;-’m), i.€. Az(-c-’") ts the generalized algebraic complement correspond-
ing to the element a;;, defined as follows

Alem™ = 5 (tm) b etim) A 1 os eom . m<n
Y J1<.<jm J1 eer J e Im =
alen) — elinttin)+(1ctn) 4 o 0 in 0 < m
i i1<¥<in ! 1 ... j ... n}]’ =
Proof. In the case m < n, according to Definition 1.1. and using Laplace’s
development for the square minors A ( 1 e m ), we get:
o - Im
det(c,m)(A) =
( J Ihe 1 i m
— Z ¢ 1+..4m)+(j1+..-+im [Z aijkA'j ( ‘e e )]
3 k . . .
51 < Jm k=1 N o Jkovee Im
- Zail Z ((I-dm)+(ittim) 4, ( 1 v T m )
=1 1<51 <.im<n no ... i ... Im
k03
= aadlf™.
=1
0

Corollary 2.2. If A € C™*" {3 a full-rank matriz, then:

Z aikA(E"m) = 6ijd6t6,m(A)7 m<n 1, 1=75

, where 6= R
ZazkA““)—a,jdete,n(A), n<m ! {0, i
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Proof. For i = j we obtain the claim of Theorem 2.2. In the case i # j,
starting from a matrix A whose ith and jth rows are identical, 1 < ¢ < m,
1 < j € n, using Laplace’s development on the jth row for the obtained
square minors and the well-known fact: rectangular determinant of a full-
rank matrix which has two identical rows is equal to zero, ([5], [9], [10], [11)),
we obtain the proof. a

3. Rectangular determinants and induced general-
ized inverses

Now we present a definition of generalized inverses in terms of the rectangular
determinants and generalized cofactors, which we call by determinantal
generalized inverse .

Definition 3.1. For A € CT"*™ generalized inverse A(_Elp

whose (i, j)th entry is equal to

) of A is the matriz

Alep)
—1 —_ 3
(A(e,p)) - det(c‘pﬂAi’

where 1 < p < rank(A) < min{m,n} is the greatest integer, such that

det;(A) # 0 (denoted by r.(A)), and Az(-;-’p) is the generalized algebraic com-
plement of the order p corresponding to the element aj;, defined as follows:

Al(;,p) - Z 6(:'1+...+z‘p)+(j1+.,.+jp)Aﬁ ( 21 e e Jp ) )
. - T ... e
1€71<...<3<...<1p<Ls
1< <. << Cip&r

1<i<n

The matrix adj(*?)(A) = (A(e',p))’ 1<j<m

4]

) we shall call generalized

adjoint matriz of A of the order p.

In the case p = r,(A) = r we obtain the corresponding notions of gen-
eralized inverses, introduced in [5], [10], [11]. Moreover, we investigate the
properties of the introduced generalized inverses. The following theorem is
proved in [5]. The proof is evident from Corollary 2.2.
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Theorem 3.1. Ifp = r.(A) = min{m,n} matriz A(" ) computed according
to Definition 1.1 is a right inverse of A if m < n and a left inverse in the
case m > n.

In the following two lemmas we examine the properties of generalized
adjoint matrices and determinantal inverses .

Lemma 3.1. If A € C™*", B € C™*" are two full rank matrices such that
rank(A) = r = rank(B) = r.(A) = r(B) = r(AB), then adj“")(AB) =
adj¢™)(B) - adj(¢")(A).

Proof. An element lying in the 7th row and jth column of adj("r)(AB) is
equal to

€, a1 ... ] ves Oy

(AB)7 = ) mm% : )
1€8 <...<i<...<Pfr<n ! ﬁl AR 'Br
1<a) €...<j<...<ar<m

Using the Cauchy-Binet formula, we can show

AB (57‘) — s ] ees QO .
( ) A1 <.. <¢Z< .<B kg ( 1 ok o0
a1 <...<j<...<ar

1 ... k& ... 7
‘%(m.”i”.mﬂ:

B 1 k r y
= k
1 1<31 <. <i<.. < B3r <00 "\ A - ( B,
a ... J ...
Aj —
L<01< <]< <ar<mJ ( 1 ...k ... r
— (er (cr) 0

Lemma 3.2. If k = r.(A), then the following equations are valid:
a) adj(oF)(cA) = cF~ladj(<F)(A), ¢ € C;
b) adj(=¥)(4%) = (adj(~¥)(4))’;

—1 _14-1 .
¢) (cA)py = sA@ny €€ C



62 P.Stanimirovié, M.Stankovié

d) If k = min{m,n} then
e m(1 5 (1 )

P1<...<p

R I LA [ ) | B !

r1<...<pn

Proof. d) For m < n matrix A("1 ) is a right inverse of A, so that A -

adj(©™(A) = det(, ;p)(A) - In. Thus, det (A4 - adj(©™(4)) = [det(em)(4)]"
Applying the Cauchy-Binet Theorem, we get

"= 35 al o ) fewemen) (5 )

p1<...<pm
a

If A is a square m x m matrix, we obtain the well-known result

det (adj(A)) = det™ 1(A).

According to Lemma 3.1 and Lemma 2.2, we can compute the determi-
nantal inverses using the notion of the full-rank factorization.

Corollary 3.1. If A = PQ is a full-rank factorization of A € CI"*™, de-
terminantal inverse of A is

Ay = QnPin r=re(4).
Using Theorem 1.3, we can immediately prove the following corollary.

Corollary 3.2. If A € C"*", r = r(A), then A(_;T) = Q(_;T)P(‘Ellr) is

- The Moore-Penrose inverse of A if Q(_C,lr) = Q% and P(';lr) = Pt ;

- Right normalized generalized inverse of A if P(:,IT) =P, Q(_E'lr)aéQ"';
- Left normalized generalized inverse of A if Q(_C’lr) =QT, P(;’IT) # Pt

- Reflexive generalized inverse of A, in other cases.
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2 0 2
Example 3.1 Let A = ll) i z . We have m = 4; n = 3; rank(A) =
5 ‘

0 1
2 < min{m, n}. Using Definition 3.1, we obtain:

A7l !
0 -2 0o -2\ )
4 2] detff 1 -2
1 2 1 -3

(52) 7 detS(A)
-2 2 -2
-2 det? | o -2 =
2 1 -3 V

( 12 0 -2

dety | 1 3 det{ | 1 3

1 2 12

2
| : (

-2 2 0
-2 det? | 0 1
2 11

—_— o

detf ( -
' detf ( -
\

S o

==y
t
—
S —
I8
®
o~
l¥)
———
1
S =
[CIETRRN

Similarly, from Definition 3.2 we get A = PQ; P =

{1 0 1
@= ( 0 1 2 )
The right inverse of  is
1 1 detigl 23 detigo -13 WERE
Q(_S 2) =T 5 detl 0 2 detl -1 1 = = 2 0 .
det; (@) detf (0 -1) detf( 1 0) 2
The left inverse of P is

[=2N == )
—— = O

1
Pl = —5—
(52) ™ det$ (P)

1 f 0 o\ 0.
dety | 1 det | 1 det | -1 det? | "1
1 1 1 -1
0 2 2 2
dety | -1 det? | -1 det? | o det? | o
0 : 0 . 1

o
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_1/3 2 0 -2
“e\l-1 1 2 3 )
and the generalized inverse of A is equal to
1 1 1 10 5 -2 -9
Qi . Pl =—1 6 4 0o -4 |.
(52) 7 (52) 7 19 4 1 2 s

Now we study the correlations between A(R k) and A(_s k) k=r.(A).

Theorem 3.2. For A € CT*" the following relatzons between Radic’s and
Stojakovié’s inverse can be proved.

a) AGRH (430)" 0 ARy = (A%Ge)"

C)A k) = (A(—Rk)>®; d)  Agy= (AG(_;k)>®'

Proof. a) Element lying in the jth row and ith column of A®(_ ﬁ’k) is equal
to

1Yttt ti) g0, [ 8 e T Tk
) ;12225 ) o J o Jk
A®7 _n k —
( (R’k)>ji det(s,k)(A)
_1 "+J A,‘ i.l .. Z . e zk
( ) i <Z,.:<:'k J ( - 7 .- Ik A(S,k)
_ 11<.-<Jg - (_ i+ ]

det(s )(A) det(s,r)(A)

= (-1 (43,),, O

4. Rectangular determinants and Moore-Penrose in-
verse

Now, we investigate the correlation between the determinantal generalized
inverses and the Moore-Penrose inverse.
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Theorem 4.1. For a rectangular full—mnk matriz A € CTV*™, and r =
re(4) = min{m, n}, the relation A( n = = A% holds if and only if the matmz
A satisfies one of the following two conditions:

Z 1+ 4+m)+(i1+..+Im) A 1 cer e eaa m
51<<p<... <Jm Ju o-ee Pooeee Im =
— —
(det(c,m)(A))
> 1 Am)+(i1t+im) g4 1 et m o
_ 11<<g<<gm ... q voe Im )
- =
(det(e,my(A)) ?
(1)
3 (ot Grtotimg| 1 o0 P In
J1< - <p<.. . <Jn1 “ee ees sen n _

(det(e,n) (A))_l

P RN

= 1<...<9<...<Jp]
- —1

(det(eny(4))

Proof. According to Theorem 3.1 and Theorem 1.1, A () # At if and only
if A(_gm)A # (A(_E,m)A)*. Indeed, the element 7,, in the pth row and gth

column of the matrix product A(c}m) - A is equal to

4 m 1 ... ... ... m |
(c ™), Z L1+ +m)+(1+.+Im) Z ar A
A kqkp . .
Z _ 1< <jm k=1 ! J1 - P .. Im _
det(c m) (Aj - det(e’m)' (A) o e -
(At Am)+Ur+eotpt o tim) 4 [ 1 oo m
_ 1551<..<g<..<jm<n J1 .. G ... Im
- det(e’m)(A)
In a similar way it can be proved
) eIt Am)+Ur+tgt++im) 4 1 Tt ot m
1< <pLan<im I A g

Tar = det(c,m)(A)
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In Theorem 4.1 we found a necessary and sufficient condition for detec-
tion of the equivalence of the determinantal inverse and the Moore-Penrose
inverse. This condition is obtained applying Theorem 1.1. Moreover, in the
follawing lemma, using determinantal representation of the Moore-Penrose
inverse presented in Theorem 1.2, we find a sufficient condition for the
equivalence of the determinantal inverse and the Moore-Penrose inverse .

Lemma 4.1. If r = 7(A) and the matriz A satisfies the condition

@) 71( ;1 ;r ) = K . atotintGit+i) | K e
1 PR T

15j1<...<jr5n,)

aor all combinations . .
Y (1§zl<...<zr§m

then A(‘Elr) = At .

Proof. For the chosen integers i € {1,...,m}, j € {1,...,n} it is trivial to
verify that N,(A) = K -dets(A) and AP = K- A7), o

The class of matrices satisfying conditions (2) is nonempty.

Example 4.1, The following matrices satisfy condition (2):

A et2(4+C) C
y A’ B’ C’D e C, EG{—l,l}.
2+ p K +DA5A+C ) 213 R’iACD

Prablem 4.1. Find a complex matrix A which does not satisfy relation
(2), but A%, = AY.

According to Lemma 4.1 and Corollary 3.2 we describe an algorithm

which allows detection of the type of determinantal inverse A(C,lre( 4)°

Algorithm 1.

Case 1. If p=r.(A) = min{m,n}, then apply rules 1.1 and 1.2.
Rule 1.1 If A satisfies condition (2), then A('C}p) = AT,
Rule 1.2 ¥ condition (2) does not holds for A, then
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a) For m < m, if (431, 4) = ACh)A, then AGl) = A%,
else A(_E’lp) is a right inverse of A;

b) For n < m, if (AA71)" = AA7Y, then A )_A+,

(ep

else Ac‘1 is a left inverse of A .

Case 2. If r.(A) = rank(A) = 7 < min{m, n} then:
Rule 2.1 If A satisfies condition (2), then A(—:T) is
the Moore-Penrose inverse of A.
Rule 2.2 If condition (2) does not hold, compute a full-rank
factorization A = P and select one of the fo]]owing two rules.
Rule 2.8 H both P and Q satisfy condition (2), then A o) = = At
Rule 2.4 If P or @ satisfies condition (2), then
a) A(El ) satisfies conditions (1.1), (1.2) and (1.3),if m < n;
b) A(E ")
Rule 2.5 If neither P nor @ satisfies (2); use Corollary 3.1.

satisfies conditions (1.1), (1.2) and (1.4), if m > .
Case 3. If r(A) < rank(A) then A7, ¢ A{1,2}.

Example 4.2. Matrix 4 = ( _1 _14 _(‘;‘ ) satisfies condition (2), so that
-1 -1
-1 + 3 —51
A(S,z) = A = 3 .
0
1 1 0

Example 4.3. The rank-deficient matrix | ¢ 1 1 | satishes condi-
. -1 0 1

tion (2). Accordmg‘ to rulle 2.1, A( e2) 19 the Moore-Pentose inverse of 4

Al+2) = (

-
Wi ”‘l

O W= e
Wl =
W O
o
-
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1 4 3
Example 4.4. Consider A = 3 ig 181 . We have renk(A) = 2, and
0 2 2
103
det§(A) = 54 £ 0. A full-rank factorization of A is P = 3 181 ,Q =
0 2

1 1 o0 . . -1 _ -1
( 0 1 1 ) The matrix @ satisfies (2), so that Q(e,2) = @*. Also, Pia #
=25
27

=2 ) satisfies conditions (1.1),

1

NS

P*, so that A(_sl,z) =

TN
& 8= 15

mlll Ol ;Iuw

s wll m||

Slo Ba
~ 3

3

(1.2) and (1.4).

2 0.2 2 0
Example 4.5. Full-rank factorization of A = (1) i § isP= (1] i ,
0 1 2 0 1
Q= ( é (1] ; ) . Using P7! # P* and Q! # Q% it is easy to see that
5 5 oz =3
-1 ? ]12 ; —41
A(S,Z) = 3 3 0 = 6 A{I,Q}.
R
3 12 6 12 .
1 -2 2 3
Example 4.6. Consider matrices of theform A={ o o o 1 },If

2 3 -3 -1
we use Stojakovié’s definition, it is easy to verify that r(4) = 2 < rank(A).

o L 1
s 5 s 1 5 3
Moreover, X = A(_Sl’2) = ; 5 g ,and AXA=| 0o F I 1 #
8 ¢ 8 2 3 =3
101 =t 8 8
4 8 8
A, XAX = X.
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