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1. Introduction

There are several approaches to Colombeau’s generalized functions on a
C*-manifold (cf. [1], [5], [10], [11]). It is noted in [5] that the definitions
in [1] and [11] do not admit the embedding of distributions and distribution
densities (in the sense of [8, Ch 6]) into a space of Colombeau’s generalized
functions on a manifold which is invariant under diffeomorphisms. Because
of that, instead of classes A,;, which are usually used in the definition of
Colombeau’s functions (or their simplified versions), they introduced in [5]
classes which we denote here by A7, ¢ € No. Then, they proved that for
a diffeomorphism g : Q; — @, and G € G(Q22) the pull back is well defined.
The essence of the problem is shown in the following example: :
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Let f be a compactly supported continuous function on Q4 and
e be an appropriate delta net determined by an element of A.
Then f(u(z))* @e and (f * ¢c)(p(z)) define the same element of
G(©Q4). In the setting of [1] and [11] this is true only in the asso-
ciated sense.

In the present paper we define Colombeau’s space by introducing the
spaces Ear(Q), N(Q) and then, Ea(Q), N(Q). This procedure is somehow
different from the one given in [5]. We define the sheaf of Colombeau’s gener-
alized functions on a manifold X by pulling back the sheaf of Colombeau’s
generalized functions G(£2), & ¢ R"™. Our investigations of Colombeau’s
generalized functions on a manifold are based on Theorem 1. Although this
assertion contains more facts than we need in the sequel, it is important
for our approach to this matter. In the last part of Section 4 we give the
definition of GH(X) and explain the motivation for this. In fact this is
the definition of Colombeau’s generalized function on a manifold given in

[5]-
The microlocal properties of Colombeau’s generalized functions on a
manifold have been investigated in [6].

2. Colombeau’s—Meril approach

We recall basic notation and notions of Colombeau’s theory (cf. [3] and [9])
but in the sense of a new approach which is given in [5].

Let (¢°)e<e,, €4 > 0 be a net of smooth functions defined on open sets
Qe 50, € < €4, which are contained in the closed ball with the center at 0
and radius 1 (B(0,1)), such that for every compact neighborhood of zero K

(I%B 0) there exists e > 0 such that
(¢%)e<ey is a bounded family in Dg and
(1) / ¢€()‘) dA =1, e<ek.
Rn

We denote the set of such nets by A§ and by A7, ¢ € N the sets of
(¢°) € Ag which satisfy

/ A*g°(A)dA = O(), 1< o] < g, ¢ — 0.
R~
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Clearly, A5 D A D ...

Let us note, if ¢ = ¢, € € (0,1) and ¢ is defined on R™ such that (1)
and [ A*¢(A)dX =0, 1< |al < g, hold, then AS = A;, ¢ € Ny, where
A, is defined in (3] (see also [9]).

If (¢°) € Ao, then we put ¢.(z) = el,,qbe(f), € €(0,e4), T € Q..

Let Q be an open set of R™. Denote by £(Q2) (resp. £,(C), resp. &o(R))
a space of nets of complex valued functions on Q (resp. nets of complex
numbers, resp. nets of real numbers) which correspond to (¢¢) € A$,

R:((¢°),2) = R((¢°),2), (¢°) € Ao, z €0

(resp. R : (¢¢) — R((¢#°))) such that for every fixed go, R((¢%), -) € C*(£2)
(resp. R((¢%°)) € C, resp. R((¢*°)) € R). Then, Colombeau’s spaces of
moderate and null nets of functions are defined by
Em(Q) = {Re€&(Q)| VK CCQVaeNjINeN
V(¢°) € Ay sup |[D®R(¢e,z)| = O (E_N) LE — 0},
T€EK

N(Q) = {Re&(Q) VK CCQVYae NjIN €N
3(v,) € NN,'yq — 00 as ¢ — 00
Vg > N V(¢°) € Ay sup [D*R(¢s,z)| = O(e™),e — 0}.
TeEK

We shall write R(¢°,z) instead of R((¢°),x). If in the previous defini-
tions R(¢°,z) = R(¢°) does not depend on z and the estimates hold for
a=20,1ie.

IR(#°) =0 (N),e =0 (resp. |[R(¢°)] = O(e7),6—0),
then a space of such nets of complex numbers is denoged by EOM(C) (resp. ./\70(C)).
If they are nets of real numbers, we obtain spaces £opr(R) and Ap(R).
We introduce a relation in £3(Q)
R1(#%, - ) ~ Ra(¢%, -)if for every compact set K CC Q and every

(¢°) € Ap there exists ex,4 such that Ry(¢.,z) = Ra(¢., ), z €
K,e < EK,$- i
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It is the equivalence relation and the corresponding spaces of classes will be
denoted by Epr(§2) and M(2). We use the same notation for their elements
as for the elements of £pr(Q) and N(R), respectively. We define Eypr(C),
Eom(R), Np(C) and NMo(R) in an appropriate way.

Clearly, Epm(£2), Eom(C) and Eoar(R) are associative subalgebras of £(),
&0(C) and &(R), respectively, and N (), No(C) and AMp(R) are ideals
of Em(), Eom(C) and Eamr(R), respectively. The space of Colombeau’s
generalized functions on €2, Colombeau’s complex numbers and Colombeau’s
real numbers are defined by

G(Q) = Em(Q)/N (D), C = £om(C)/No(C) D R = £om(R)/No(R).

The classical complex numbers are embedded into C by C 3> 2z —
R(¢°) = z, (¢°) € Ao.

The spaces G(£2), C and R are the algebras with respect to the pointwise
multiplication of representatives. The elements of C C G(2) are called
constant generalized functions: .

Ao X Q3 ((¢°),z) — R(¢°).

Moreover, G(2) is a differential algebra (with the Leibnitz rule) with
respect to the differentiation defined by the differentiation of representatives:

[R(¢°,2))@ = [R1*)(¢%, )], @ € NG

Let (¢°) € Ao, d(¢pe) = sup{z|pe(z) # 0}, € (0,64) be the net of

support numbers and
§2d(¢¢) = {z € Q; dist(z, R"\Q) > 2d(¢:)}, € € (0,¢4).

These sets are closed subsets of {). Denote by ¢, a net of functions in
C*°(Q) which are equal to 1 on 34(4,) and supp k¢, C a(q,), € € (0,€4)-
If ﬁd(¢¢) is empty for some ¢, then x4, = 0.

The embedding of D’(Q2) into G(f?) is made via the mapping f — Cd f
where Cd f = [Cd f(&e, z)] and

(2) (Cdf)(Be,2) = (Kg.f) * Bel2), T € ey € (0,64), ((¢°), ) € A5 x Q
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(#(z) = ¢(—z)). Note, C*(Q) is a subalgebra of G(Q) i. e.
(Cd /1)(Cd f3) = Cd(fif2) = fife, f1,f2€ CT(Q).

We have
Cd (@) = (Cd £)®), f e D'().

D G(N), QCR", (resp. Ep(N), resp. N()) is a sheaf.

If feD'(Q)and Q; CC N, then Cd(flq,) = (Cd f)la, in G(£1).

The support of G € G(%), supp,G, is defined as the complement of
the largest open set Q; C Q such that G|o, = 0. If f € D'(Q2), then
supp f = supp,Cd f.

We denote by G.(Q2) a subspace of G(2) consisting of compactly sup-

ported elements.

For applications, the equality in G is too strong. Because of that Col-
ombeau has introduced the notion of association.

It is said that an element Z € C admits an associated complex number

z € C, in short Z is associated with z (Z = z), if Z has a representative

Z(¢e) such that there exists N € Ny such that lin(1) Z(¢e) = z for every
£—

(¢°) € Ag, g2 N.

If K is a compact subset of €2, then the integral of G € G(§2) over K,
f i G dz, is defined by the representative

(6°) /K G(¢°,2)dz, (¢°) € Ao.

We embed G.(2) into G.(R") by G — @G, where ¢ € C°(R), ¢ =1 on
supp G. (If G € G.(?), we will use in the sequel the notation ¢ for a function
in C§*(?) which is equal to one on suppG.)

Let G € G(R2) and supp G = K CC Q. Then, [, Gdz is defined by
fsupp L ¥G dz.

Note, if ¢ € C§°(2) and G € G(R), then [, Gypdz € C..

An element G € G(§1) is said to admit an f € D'(Q) as an associated
distribution, G =~ f, if for every ¥ € C3° () fﬂ G dz is associated with
<f,v>(€C).If feD'(N),then Cd f = f.
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3. Some notions of sheaf theory

Let X be a topological space and P = (Sy,r¥) a presheaf of complex vector
spaces over X . Recall a presheaf is a sheaf if the following conditions hold:

(*) Let U = Uqer Ua and f € Sy satisfy rga(f) =0,a €. Then, f =0.

U
(**) Let fo € Sua, @ € I, 1%y, (Fa) = molay,(fs), .8 € T and let
U = Ugyer Ua- Then, there is f € Sy such that rJ (f) = fo, @ € I

If f € Sy, then fz denotes the corresponding germ f; € S;atzeU. If
a presheaf is a sheaf, we will use the notation £ for it, and since the mapping

(3) dy: fr (Bu(f) iz fo, z € U),

is an isomorphism Sy — I'(U, €), we will use for P the notation

§= (F(va)aig)a
where ¥ is the restriction mapping.

Let U = (U;)icr be an open cover of X and U C X be an open set. We
define

(4) ¢ = {(fi)iel € [[ Svirv | rview;nv(£i) = rveu;nv(fi), 6,5 € I} ;
iel
where ry(f) = {fz|:1: e U};
¥y : Sy — S§ with ¥G(f) = (r,nv(f)ier-
wU

If V € X is also open, we define a homomorphism of vector spaces ™y
sS4 — 84,

Ho((fi)ier) = (tFRY(f)ier for (fi)ier € SY-

It is easy to check that P¥ = (S¥, r“lé) is presheaf and that ¥¥ : P —
P is a homomorphism of presheaves of vector spaces.

If V = (Vj);es is another open cover for X and the mapping 7:J — [
is such that
(5) Vi Uy 5 €5,
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then we may define a homomorphism of presheaves T\I’f : PY — PV for which
vy = T{“f o ¥, It suffices to choose

Ho((Fen) = (8 (frG))sea for (fo)ier € SY.

The homomorphism T\Lf does not depend on the choice of mapping 7:J — I
for which (5) holds. Then (P¥,7¥) is an inductive spectrum of presheaves
of vector spaces over X.

Theorem 1.

(i) Let P be a presheaf. Then the presheaf indlimy P is the associated
sheaf for P.

(ii) LetU be an arbitrary covering of X. Then the necessary and sufficient
condition for ¥ : P — PY, to be

— monomorphism, is that the presheaf P satisfies condition (*);

— epimorphism, is that the presheaf P satisfies condition (*¥).

(iii) If P is a sheaf, then P and P¥ are isomorphic.

Proof. We will prove only (i) since (ii) and (iii) are simple. First we shall
recall some notions (cf. [7]).

Let D be a commutative diagram of presheaves over X and P be a pre-
sheaf over X. A family ( fr)rea of homomorphisms of presheaves fr: R —
P, whose indices are all presheaves which appear in D, is called a co—cone
for the diagram D with vertex P if the diagram, which is obtained from D
by adding the presheaf P and homomorphisms fg, is commutative.

Homomorphism of a co-cone (fr)rca with vertex P into a co-cone
(9r)Rea with vertex @ is a homomorphism of presheaves h : P — @ such
that D, P, Q and both families (fr)rca and (gr)rea constitute a commu-
tative diagram.

All the co—cones of a diagram D constitute a category. An object of
a category from which starts exactly one arrow (morphism) to every ob-
ject is called the starting object. It is also called the universal co-cone of
the diagram D. A vertex of a universal co—cone of the commutative diagram
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D is called the co-limit of D. The co-limit of a commutative diagram is
determined up to an isomorphism.

An inductive spectrum is a commutative diagram. The co-limit of an in-
ductive spectrum is its inductive limit. Hence, the co-limit of a commutative
diagram is called the inductive limit.

Denote by £ the associated sheaf for P and by P his presheaf of sec-
tions. Note, (3) defines a homomorphism of presheaves ® : P — P, where
dy : Sy — I'(U,£) is homomorphism of vector spaces. If (f;)ies € S¥ and
z € U;nU;NU, then r¥iV(f;) = rd’ ﬁU(_f]) This enables us to define a ho-
momorphism of presheaves Q¥ : Pu P by O%((f:)ier) = s, where the sec-
tion s € I'(U,€) is defined s(z) = rinU(fYforz € U;NU and i € I. Let
4 ((fier) = (f)ier € SY. It is obvious that @4((f;)ses) = O%((f)ier),
because the sections in (f;);es are the restrictions of sections f; and they
have equal germs at all points z € U. So, we have (-)Vor = O, 1. e. the pre-
sheaf P is the vertex of a co-cone of a commutative dlagra,m which consists
of the objects P and morphisms 7§{. We need to prove that the co—cone is
universal.

Assume that a presheaf P is a vertex of a co-cone consisting of homo-

morphisms g : P4 — P. It is sufficient to decompose g¥ into two homo-
morphisms

Pu—>P—>P

in such a way that g does not depend on &/ and then to prove the uniqueness
of such a g.

Let us show that 6 is surjective. Let s € T(U,£). Then for every z € U
there exists an open set V,, C U and &, € Sy, such that

sa(®) = ¥ (e)
If VNV, #0 (z,y € U), then there holds

TV::nVy(al‘) = TV:ﬁVy(ay)'

Now we define a family W of open sets which cover X as follows. The
family V of open sets V,, z € U is a subset of this family. Let W € 7 and
W NU # Q. We denote by Wy a family of open sets which contains W and
W., z € U, which satisfy the following conditions:
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) User W= =T,
(1) Usevrw W= =UNW,
(iii) W, C V,, for every z € U.
Let H be the interior of X\U. Then we put
w=vu |J Wwu{H}={0]iel}.
WnU#0

One can prove that
O ((f)ier) = s,
where (fi)ier = T‘yv(az)zey.
We define a homomorphism gy : T(U, §) —’E'U by gu(s) = B4 ((fi)ier)-
We need to prove that gy is well defined and that the right side of the equal-

ity does not depend on the choice of the family (f;):;c; which determines s.
It is obvious that A% ((fi)ier) = R ((f;)jer), if (fi)jes = T y(fi)ier- O

Remark 1. Note @4 o ¥4 = &,

Remark 2. Instead of (4) we may use the following definition:

U UinU _U;aU ..

Sp = {(fi)iEI € H SU.‘ﬂU | TUingnU(fi) = TUfntnU(fJ')’ L, € I} )
iel

and the corresponding definition of rug to obtain a presheaf similar to PY,

but in this case we do not know whether (i) in Theorem 1 is true. However,

we still have claims (i1) and (iii) of this theorem which we only need for

the following section.

4. Colombeau’s generalized functions on manifolds

Let X be a C°°-manifold of dimension n and let F = {(X,, x)} be a maximal
family of coordinate systems. We denote by A a set of all diffeomorphisms
which appear in F. Let

(6) F'={(Xx,s)| s € AT}, AT CA,
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be an atlas of X. We denote U! = {X,|x € A}

Let £ be a sheaf of complex vector spaces on X. We have shown that
the sheaf ful is isomorphic to £. For every open set O C X,

I'(0,¢) is isomorphic to F(O,Eul),

and F(O,Eul) is determined by F(X,.;,f“l), k € Al which are isomorphic
with T'(X,, £), « € A'. This implies that the vector spaces

(X, &), k€ A!

determine the sheaf £, uniquely up to an isomorphism.

) The open sets of R™ are indicated by ~ over the capital letter: U, V,
D, R

Theorem 2. Let & be a sheaf of complex vector spaces on R™ with the
property:
(A) For every diffecomorphism h: U — U’ the mapping
R* : F(ﬁ”EO) - F(ﬁ’£0)7

given by ) i
L(U',6)> f = h"f=foh € I(U,&),

is an isomorphism.

Then &y determines a sheaf & on X such that £ = folg ifX="U.

Proof. Let U = {X«|x € A} and
Sx, = &*T(X., &), where (X, k) € F.

The family {Sx.|x € A} is uniquely determined by a family k*T'(X, &),
k € A1, for any atlas (6). This follows from the considerations which proceed
Theorem 2.

Let us put & = {Xx|x € A} and define for every open set U C X,

Sg = {(fi)iel € [[ Sv.rwl rxunx, nvu(fx) = TXKnXHmU(fr.')} :

k€A
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Clearly, U — SY is a sheaf. We denote it by ¢ = ¢4. Similarly as above,
every atlas of the form (6) and the corresponding covering ! determine
the sheaf U — Sgl, U C X. One can easily prove that this sheaf £/ is
equal to £.

Let X = U. The definition of éy; and (A) imply £ = &5. O

Theorem 3 (and Definition). Let £, be one of sheaves U Ep(0) or
U~ N(U) or U — G(U). Then for every one of them (A) holds and they
determine the corresponding sheaves on X which we call a sheaf of moder-
ate functions U — £5(U), null functions U — NC(U) and Colombeau’s
generalized functions on a manifold U — G°(U), U C X.

The sheaf U — AN(U) is fine (as well as U +— Ep(0)). This implies
that HY(R™,N) = 0, ¢ > 1. Thus, G(U) = Em(U)/N(U) and GC(U) =
EC(U)/NC(U). The sheaf property of Colombeau’s generalized functions
on R" is proved directly by checking conditions (*) and (**).

Damsma and de Roever [11] have defined the sheaf of ultrafunctions on
a manifold by using a simplified version of Colombeau’s theory. They imbed
distribution densities into ultrafunctions via de Rham’s regularizations. By
the use of families A7, we can reformulate their definitions in [11] of the sheaf
of ultrafunctions which we denote here by U — GF(U), U C X.

Theorem 4 ([6]). The sheaves U — ELL(U), U — NE(U), U — GR(U),
U C X, are isomorphic with the sheaves U — EG(U), U — NC(U), U
GC(U), respectively.

We will use the notation from the beginning of this section. Let (X, &),
(Xu k') € F,p=kKo &' and ¢° € A:. If for every coordinate system

k:X.— X.CR" (X, is open in X) there is a function
§ X X, 3 (6°,3) > Gu(¢,) € Em(Xe) (resp. € N(X.))

such that for every k,x’ € A and every K CC &'(X. N X,.) there exists
gg > 0 such that

(7) #*GK(¢€’T’,) = Gn’(¢5’z,) = Gn(¢€a#(z,))’ £ <€g,z € f(’ :

we call the system G = {G,} a moderate function on X; G € EHL(X) (resp.
a null function on X; G € N¥(X)). We use the notation G, = Go k™1,
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Theorem 5. The vector spaces NH(,X:) and EX(X) are closed under mul-
tiplication GR = {G.R,}. Moreover, N7 (X) is an ideal of £1(X).

Proof. 1t is a consequence of similar properties for algebras of Colom-
beau’s functions on an open subset of R™. [

Definition 1. The space of Colombeau’s generalized functions on X, GH(X)
is defined by GH(X) = EL(X)/NH(X). Their elements are G = {G,},
where G is represented by G.(¢°, - ) € Em(Xx).

_ Let U be an open set in X. We define EB(U), NHE(U) and GH(U) =
EL(U)/NH(U) in an appropriate way.

Theorem 6 ([6]).

(i) Let F' be an atlas for X. If for every € A! we have a moderate
function G, € Em(Xk) (resp. N(Xx)) and (7) is valid when k and
' belong to F', then there exists one and only one moderate function
G ¢ ﬁﬁ-(X) (resp. G € NH(X)) such that G o k™! = G, for every
KeEA.

In particular, GH(X) is uniquely determined by an atlas F!.
(ii) The presheaf U — GH(U), U C X is a sheaf.
(iii) The sheaves

8) Uw EGWU), U NOWU), U G°(U), UC X

cgetermineﬂniquely spaces of moderate, null and generalized functions
Ef(X), NH(X) and GH(X), respectively. Conversely, the spaces
EE(X), NH(X) and G (X) in a unique way determine sheaves in

(8)-

The notions of equality in (g.d) sense and in associated sense are intro-
duced in G¥(X) in an obvious way.

Let v = {ux} be a distribution on X (u € D'/(X)). Recall, F = (X, &)
is a maximal family of coordinate systems and u. € D'(X,), X, = x(X,).
Then the embedding D’(X) — GH(X) is defined by u — Cdu = (Cdus).
Clearly, it is determined by any atlas in the sense of Theorem 6 (i).
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We investigated in [6] the space GH(X) which is accommodated to
the definition of distributions on a manifold (cf. [8, Section 6.3]). Here,
we present just the motivation for the definition of G#(X) (see also [5]).

We will use the same notation as in the previous paragraph for the
manifold X and its maximal coordinate system F = {(X,, )|k € A}.

Let Uy and U; be open sets in X, u: U; — U; be a diffeomorphism and
u = (ux) be a distribution on Us. Then p*Cd v ~ Cd p*u but

(9) p*Cdu # Cdy*u.

This will be proved in [6]. Because of that we define £7(X), NH(X)
and consequently GH(X) in a way such that equality holds in (9).

Let u: Q; — Qs be a C*—diffeomorphism and K, be a sequence of
compact sets such that K,, CC Knt1, Use, Kn = Q. Let (¢°) € A§. There
exists £, such that,

for z € K, and £ < &,, the function

1 e (BT (p(z)+el)-z
(e = | Ty () <1
0, € > 1

is well defined.

The construction implies that (¢°) € Ap. In fact, it belongs to .qu /2]’
where [g/2] is the integer part of ¢/2. It was proved in [5] and used there
for the definition of u® : £ar(Q2) — Em (1) (resp. N (Q3) = M(Qy)) and of
u® : G(R2) — G(Q4) as follows. '

Let R(¢°,y) € Em(N2). Then,
(1B R)(¢°,z) = R(#°, ) = R(¢°, u(z))-
This is an element of Epr(£21).
Thus, we define u® : G(Q2) — G(Q1) by u®G = [u® R], where G = [R].

Theorem 7 ([5]).

(i) u® (N (2)) = N() and p® (Em(Q2)) = Em()-
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(1) p®(Cdf) = Cd(p®f), f € D'(Qa).

Let (X.,k), (Xo,&") € F, p = ko0&l and ¢¢ € A,. Let (¢°) be
defined as above. A family G = {G,} is called a moderate function on X;
G € EE(X) (resp. a null function on X; G € A(X)) if the functions

Af X Xy 3 (¢5,2) = Gu(¢°,7) € Em(Xx) (resp. € N(X,)), k€A,

satisfy the following condition:

For every k,k' € A and every K CC K'(Xx N X,) there exists
€o > 0 such that :

pOG (65, 2) = Gu(¢%,2') = G(¢°, u(2")), € < 0,2’ € K.

Definition 2. The space of Colombeau’s generalized functions on X, GH(X)
is defined by GH(X) = EfL(X)/NH(X). Their elements are G = {G.},
where G is represented by G (¢, ) € Epr(Xy)-

Let U be an open set in X. We define E(U), NH(U) and GH(U) =
EL(U)/NHE(U) in an appropriate way.
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