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Abstract

Recently, E. Pap showed that the adjoint operator T for any lin-
ear operator T with the domain being a normed K-space is bounded.
E. Pap and C. Swartz proved a locally convex version of this Adjoint
Theorem. In this paper a generalization is given of the Adjoint The-
orem on operators with the domain being a locally convex A-space,
which was introduced by R. Li and C. Swartz. The obtained results
are applied to derive a version of the Closed Graph Theorem. Some
limitations for further generalizations of the Closed Graph Theorem
and Banach-Steinhaus Theorem with respect to infrabarrelledness are
pointed out.
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1. Introduction

In [3], a new wide class of spaces, called A-spaces, was introduced for which
a general version of the Uniform Boundedness Principle holds. It is very
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interesting that an A-space does not need to be complete or barrelled, prop-
erties which are common assumptions in some of the fundamental theorems
of the functional analysis.

We shall prove in this paper a generalization of the Adjoint Theorem
from [5]. We have a normed space version of the Adjoint Theorem in a
different way than in [5]. We have the normed space version of the Adjoint
Theorem 1, [4], that the adjoint operator T’ for any linear space is bounded.
We generalize this theorem on operators with domains which are locally
convex A-spaces. We apply the Adjoint Theorem to obtain a version of the
Closed Graph Theorem. As a consequence we obtain that every infrabar-
relled A-space is barralled. At the end we shall prove that we cannot drop
the assumption of infrabarrelledness in the Closed Graph Theorem and in
the Banach-Steinhaus Theorem.

2. The Adjoint Theorem

If 7 is the vector topology of a vector space X, a sequence {z,} from X is
said to be 7-K convergent if every subsequence of {z,} has a subsequence
{2, } such that the series > 7o, z,, is T-convergent to an element z € X.

A subset B C X is said to be 7-K bounded if for every sequence {z,}
from B and every scalar sequence {t,} such that ¢, — 0, the sequence
{tnzn} is 7-K convergent ([1], section 3).

Definition 1. (/3]). A topological vector space (X,T) is said to be an A-
space if every T-bounded subset of X is 7-K bounded.

There are a large number of important A-spaces, many of which are
not complete or K-spaces (see Proposition 5, Corollary 6, Corollary 7 and
Corollary 8 in [3]). For example, if X is a B-space, then (X, (X, X’)) is an
A-space which is not barrelled, and not even infrabarrelled (see Theorem 5).

Let X and Y be two locally convex Hausdorft topological vector spaces
~and X' and Y’ the corresponding dual spaces, respectively. Let T : X — Y
be a linear operator. The domain of the adjoint operator, 7”, is defined to
be

D(ThY={y'eY :y'Te X'}
and 77 : D(T’) — X' is defined by Ty’ = y'T.
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We have the following generalization of Pap’s adjoint theorem.

Theorem 1. T : D(T') — X' carries o(Y',Y) bounded subsets of D(T") to
subsets of X' which are uniformly bounded on o(X,X')— K bounded subsets
of X.

Proof. Let B C D(1") be o(Y’,Y) bounded and A C X be o(X,X’')—
K bounded. It suffices to show that if {y;} C B,{zx} C A, then
{< Ty}, zx >} is bounded. For this let tx > 0,¢x — 0.

Consider the matrix [< /8, Ty}, \/T;z; >] = M. We show that M sat-
isfies conditions (I) and (II) of the Basic Matrix Theorem 2.2 of [1]. Since
{y/}is o(Y’,Y) bounded, {+/t;y/} is o(Y’,Y) convergent to 0, so for each
J we have < \/Tiy!, T\/Tz; >=< /T;T'y;,/T;z; >— 0 as i — oo, i.e. the
columns of M converge to 0 and condition (I) holds.

For condition (II) let {m;} be any increasing sequence of positive inte-
gers. There is a subsequence {n;} of {m;} such that the series Z;";l \/tn;Tn,
is o(X, X') convergent to an element z € X. Therefore,

oo
> < VET'Yy \ftay 3ny >=< VET'Y},z >=< vy}, Tz) = 0
i=

and (II) holds.

By the Basic Matrix Theorem 2.2 of [1], < t;T'yl,z; >— 0 and
{< T'y!,z; >} is bounded.

Theorem 2. Let (X,7) be an A-space for some topology T which is com-
patible with respect to the duality between X and X', i.e. o(X,X')C 1 C
7(X,X'). Then T' carries o(Y',Y) bounded subsets of D(T') to strongly
bounded subsets of X'.

Proof. Let B be a o(X,X’) bounded subset of X. Then it is also 7-
bounded, and since (X,7) is an A-space, it is 7-K bounded. Hence, B is
o(X,X') - K bounded. By Theorem 1 the operator T” carries o(Y',Y)
bounded subsets of D(T”) to subsets of X’ which are uniformly bounded on
(X, X') - K bounded subsets of X, hence, on o(X, X’) bounded sets.

There exist A-spaces which are not K-spaces (a topological vector space
(X,7)is a K-space if every sequence which converges to 0is 7-K convergent).
Namely, (IP, weak), s < p < 0o, is an A-space which is not a K-space.
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If X is a normed A-space, then by Proposition 9 from [3] it is also a K-
space and therefore Theorem 2 reduces in this case to the adjoint theorem
from [4] and Theorem 11 in [1], section 3. By this normed Adjoint Theorem
T’ carries norm bounded subsets of D(T") into norm bounded subsets of X',
i.e., T’ is a bounded linear operator.

If we let K(X,X') be the topology of uniform convergence on (X', X)
- K bounded subsets of X', then we have by Proposition 1 from [7] that
K(X,X') is stronger than the Mackey topology 7(X,X’) (can be strictly
stronger, Example 5 in [7] but still has the same bounded sets as the Mackey
topology-Theorem 3 in [7]). The topology K (X, X') can be strictly weaker
than the strong topology (Example 6 in [7]).

3. Closed Graph Theorem

Let B(Y,Y") be the strong topology on Y and let §*(Y,Y’) be the topology
on Y of uniform convergence on S(Y’,Y) bounded subsets of Y.

By Theorem 2, in an analogous way as in [5], we have

Theorem 3. Let (X,7) be an A-space for some compatible topology T, i.e.
o(X,XYCrCr(X,X"). If D(T") =Y/, then T is continuous with respect
to f*(X,X’) and B(Y,Y’).

A locally convex space Y is an infra-Ptak space (B,-complete) if every
o(Y',Y) dense subspace D C Y’ which is such that DN U®, where U® is the
polar of U in Y’, is o(Y',Y) closed for every neighbourhood U of 0 in Y, is
o(Y',Y) closed ([3],34.3).

By Theorems 2 and 3 and Theorem 4 from [5] if X is infrabarrelied and
Y an infra-Ptdk space, T is closed, and T carries equicontinuous subsets of
D(T’) to strongly bounded subsets of X', then D(T") = Y’ there follows

Theorem 4. Let X be an infrabarrelled A-space for some compatible topol-
ogy 7. LetY be an infra-Ptdk space. If T is closed then T is continuous
with respect to the original topology of X, 0*(X,X') and B(Y,Y’).

In [6], we have proved in an easy way a Closed Graph Theorem without
the assumption that X is an A-space.
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The preceding theorem and Mahowald’s theorem ([2], 34.7 (1)) imply

Theorem 5. Fvery infrabarrelled A-space is barrelled.

This is Corollary 12 from [3], proved in a different way.

4. Some limitations for further generalizations

It is easy to see that we cannot drop in Theorem 4 the assumption of in-
frabarrelledness. Namely, if we suppose that Theorem 4 holds for any A-
space X, then, by Mahowald’s theorem, X would have to be a barrelled
space. But (X, weak) is an A-space which is not barrelled.

In [3], a Uniform Boundedness Theorem is proved when the domain space
is any topological vector A-space. But for its relative - the Banach-Steinhaus
theorem, the situation is not the same. Namely, as was pointed out in
[3], section 4, the infrabarrelledness assumption is in some sense necessary,
but then by Theorem 5 this A-space is barrelled. For infrabarrelied spaces
there is the following version of the Banach-Steinhaus theorem (see[2], 39.5
Remark 2):

(BS) Let X be infrabarrelled and Y locally convex. Let A;,i € I, be
a net in L(X,Y) such that for every z € X the net A; is 73-bounded in
L(X,Y) and A;X converges to an element Agz € Y. Then Ag € L(X,Y)
and the convergence of A; to Ag is uniform on every precompact set in X.

We shall prove that even a version of (BS), when X is an A-space (with-
out infrabarrelledness) is not true. Namely, if we suppose that (BS) is true
when X is an arbitrary A-space, then using the same proof as the proof
of Theorem 6 from [5] we would obtain: Let X be an A-space and Y be
an infra-Ptdk space. If T is closed and T” carries equicontinuous subsets
of D(T") to strongly bounded subsets of X', then D(T') = Y’. Hence by
Theorems 2 and 3 we would obtain the Closed Graph Theorem when X is
any A-space, which is impossible by the remarks at the beginning of this
section.
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