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Abstract

We present a moment problem in the context of vector lattices
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1. Introduction

If g is a real-valued function of bounded variation on the unit interval I of
the real line, the numbers

1
ax :/ tkdg(t), keN.
0
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are called the moments of g. A sequence of real numbers (a,,n € N) is
said to give a solution of the moment problem if there exists a function g of
bounded variation on I such that

1
ak:/ tkdg(t)
0

forke N.

For every sequence of real numbers ag,k# € N and every pair of non-
negative integers n, k, set

Alay = Z(—-l)j ( ;L ) kg
7=0

The sequence (ax,k € N) is called completely monotone if A™ap > 0 for
all integers n,k > 0. Hausdorff [3] has shown that for a sequence (ax) of
real numbers to be the moment sequence of some non-decreasing g (this
case being of particular interest), it is necessary and sufficient that (ag)
be completely monotone. So, completely monotone sequence gives a non-
decreasing solution of the moment problem.

In this paper we will show that the results permit a generalization to the
situation where (ax) is a completely monotone sequence of elements of an
ordered vector space the definition being the same. This leads to a gener-
alization of the representation theorem for positive linear operators on the
space C'(I) of continuous real functions on I. Schaefer [4] has considered
a completely monotone sequence with values in an ordered locally convex
vector space V satisfying some conditions. The results obtained are simi-
lar but distinct - neither contains the other, because there need not exist a
Hausdorff vector topology on V for which each upper bounded monotone in-
creasing sequence converges in the topology to its supremum [6]. In [2] there
is given a simple example of a boundedly complete vector lattice exhibiting
this pathology.

2. Assumptions and preliminaries

We consider a (conditionally) o-complete, weakly o-distributive vector lat-
tice V satisfying the following two conditions:
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(i) Any interval [a,b] C V is sequentially o-compact, i.e. for every se-
quence (a;) C
a, ere is an o-convergent subsequence (a,,) (o-means order).

b] there i g b ; d

(ii) Every chain in V is at most countable.

We shall need the following notations and simple results (valid for an
arbitrary l-group). Let f :[0,1] — V be a function. We define, as usually,
V(D,f) = S 1£(5:) — f(a)l, P(D,f) = S,(f(b) - f(a))*, N(D,f) =
S(F(5)— £(a)), V(f) = V(£ la,b]) = sup{V(D, f);  all divisions D of
[a,b]}, similarly P(f) = ..., N(f) = .... We have V(D,f) = P(D,f)+
N(D, f).

Lemma 1. V(f)=P(f)+N(f).

Proof. N(f) > N(D,f), P(f) > P(D,f) for every D. It follows U(f) +
P(f)> N(D,f)+ P(D, f)=V(D, f) for every D. It follows that N(f) +

P(f) 2 V(f).

For any decompositions D; and D, there exists a common refinement
D. Then we have

N(Dy1, f)+ P(Ds3, f) < N(D, f)+ P(D, f)=V(D, ) < V({)
Fix D3. Then
N(f) =sup{N (D1, f); D1} < V(f) — P(D2,f)

P(D2, f) < V(f) = N(f) forall D
It follows P(f) < V(f) — N(f) which implies N(f) + P(f) < V(f). O

Theorem 1. The function f has o-bounded variation if and only if f is a
difference of two non-decreasing functions, namely, f(z) = (p(z)+ f(z)) —
n(z), where p(z) = P(£,[0,]), n(z) = N(7,[0,2]).

Proof. If v(z) = V(f,[0,z]), then v(z) = p(z) + n(z) by Lemma 1. For a
particular D, P(D, f)— N(D, f) = f(b) — f(a), hence

P(f) = f(b) - f(a)+ N(f)

p(z) = f(z) - f(0) + n(z)
f(z) = (p(2) + £(0)) - n(z). O
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3. The second Helly-Bray theorem

For the following theorem it suffices the second condition to be satisfied and
a V to be o-complete weakly o-distributive I-group (lattice ordered group).

Theorem 2. To every sequence ( f,,) of non-decreasing functions f, : [0,1] —
[a,b] C V there are a non-decreasing function f and a subsequence (fy,)
of (fn) such that f,,(z) — f(z), whenever f is ”continuous® at z, i.e.

sup{f(y);y < z} = inf{f(2); 2 > z}.

Proof. Let D be a dense subset of [0,1], D = {z1,z2,...}, let (f,) be a
sequence of non-decreasing functions. The condition (ii) implies that there
exists a subsequence (f!) of (f,) such that (f}(z;)) converges. Further,
there exists a subsequence (f2) of (f}) such that (f2(z2)) converges, etc.

Consider (f7). It is a subsequence of (fy), and (f?(zk)) converges for
every k.
Denote f} = fn,, fo(zk) = 0—lim;_,c0 fn;(zk) and define f : [0,1] — [a, b]
by
f(z) = sup{fo(y);y € D,y < z}

Evidently, f is non-decreasing and f(z) = fo(z) for z € D.

Let f be continuous at z. Then there exists a sequence (yx) C D such
that y¢ < z, f(yx) /" f(z) and a sequence (zz) C D such that z > z,
f(zk) \« f(z). Since in weakly o-distributive I-groups o-convergence is
equivalent to the D-convergence, there exist a;; | 0, b;; | 0 (j — oo) such
that for every ¢ € NV there exists ko such that for every & > ko

(@)= f(ye) = |(f(z) = flye)] < Vae¢(;)

f(zx) = f(z) = |f(z) = fla)| < vbiw(i)

There exist ¢;; | 0 such that for every ¢ we have \ a;,i)+V bipi) < V Cig(i)-
Hence we have

lim sup fn,(2) < limsup fr,(2) = f(2k) <
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< f(z)+ vb¢¢(f) < flye) + Vciw(i) =

= liminf fn, (y¢) + V cioiy < lim inf fr,(z) + V cioti)
Hence for every ¢ € NV we have
lim sup fai(z) — liminf fn,(z) < V Ci(i)
and the weak o-distributivity implies

lim sup fn, () — lim inf fy,(z) < 0.0

4. The first Helly Bray theorem

Theorem 3. Let(g,) be a sequence of non-decreasing functioms g, : [0,1] —
[e,0] C V, gn(z) — g(z) for every point of "continuity“ of g, g being non-
decreasing. Let h :< 0,1 >— R be a continuous function. Then

/ hdg, — | hdg
[a,8] [a,b]

Proof. Since points of continuity of g form a dense subset in [0, 1] for every

integer k£ > 1 there exist points zgk),zgk), zgck) such that 0 = zgk) <
zgk) <...< zgc) =1, sz) fk)l < i3

Put hi(0) = h(0), hx(1) = (1), and hi(z) = h(z{¥)) if 2 € [z¥), 2.
Then hy is a simple function, Ay — h uniformly and

[ edon = 3 e )an(e) - 0a(zB)) -

3 me(®)(0() - g()) = [ budg,n - o0

Uniform convergence of hg to h implies that for every n there exists kg such
that for all £ > ko and for all z € [0,1] we have |hg(z) — h(z)| < 1/n and
there exist C' € V and (a,) € V, a, | 0 such that

| / hdgn — / hdg| < | / hdg — / hrdgal+
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-I-[/hkdgn— /hkdg|+|/hkdg— /hdgl <

< 2(9n(1) = 9n(O) + | [ hedgn— [ hud] + 2 (9(1) - 9(0)) <

1 1
<;C+|/hkdgn—/hkdg|<;C+ak

for fixed k. Therefore
/hdgn — /hdg. O

5. Moment theorem

Now we can prove our moment theorem.

Theorem 4. A sequence (ax) C V is the moment sequence of a non-decreasing
function g on I into V if and only if (ax) is completely monotone.

Proof. Let (ag,k € N) be completely monotone. For each positive integer
n define a step function g, with jumps at 7 for m = 0,1,...,n — 1 by the
following process. Let

a(j,n) = ( ’;' )(-1)”—1An-faj

for j =0,1,...,n — 1. Set g,(0) = 0,9,(1) = ag, and

m—1

gn(z) =Y a(j,n) (

§=0

m—1

m
<z < —).
n n

Extend g, to [0,1] by averaging g, at all jumps.
For each polynomial P(z) = 377, ¢;z? put

n

A(P) = cja;.

=0

Consider the Berstein polynomials

Bk, n)(@) 1= 3 (" ) Lyt -2y,

i=o N7
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and observe that

) Ak m) = | e dga()

0
for n,k € N.

Since (ax,k € N) is completely monotone, it is clear that

n
zg:la(j3n)|: ag.
7=0

Hence the functions gg, g1, ... are uniformly of bounded variation on [0, 1]
with variation ag. Each function g,, is non-decreasing. Therefore, by the
second Helly theorem (Theorem 2) there is a non-decreasing function g such
that g,,(z) — g(z),i — oo for z belonging to a dense subset of [0,1]. Then
by the first Helly theorem (Theorem 3)

1 1
lim [ t*dg,,(t) = / tkdg(t)
J—00 0 0

Therefore, by the formula (1) it suffices to show that
lim A(B(k,n)) = ak

n—oo
for k € N. For completeness we repeat the argument similar as in the

numerical case.

Since ag := A(B(0,n)), we may suppose that ¥ > 0. A direct calculation
verifies that

jE-1...G-k+1)
Z o). kD™

Indeed, ax = A(zk) and by the binomial theorem we can write

E— pk((]— )+ )k — ~jG-1...G-k+1) (n 2i(1 — gyn—i
SACRDEDIEDS ()sa-a

n(n—1)...(n—-k+1)

Consequently, the definition of A implies

n k-1

=MD, m)) = (AR by~ Y atin
j=k 7=0

2)
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for y = j/n. Since (nz —1)/(n — t) converges uniformly to z on [0,1], as
n — 00, it is clear that

fim A8 gk
n—oo =0 n—z

uniformly on [0,1]. Hence given € > 0, there is an ng > 0 such that

ny(ny—1)...(ny—k+ 1)
n(n—-1)...(n—k+1)

—yfl<e

for n > ng, y = j/n, and k < j < n. Moreover, we can choose ng so large
that

|Zy a(4,n)| < (= ) ap < €ap

for n > ng. Therefore, it follows from (2) that
lax — A(B(k,n))| < €(ao + ao)

for n > ng. O

6. Integral representation theorem

It is well known that every positive linear form on the space of C(I) is
presentable in the form

3) i~ " (t)dg(t)

where ¢ is a non-decreasing function. From the preceeding theorem we
obtain the following result.

Theorem 5. FEvery positive linear operator L on C(I) into V is presentable
in the form

1
(4) () = / £()da(t)

where q is a non-decreasing function on I into V. Conversely, every mapping
of the form (4) is positive.
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Thus (4) represents positive linear operators on C([) with values in V.

Proof. Put
L(t™) = a,, n=0,1,...

Take.

Aray = ;(—1)1' (7 Yawss =300 (7 ) mre) =

7=0
n
= L(E(—-l)j ( ’J" ) )y = L(t* 1 -t)™) >0
7=0
since L is positive. Hence, by preceeding theorem

L") = /O 1 t"dg(1)

for some non-decreasing function ¢ on I with values in V. By Weierstrass
theorem we can extend the last equality for every continuous function on
[.0
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