ON M_N SUBSETS

Ilija Kovačević

Faculty of Technical Sciences, University of Novi Sad Trg Dositeja Obradovića 6, 21000 Novi Sad, Yugoslavia

Abstract

The aim of the present paper is to study some properties of M_N subsets and closed (almost closed) mappings.

AMS Mathematics Subject Classification (1991): 54D18, 54C10 Key words and phrases: M_N set, almost closed mappings, α -Hausdorff, α -paracompact (α -nearly paracompact)

1. Introduction ...

No separation properties are assumed for spaces unless explicitly stated.

A subset A of a space X is regular open (regular closed) iff Int CLA = A(CL Int A = A), [6].

A subset A of a space X is α -paracompact (α -nearly paracompact) with respect to a subset B iff for every open (regular open) cover $\mathcal{U} = \{U_i : i \in I\}$ of A there is an open family $\mathcal{V} = \{V_i : j \in J\}$ such that:

- 1) \mathcal{V} refines \mathcal{U} ;
- 2) $A \subset \cup \{V_i : j \in J\}$ and
- 3) V is locally finite at each point $x \in B$.

Subsets A and B of a space X are mutually α -paracompact (mutually α -nearly paracompact) iff the subset A is α -paracompact (α -nearly paracompact) with respect to the subset B and B is α -paracompact (α -nearly paracompact) with respect to the subset A, [3].

A subset A of a space X is α -Hausdorff iff for any two points a, b of a space X, where $a \in A$ and $b \in X \setminus A$, there are disjoint open sets U and V containing a and b respectively.

A subset A of a space X is α -regular (α -almost regular) iff for any point $a \in A$ and any open (regular open) set U containing a, there is an open set V such that $a \in V \subset Cl \ V \subset U$ [4].

A proper subset A of a space X is a M_N subset iff:

- a) $A \neq \emptyset$
- b) A is α -Hausdorff α -nearly paracompact with respect to $X \setminus A$
- c) Any two distinct points of a subset A cannot be strongly separated by open neighbourhoods [2].

A subset A of a space X is α -nearly compact (N-closed) iff for every regular open covering $\mathcal{U} = \{U_i : i \in J\}$ of A there is a finite subfamily I_0 of I such that $A \subset U\{U_i : i \in I_0\}$ [1].

A mapping $f: X \to Y$ is closed (almost closed) iff for every closed (regular closed) set F of X the set f(F) is closed, [6].

2. M_N subsets

Lemma 1. Let A and B be any two subsets of a space X. If $B \subset A$, $B \neq A$, and A is a M_N subset, then B is not an M_N -subset.

Proof. B is not α -Hausdorff because any two distinct points $a \in B$, $b \in A \setminus B$ cannot be strongly separated by open neighbourhoods.

Lemma 2. If A is an α -paracompact (α -nearly paracompact) subset with respect to a subset B and C is a closed (regular closed) subset of A, then C is α -paracompact (α -nearly paracompact) with respect to B.

On M_N Subsets 47

Proof. If $\mathcal{U} = \{U_i : i \in I\}$ is any open (regular open) covering of a subset C, then $\mathcal{H} = \mathcal{U} \cup \{X \setminus B\}$ is an open (a regular open) covering of A. Since A is α -paracompact (α -nearly paracompact) with respect to B it follows that there is an open family $\mathcal{V} = \{V_i : i \in J\}$ such that:

- 1. $A \subset \cup \{V_j : j \in J\} \cup \{X \setminus C\};$
- 2. V refines H;
- 3. \mathcal{V} is locally finite at each point $x \in B$.

If $W = \{V \in V : V \cap C \neq \emptyset\}$, then W is an open family such that:

- 1. $C \subset \cup \{W : W \in \mathcal{W}\}$
- 2. W refines U
- 3. W is locally finite at each point $x \in B$.

Hence it follows that C is α -paracompact (α -nearly paracompact) with respect to B.

In the paper [2] the author has proved that every M_N subset is closed. The converse statement is not necessarly true.

Theorem 1. Let X be a topological space such that every proper nonempty closed subset is M_N . Then X can contain only two proper nonempty closed subsets.

Proof. If A is only one proper closed subset, then A is not M_N because A is not α -Hausdorff. Let X be a space which contains at least three different proper nonempty closed subsets A, B, C.

- a) If $A \subset B$ and B is a M_N subset, then the subset A is not M_N .
- b) If $A \not\subset B$ and $B \not\subset A$, then $A \cup B$ is proper closed subset which is not M_N .

(The union $A \cup B$ of two different M_N subsets is not M_N because the points $a \in A$ and $b \in B$ can be strongly separated by open neighbourhoods).

The following example shows that there is a space such that any proper nonempty closed subset is M_N .

Example 1. Let
$$X = \{a, b, c, d\}$$
 and $C = \{\emptyset, \{a, b\}, \{c, d\}, X\}$.

The only two proper nonempty closed subsets are $A = \{a, b\}$ and $B = \{c, d\}$.

The subsets A and B are M_N .

Theorem 2. Let Y be a space such that every proper nenempty closed subset is M_N . Then, any M_N subset is clo-open.

Proof. The space contains only two disjoint closed M_N subsets A and B, hence result.

Theorem 3. If A is an α -nearly paracompact subset with respect to a subset B of a space X and C is an α -nearly compact subset of a space Y, then $A \times C$ is an α -nearly paracompact subset with respect to $B \times Y$.

Proof. Let \mathcal{U} be any regular open covering of $A \times C$. Let $(x,y) \in A \times C$. There exist regular open subsets V_{xy} and W_{xy} of X and Y respectively such that $(x,y) \in V_{xy} \times W_{xy} \subset U$ for some $U \in \mathcal{U}$.

Let $I^x=\{x\}\times C$ for each $x\in A$. Then $\{W_{xy}:(x,y)\in I^x\}$ is a regular open covering of the α -nearly compact set C. Hence there is a finite subset J^x of I^x such that $\{W_{xy}:(x,y)\in J^x\}$ is a covering of C. For each $x\in A$, let $V_x=\cap\{V_{xy}:(x,y)\in J^x\}$. Let $\mathcal{V}=\{V_x:x\in A\}$. Then \mathcal{V} is a regular open covering of A, hence there is a family \mathcal{G} of open sets in X such that:

- $A \subset \cup \{G : G \in \mathcal{G}\};$
- G refines V;
- $-\mathcal{G}$ is locally finite at each point $x \in B$.

Now, for each $G \in \mathcal{G}$, there is $x_G \in A$ such that $G \subset V_{x_G}$. Let $\mathcal{H} = \{GXW_{xy} : G \in \mathcal{G}, (x,y) \subset J^{x_G}\}$.

It is easy to verify that

 $- A \backslash C \subset \cup \{H : H \in \mathcal{H}\};$

On M_N Subsets 49

- H refines U;
- the open family \mathcal{H} is locally finite at each point of $B \times Y$.

Hence $A \times C$ is α -nearly paracompact with respect to $B \times Y$.

Theorem 4. Let X and Y be any two topological spaces. Let A be any M_N subset of X and $B \neq \emptyset$ by any proper subset of Y such that

- B is α -Hausdorff α -nearly compact
- any two points of B cannot be strongly separated by open neighbourhoods,

then $A \times B$ is a M_N subset of a space $X \times Y$.

Proof. By the preceding theorem the subset $A \times B$ is α -nearly paracompact with respect to $X \times Y \setminus A \times B$. Since the product of two α -Hausdorff sets is α -Hausdorff, it follows that the set $A \times B$ is α -Hausdorff. Any two points $(a,b) \in A \times B$, $(c,d) \in A \times B$ can not be strongly separated by open neighbourhoods. Hence the set $A \times B$ is M_N .

Theorem 5. Let X be a topological space such that any nonempty closed (regular closed) set F is an α -Hausdorff subset which is α -paracompact (α -nearly paracompact) with respect to $X \setminus F$. Then X is regular (almost regular).

Proof. Let $x \notin F$ be any point. It follows that by Theorem 2.2. in [3], there are regular open sets U and V such that $x \in U$, $F \subset V$, $U \cap V = \emptyset$. It follows that X is regular (almost regular).

3. Almost closed mappings

Theorem 6. Let A be an M_N subset of a topological space X and $f: X \to Y$ be a mapping of a space X onto a topological space Y.

- a) If there is $x \in X \setminus A$ such that $f^{-1}(f(x)) \cap A \neq \emptyset$ and f is an almost closed mapping such that the family $\{f^{-1}(f(x)) : x \in X \setminus A\}$ consists of α -Hausdorff subsets which are mutually α -nearly paracompact, then f(A) is closed.
- b) If f is an almost closed mapping such that $f(A) \neq Y$ and for each $x \in X \setminus A$ $f^{-1}(f(x))$ is α -Hausdorff α -nearly paracompact with respect to $X \setminus f^{-1}(f(x))$, then f(A) is closed.
- c) If f is a closed mapping, then f(A) is closed.

Proof.

- a) Since there is $a \in X \setminus A$ such that $f^{-1}(f(a)) \cap A \neq \emptyset$ then f(A) = a, hence by Theorem 3.1. in [3] Y is Hausdorff. Hence f(A) is closed.
- b) It is similar to the proof. of a).
- c) Since A is closed and f is a closed mapping, then f(A) is closed.

Theorem 7. Let A be an M_N subset of a topological space X and $f: X \to Y$ be a mapping of a space X onto a compact space Y.

- a) Let f be an almost closed mapping. If there is a point $x \in X \setminus A$ such that $f^{-1}(f(x)) \cap A \neq \emptyset$ and the family $\{f^{-1}(f(x)) : x \in X \setminus A\}$ consists of α -Hausdorff subsets which are mutually α -nearly paracompact then f(A) is compact.
- b) If f is a closed mapping, then f(A) is compact.
- c) If f is an almost closed mapping such that $f(A) \neq Y$ and for each $x \in X \setminus A$ $f^{-1}(f(x))$ is α -Hausdorff α -nearly paracompact with respect to $X \setminus f^{-1}(f(x))$, then f(A) is compact.
- d) If f is an almost closed mapping such that the family $\{f^{-1}(f(x)) : x \in X \setminus A\}$ consists of α -Hausdorff subsets which are mutually α -nearly paracompact, then f is continuous at each point $x \in X \setminus A$.

Proof. a); b); c) By the preceding theorem the set f(A) is closed, hence f(A) is compact.

Proof. f(A) is compact, hence f(A) is α -nearly paracompact with respect to $Y \setminus f(A) \cdot f(A)$ is α -Hausdorff. Any two points $a, b \in f(A)$ cannot by strongly separated by open neighbourhoods. Hence f(A) is M_N .

In the preceding theorem the assumption "almost closed and continuous" cannot be replaced by "almost closed" which we can see from the following example.

Example 2. Let $X = \{a, b, c, d\}$ and $\tau = \{\emptyset, \{a, b\}, \{c\}, \{d\}, \{a, b, c\}, \{a, b, d\}, \{c, d\}, X\}.$

Let $Y = \{1, 2, 3, 4\}$ be endowed by discrete topology. Define the mapping $f: X \to Y$ by f(a) = 1; f(b) = 2; f(c) = 3; f(d) = 4. $A = \{a, b\}$ is a M_N subset of a space X.

$$f(A) = \{1, 2\}$$
 is not M_N .

(The points $1, 2 \in f(A)$ can be strongly separated by open neighbourhoods $\{1\}$ and $\{2\}$ respectively).

f is almost closed, f is not continuous at the points a and b, hence f is not continuous.

References

- [1] Carnahan, D., Locally nearly compact spaces, Boll. Un. Mat. Ital. 4(6) (1972), 146-153.
- [2] Kovačević, I., On almost closed mappings, paracompactness and partial equivalence relations, Indian J. Pure Appl. Math. 25(9) (1994), 949-954.
- [3] Kovačević, I., On subsets, almost closed mappings and paracompactness, Glasnik matematički, 24(44) (1989), 125-132.
- [4] Kovačević, I., Subsets and paracompactness, Univ. N. Sadu, Zb. Rad. Prir. Mat. Fak., 14(2) (1984), 79-87.
- [5] Noivi, T., Almost continuity and some separation axioms, Glasnik matematički, 9(29) (1974), 131-135.
- [6] Singal, M.K., Singal, A.R., Almost continuous mappings, Yokohoma Math. J., 16 (1968), 68-73.