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Abstract

In this note we obtain a univalence criterion for a class of functions
defined by an integral operator and in a particular case we find the
well-known condition for univalency established by Nehari [1].
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1. Introduction

We denote by U, the disk of z—plane, U, = {z € C : |z| < r} where
r € (0,1, U, =U, U*=U\ {0} and I = [0,00).

Let A be the class of functions f which are analytic in U with f(0) =0
and f'(0)=1.
Theorem A. ([1]). Let f € A. If forall z€ U
2

(1) {f;z}] < EDE
where

then the function f is univalent in U.
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2. Preliminaries

Definition 1. A function L : U x I — C is called a Loewner chain if
L(z,t) = ez + ay(t)2* + ..., |2| <1

is analytic and univalent in U for each t € I and if L(z,s) < L(z,t), 0 <
s <t < o0, where by < we denote the relation of subordination.

Theorem B. ([2]). Let r be a real number, r € (0,1]. Let L(z,t) = a1(t)2+
az(t)z% + ... ;a1(t) # 0, be analytic in U, for allt € I, locally absolutely
continuous in I and locally uniform with respect to U.,.

For almost all ¢t € I suppose

0L(2,t) 0L(z,t)
z £ = p(z,1) 5 Vze U,,

where p(z,t) is analytic in U and satisfies Re p(2,t) >0, z€ U, t € I.

If |a;(t)] — oo for t — oo and {L(z,t)/a1(t)} forms a normal family in
U,, then, for each ¢t € I, L(z,t) has an analytic and univalent extension to
the whole disk U.

3. Main results

Theorem 1. Let f € A and let o be a compler number, Rea > 0. If

(1 — |2[*)?

(3) 2a2|z|2cx (zz{f;z}‘l'(l—a)i”(f)) <1,

f'(2)
for all z € U*, then the function Fy,

z

(@) Fu() = (a / w £ (w)du)t/

0

s analytic and univalent in U.
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Proof. Let us prove that there exists a real number r, r € (0, 1] such that
the function L : U, x I — C, defined formally by

e~z

0 1 [o [ esms e

20t _ 1 e_tzf"(e_tz)
20 fl(e7t2)

1-—

is analytic in U, for all ¢t € I.

Because f € A we have
f(R)=z+a2*+ ...+ a2+ ..., Yz eU.
Let us denote by

(6) g1(2,t) = @ / w1 f'(u)du.

2
We obtain g1(z,t) = (e '2)* + —————Ti (e7t2)**! 4+ ... and we observe that
(7) 91(z,t) = 2%ga(2,t), where
= g1 ~-(ntoa-1)t ,n-1
(8) gg(zt) e +Zn+a—1 n€ 2"

The function g is analytic in U for all ¢t € I, since

no

i nft___ -~ —(nta-1)t
lim e lane

n—oo

_ -—t .7 n
=e n]ir%o Vax].

It is clear that if 2 € U, then e~z € U for all ¢ € I and because f/'(0) = 1,
there is a disk Uy,, 0 < 71 < 1 in which f'(e~'z) # 0 for all £ > 0. From the
analyticity of f it follows that the function g3 is also analytic in U,,, where

_ e2at -1 e"’zf”(e_tz)
(9) g3(2,y) =1- % ff(e‘tz)
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We have g3(0,t) = 1 and then there is a disk U,,, 0 < ro < r; in which
g3(z,t) # 0 for all t > 0.

Then the function

f'(e7*2)

(10) 94(z,t) = ga(z,t) + (e"t — e 5.0

is also analytic in U,, and g4(0,t) = **.

Since g4(0,t) # 0 for all t € I, there is a disk U, 0 < r < ry in which
ga(z,t) # 0 for all t € I and we can choose an analytic branch of [g4(z, )]/,
denoted by g(z,t). We choose the branch which is equal to €' at the origin.

From (5) - (10) it results that the relation (5) may be written as
(11) L(z,t)=z-g(z,t)
and hence we obtain that the function L(z,t) is analytic in U,

L(z,t) = ez 4 ap(t)2* + ..., Vz€ U,, Vtel.

L(z,t) is an analytic function in U, for all ¢t € I and then it follows that
there is a number r3, 0 < r3 < r and a positive constant K = K(r3) such
that

’L(z, t)/et’ <K, VzeU,, t>0.

Then, by Montel’s theorem, it results that {L(z,t)/e'} is a normal family
in Us,.

From (11) we have

(12) 8L(g§,t) _,. 8g((r;, t).

OL(z,t) .

1) . . .
It is clear that %z) is an analytic function U;, and then R vE

too. Then, for all fixed numbers T' > 0 and r4, 0 < r4 < 73, there exists a
constant K1 > 0 (which depends on T and r4) such that

< Ky, Yz€U,, and te[0,T].

laL(z, )
ot
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Therefore, the function L(z,t) is locally absolutely continuous in [0, o),
locally uniform with respect to U,,.

L(z,t
Since 9 ((,;’ ) is analytic in U,,, from (12) it results that there is a
L(z,1
number rg, 0 < 79 < 74, such that 1 . % # 0, Vz € Uy,, and then the
z
function SL(x.1) /OL(xD) :
2,t 2,1
pzt)=z 0z / ot

is analytic in Uy, for all t > 0.

In order to prove that the function p(z,t) has an analytic extension with
positive real part in U, to for all ¢ > 0, it is sufficient to prove that the
function w(z,t) defined in U,, by

z,t)—1
wsh = igz, t; 1
can be continued analytically in U, |w¢z,t)] < 1 for all z € U and ¢t > 0.
After computation we obtain:
(et — e=ot)2

502 e 222 {fre 2} +
a

(13) w(z,t) =
l-a,, _atn2€ t2f"(e7t2)
T ) ey

From (3) we deduce that f'(z) # 0 for all z € U and then the function
w(z,t) is analytic in the unit disk U. ’

We have

+

(14) w(0,t) =0 and w(z,0)=0
Let now a fixed number ¢, t > 0, z € U, z # 0. In this case the function

w(z,t) is analytic in U because |e~*z| < e~* < 1, for all z € U. Using the
maximum principle, for z € U and ¢ > 0 we have

(15) lw(z,1)| < T?IffIW(E,t)I = u(e?, 1),

where # = 6(t) is a real number.
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t

Let us denote u = e~* - €'’. Then |u| = e~ and from (13) we obtain

uf”(u)
f'(w)

e, 0 = |1 arpy 4 (1 - a)

202|ul2*

).

Because u € U, the relation (3) implies |w(e®,t)| < 1 and from (14) and
(15) we conclude that |w(z,t)| < 1 forall z€ U and t > 0.

From Theorem B it results that the function L(z,?) has an analytic and
univalent extension to the whole disk U, for each t € I. For t = 0 we conclude
that the function

1.0) = (a ]ua-lm)du)”a _F.(2)

is analytic and univalent in U.

Remark. For a = 1, the inequality (3) becomes (1), F;1 = f and then
Theorem 1 becomes Theorem A.

Theorem 2. Let f € A and let o be a complez number, Rea > 0. If

(1 _ lzl2Rea)2

2(Rea)? 2{f; Z}'*'(l'f'clf)M < |2[2Rea

f'(z)

for all z € U, then the function F, defined by (4) is analytic and univalent
in U.

(16)

Proof. For all z€ U, z # 0 and Rea > 0 we have

1— 20 1-— 2Re o
o Re
Indeed,
1
1— |2|2a 1 — e2aln]e| 2utln
:’ = 2ln|z|-/e athnlzl gy| <
[
0

1— |2[2Rea

1 1
< —2In|z] / je2ednlel | g = _21n |2 / Heatnielgy = 17
(8
0 0
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In view of (17), the hypothesis of Theorem 1 are satisfied and hence the
function F, defined by (4) is analytic and univalent in U.

For @ = 1 + b, by Theorem 2 we obtain the following.

Corollary 1. Let f € A and let b by any real numbers. If

A -1 IZI TR M C)) 2
| {fi2} - b ()I_II

for all z € U, the function Fii,

Frvis(2) = |(1+ib) / O

is analytic and univalent in U.

Example. Let « be a natural number. The function

z

(18) F&) = 4o

is analytic and univalent in U.

Proof. Let us consider the function f € A,

roon 1
We obtain
(ish = 2O e -

Then, from Theorem 1 it results that the function

0

is analytic and univalent in U.
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