AN UNIVALENCE CRITERION AND THE SCHWARZIAN DERIVATIVE

Horiana Ovesea

Department of Mathematics "Transilvania" University 2200 Brasov, Romania

Abstract

In this note we obtain a univalence criterion for a class of functions defined by an integral operator and in a particular case we find the well-known condition for univalency established by Nehari [1].

AMS Mathematics Subject Classification (1991): 30D10 Key words and phrases: univalent functions, Schwarzian derivative

1. Introduction

We denote by U_r the disk of z-plane, $U_r = \{z \in \mathbb{C} : |z| < r\}$ where $r \in (0,1], U_1 = U, U^* = U \setminus \{0\}$ and $I = [0,\infty)$.

Let A be the class of functions f which are analytic in U with f(0) = 0 and f'(0) = 1.

Theorem A. ([1]). Let $f \in A$. If for all $z \in U$

(1)
$$|\{f;z\}| \le \frac{2}{(1-|z|^2)^2},$$

where

(2)
$$\{f;z\} = \left(\frac{f''(z)}{f'(z)}\right)' - \frac{1}{2} \left(\frac{f''(z)}{f'(z)}\right)^2$$

then the function f is univalent in U.

2. Preliminaries

Definition 1. A function $L: U \times I \rightarrow \mathbb{C}$ is called a Loewner chain if

$$L(z,t) = e^t z + a_2(t)z^2 + \dots, \quad |z| < 1$$

is analytic and univalent in U for each $t \in I$ and if $L(z,s) \prec L(z,t)$, $0 \le s \le t < \infty$, where by \prec we denote the relation of subordination.

Theorem B. ([2]). Let r be a real number, $r \in (0,1]$. Let $L(z,t) = a_1(t)z + a_2(t)z^2 + ..., a_1(t) \neq 0$, be analytic in U_r for all $t \in I$, locally absolutely continuous in I and locally uniform with respect to U_r .

For almost all $t \in I$ suppose

$$z \frac{\partial L(z,t)}{\partial z} = p(z,t) \frac{\partial L(z,t)}{\partial t}, \ \forall z \in U_r,$$

where p(z,t) is analytic in U and satisfies $Re\ p(z,t) > 0,\ z \in U,\ t \in I$.

If $|a_1(t)| \to \infty$ for $t \to \infty$ and $\{L(z,t)/a_1(t)\}$ forms a normal family in U_r , then, for each $t \in I$, L(z,t) has an analytic and univalent extension to the whole disk U.

3. Main results

Theorem 1. Let $f \in A$ and let α be a complex number, $\operatorname{Re} \alpha > 0$. If

(3)
$$\left| \frac{(1-|z|^{2\alpha})^2}{2\alpha^2|z|^{2\alpha}} (z^2\{f;z\} + (1-\alpha)\frac{zf''(z)}{f'(z)}) \right| \le 1,$$

for all $z \in U^*$, then the function F_{α} ,

(4)
$$F_{\alpha}(z) = \left(\alpha \int_{0}^{z} u^{\alpha-1} f'(u) du\right)^{1/\alpha}$$

is analytic and univalent in U.

Proof. Let us prove that there exists a real number $r, r \in (0, 1]$ such that the function $L: U_r \times I \to \mathbb{C}$, defined formally by

(5)
$$L(z,t) = \left[\alpha \int_{0}^{e^{-t}z} u^{\alpha-1} f'(u) du + \frac{(e^{\alpha t} - e^{-\alpha t}) z^{\alpha} f'(e^{-t}z)}{1 - \frac{e^{2\alpha t} - 1}{2\alpha} \frac{e^{-t} z f''(e^{-t}z)}{f'(e^{-t}z)}} \right]^{1/\alpha}$$

is analytic in U_r for all $t \in I$.

Because $f \in A$ we have

$$f(z) = z + a_2 z^2 + ... + a_n z^z + ..., \ \forall z \in U.$$

Let us denote by

(6)
$$g_1(z,t) = \alpha \int_{0}^{e^{-t}z} u^{\alpha-1} f'(u) du.$$

We obtain $g_1(z,t) = (e^{-t}z)^{\alpha} + \frac{2\alpha a_2}{\alpha+1}(e^{-t}z)^{\alpha+1} + \dots$ and we observe that

(7)
$$g_1(z,t) = z^{\alpha} g_2(z,t), \text{ where}$$

(8)
$$g_2(z,t) = e^{-\alpha t} + \sum_{n=2}^{\infty} \frac{n\alpha}{n+\alpha-1} a_n e^{-(n+\alpha-1)t} z^{n-1}.$$

The function g_2 is analytic in U for all $t \in I$, since

$$\overline{\lim_{n\to\infty}}\sqrt[n]{\left|\frac{n\alpha}{n+\alpha-1}a_ne^{-(n+\alpha-1)t}\right|}=e^{-t}\cdot\overline{\lim_{n\to\infty}}\sqrt[n]{|a_n|}.$$

It is clear that if $z \in U$, then $e^{-t}z \in U$ for all $t \in I$ and because f'(0) = 1, there is a disk U_{r_1} , $0 < r_1 \le 1$ in which $f'(e^{-t}z) \ne 0$ for all $t \ge 0$. From the analyticity of f it follows that the function g_3 is also analytic in U_{r_1} , where

(9)
$$g_3(z,y) = 1 - \frac{e^{2\alpha t} - 1}{2\alpha} \frac{e^{-t} z f''(e^{-t} z)}{f'(e^{-t} z)}.$$

We have $g_3(0,t) = 1$ and then there is a disk U_{r_2} , $0 < r_2 \le r_1$ in which $g_3(z,t) \ne 0$ for all $t \ge 0$.

Then the function

(10)
$$g_4(z,t) = g_2(z,t) + (e^{\alpha t} - e^{-\alpha t}) \frac{f'(e^{-t}z)}{g_3(z,t)}$$

is also analytic in U_{τ_2} and $g_4(0,t) = e^{\alpha t}$.

Since $g_4(0,t) \neq 0$ for all $t \in I$, there is a disk U_τ , $0 < r \le r_2$ in which $g_4(z,t) \neq 0$ for all $t \in I$ and we can choose an analytic branch of $[g_4(z,t)]^{1/\alpha}$, denoted by g(z,t). We choose the branch which is equal to e^t at the origin.

From (5) - (10) it results that the relation (5) may be written as

(11)
$$L(z,t) = z \cdot g(z,t)$$

and hence we obtain that the function L(z,t) is analytic in U_{τ} ,

$$L(z,t) = e^t z + a_2(t)z^2 + \dots, \ \forall z \in U_r, \ \forall t \in I.$$

L(z,t) is an analytic function in U_r for all $t \in I$ and then it follows that there is a number r_3 , $0 < r_3 < r$ and a positive constant $K = K(r_3)$ such that

$$\left|L(z,t)/e^{t}\right| < K, \ \forall z \in U_{r_3}, \ t \geq 0.$$

Then, by Montel's theorem, it results that $\{L(z,t)/e^t\}$ is a normal family in U_{τ_3} .

From (11) we have

(12)
$$\frac{\partial L(z,t)}{\partial t} = z \cdot \frac{\partial g(z,t)}{\partial t}.$$

It is clear that $\frac{\partial g(z,t)}{\partial t}$ is an analytic function U_{τ_3} and then $\frac{\partial L(z,t)}{\partial t}$ is too. Then, for all fixed numbers T>0 and r_4 , $0< r_4< r_3$, there exists a constant $K_1>0$ (which depends on T and r_4) such that

$$\left| rac{\partial L(z,t)}{\partial t}
ight| < K_1, \ orall z \in U_{r_4} \ ext{ and } t \in [0,T].$$

Therefore, the function L(z,t) is locally absolutely continuous in $[0,\infty)$, locally uniform with respect to U_{r_4} .

Since $\frac{\partial L(z,t)}{\partial t}$ is analytic in U_{r_4} , from (12) it results that there is a number r_0 , $0 < r_0 < r_4$, such that $\frac{1}{z} \cdot \frac{\partial L(z,t)}{\partial t} \neq 0$, $\forall z \in U_{r_0}$, and then the function

$$p(z,t) = z \cdot \frac{\partial L(z,t)}{\partial z} / \frac{\partial L(z,t)}{\partial t}$$

is analytic in U_{r_0} for all $t \geq 0$.

In order to prove that the function p(z,t) has an analytic extension with positive real part in U, to for all $t \geq 0$, it is sufficient to prove that the function w(z,t) defined in U_{r_0} by

$$w(z,t) = \frac{p(z,t) - 1}{p(z,t) + 1}$$

can be continued analytically in U, |w(z,t)| < 1 for all $z \in U$ and $t \ge 0$.

After computation we obtain:

(13)
$$w(z,t) = \frac{(e^{\alpha t} - e^{-\alpha t})^2}{2\alpha^2} e^{-2t} z^2 \{f; e^{-t}z\} + \frac{1-\alpha}{2\alpha^2} (e^{\alpha t} - e^{-\alpha t})^2 \frac{e^{-t}zf''(e^{-t}z)}{f'(e^{-t}z)}.$$

From (3) we deduce that $f'(z) \neq 0$ for all $z \in U$ and then the function w(z,t) is analytic in the unit disk U.

We have

(14)
$$w(0,t) = 0$$
 and $w(z,0) = 0$

Let now a fixed number $t,\ t>0,\ z\in U,\ z\neq 0$. In this case the function w(z,t) is analytic in \overline{U} because $|e^{-t}z|\leq e^{-t}<1$, for all $z\in \overline{U}$. Using the maximum principle, for $z\in U$ and t>0 we have

(15)
$$|w(z,t)| < \max_{|\xi|=1} |w(\xi,t)| = |w(e^{i\theta},t)|,$$

where $\theta = \theta(t)$ is a real number.

Let us denote $u = e^{-t} \cdot e^{i\theta}$. Then $|u| = e^{-t}$ and from (13) we obtain

$$|w(e^{i\theta},t)| = \left| \frac{(1-|u|^{2\alpha})^2}{2\alpha^2 |u|^{2\alpha}} (u^2 \{f;u\} + (1-\alpha) \frac{uf''(u)}{f'(u)}) \right|.$$

Because $u \in U$, the relation (3) implies $|w(e^{i\theta}, t)| \le 1$ and from (14) and (15) we conclude that |w(z, t)| < 1 for all $z \in U$ and $t \ge 0$.

From Theorem B it results that the function L(z,t) has an analytic and univalent extension to the whole disk U, for each $t \in I$. For t = 0 we conclude that the function

$$L(z,0) = \left(lpha \int\limits_0^z u^{lpha-1} f'(u) du
ight)^{1/lpha} \equiv F_lpha(z)$$

is analytic and univalent in U.

Remark. For $\alpha = 1$, the inequality (3) becomes (1), $F_1 = f$ and then Theorem 1 becomes Theorem A.

Theorem 2. Let $f \in A$ and let α be a complex number, $\operatorname{Re} \alpha > 0$. If

(16)
$$\frac{(1-|z|^{2\operatorname{Re}\alpha})^2}{2(\operatorname{Re}\alpha)^2} \left| z^2 \{f; z\} + (1+\alpha) \frac{zf''(z)}{f'(z)} \right| \le |z|^{2\operatorname{Re}\alpha}$$

for all $z \in U$, then the function F_{α} defined by (4) is analytic and univalent in U.

Proof. For all $z \in U$, $z \neq 0$ and $\operatorname{Re} \alpha > 0$ we have

(17)
$$\left| \frac{1 - |z|^{2\alpha}}{\alpha} \right| \le \frac{1 - |z|^{2\operatorname{Re}\alpha}}{\operatorname{Re}\alpha}$$

Indeed,

$$\left|\frac{1-|z|^{2\alpha}}{\alpha}\right| = \left|\frac{1-e^{2\alpha\ln|z|}}{\alpha}\right| = \left|2\ln|z| \cdot \int_{0}^{1} e^{2\alpha t \ln|z|} dt\right| \le \frac{1}{2}$$

$$\leq -2\ln|z|\int\limits_0^1|e^{2\alpha ln|z|}|dt=-2\ln|z|\int\limits_0^1e^{2\operatorname{Re}\alpha tln|z|}dt=\frac{1-|z|^{2\operatorname{Re}\alpha}}{\operatorname{Re}\alpha}$$

In view of (17), the hypothesis of Theorem 1 are satisfied and hence the function F_{α} defined by (4) is analytic and univalent in U.

For $\alpha = 1 + ib$, by Theorem 2 we obtain the following.

Corollary 1. Let $f \in A$ and let b by any real numbers. If

$$\frac{(1-|z|^2)^2}{2}|z^2\{f;z\}-ib\frac{zf''(z)}{f'(z)}|\leq |z|^2,$$

for all $z \in U$, the function F_{1+ib} ,

$$F_{1+ib}(z) = \left[(1+ib) \int_{0}^{z} u^{ib} f'(u) du \right]^{1/(1+ib)}$$

is analytic and univalent in U.

Example. Let α be a natural number. The function

(18)
$$F(z) = \frac{z}{(1 - z^{\alpha})^{1/\alpha}}$$

is analytic and univalent in U.

Proof. Let us consider the function $f \in A$,

(19)
$$f'(z) = \frac{1}{(1-z^{\alpha})^2}, \quad \forall z \in U.$$

We obtain

$$\{f;z\} = \frac{2\alpha(\alpha-1)z^{\alpha-2}}{1-z^{\alpha}}$$
 and $z^2\{f;z\} + (1-\alpha)\frac{zf''(z)}{f'(z)} = 0.$

Then, from Theorem 1 it results that the function

$$(\alpha \int_{0}^{z} u^{\alpha-1} f'(u) du)^{1/\alpha} = (\alpha \int_{0}^{z} \frac{u^{\alpha-1}}{(1-u^{\alpha})^{2}} du)^{1/\alpha} = \frac{z}{(1-z^{\alpha})^{1/\alpha}}$$

is analytic and univalent in U.

References

- [1] Nehari, Z., The Schwartzian derivative and schlicht functions, Bull. Amer. Math. Soc. 55(1949), 545-551.
- [2] Pommerenke, Ch., Über die Subordination analytischer Funktion, J. Reine Angew. Math., 218 (1965), 159-173.
- [3] Pommeremke, Ch., Univalent Functions, Vandenhoech Ruprecht in Göttingen, 1975.

Received by the editors January 17, 1996.