GENERALIZED MOMENT PROBLEM IN VECTOR LATTICES

Miloslav Duchoň

Mathematical Institute, Slovak Academy of Sciences Štefánikova 49, SK-814 73 Bratislava, Slovakia e-mail: duchon@mau.savba.sk

Beloslav Riečan

Mathematical Institute, Slovak Academy of Sciences Štefánikova 49, SK-814 73 Bratislava, Slovakia e-mail: riecan@mau.savba.sk

Abstract

We present a moment problem in the context of vector lattices

AMS Mathematics Subject Classification (1991): 28E10, 81P10 Key words and phrases: moment, vector lattice, completely monotone sequence, positive operator

1. Introduction

If g is a real-valued function of bounded variation on the unit interval I of the real line, the numbers

$$a_k = \int_0^1 t^k dg(t), \qquad k \in N.$$

are called the moments of g. A sequence of real numbers $(a_n, n \in N)$ is said to give a solution of the moment problem if there exists a function g of bounded variation on I such that

$$a_k = \int_0^1 t^k dg(t)$$

for $k \in N$.

For every sequence of real numbers $a_k, k \in N$ and every pair of non-negative integers n, k, set

$$\Delta^n a_k := \sum_{j=0}^n (-1)^j \begin{pmatrix} n \\ j \end{pmatrix} a_{k+j}$$

The sequence $(a_k, k \in N)$ is called completely monotone if $\Delta^n a_k \geq 0$ for all integers $n, k \geq 0$. Hausdorff [3] has shown that for a sequence (a_k) of real numbers to be the moment sequence of some non-decreasing g (this case being of particular interest), it is necessary and sufficient that (a_k) be completely monotone. So, completely monotone sequence gives a non-decreasing solution of the moment problem.

In this paper we will show that the results permit a generalization to the situation where (a_k) is a completely monotone sequence of elements of an ordered vector space the definition being the same. This leads to a generalization of the representation theorem for positive linear operators on the space C(I) of continuous real functions on I. Schaefer [4] has considered a completely monotone sequence with values in an ordered locally convex vector space V satisfying some conditions. The results obtained are similar but distinct — neither contains the other, because there need not exist a Hausdorff vector topology on V for which each upper bounded monotone increasing sequence converges in the topology to its supremum [6]. In [2] there is given a simple example of a boundedly complete vector lattice exhibiting this pathology.

2. Assumptions and preliminaries

We consider a (conditionally) σ -complete, weakly σ -distributive vector lattice V satisfying the following two conditions:

- (i) Any interval $[a,b] \subset V$ is sequentially o-compact, i.e. for every sequence $(a_i) \subset [a,b]$ there is an o-convergent subsequence (a_{n_i}) (o-means order).
 - (ii) Every chain in V is at most countable.

We shall need the following notations and simple results (valid for an arbitrary l-group). Let $f:[0,1]\to V$ be a function. We define, as usually, $V(D,f)=\sum_i|f(b_i)-f(a_i)|,\ P(D,f)=\sum_i(f(b_i)-f(a_i))^+,\ N(D,f)=\sum_i(f(b_i)-f(a_i))^-,\ V(f)=V(f,[a,b])=\sup\{V(D,f);\ \text{ all divisions }D\text{ of }[a,b]\},$ similarly $P(f)=\ldots,\ N(f)=\ldots$ We have V(D,f)=P(D,f)+N(D,f).

Lemma 1. V(f)=P(f)+N(f).

Proof. $N(f) \ge N(D, f)$, $P(f) \ge P(D, f)$ for every D. It follows $U(f) + P(f) \ge N(D, f) + P(D, f) = V(D, f)$ for every D. It follows that $N(f) + P(f) \ge V(f)$.

For any decompositions D_1 and D_2 there exists a common refinement D. Then we have

$$N(D_1, f) + P(D_2, f) \le N(D, f) + P(D, f) = V(D, f) \le V(f)$$

Fix D_2 . Then

$$N(f) = \sup\{N(D_1, f); D_1\} \le V(f) - P(D_2, f)$$

 $P(D_2, f) \le V(f) - N(f) \text{ for all } D_2$

It follows $P(f) \leq V(f) - N(f)$ which implies $N(f) + P(f) \leq V(f)$. \square

Theorem 1. The function f has o-bounded variation if and only if f is a difference of two non-decreasing functions, namely, f(x) = (p(x) + f(x)) - n(x), where p(x) = P(f, [0, x]), n(x) = N(f, [0, x]).

Proof. If v(x) = V(f, [0, x]), then v(x) = p(x) + n(x) by Lemma 1. For a particular D, P(D, f) - N(D, f) = f(b) - f(a), hence

$$P(f) = f(b) - f(a) + N(f)$$
$$p(x) = f(x) - f(0) + n(x)$$
$$f(x) = (p(x) + f(0)) - n(x). \square$$

3. The second Helly-Bray theorem

For the following theorem it suffices the second condition to be satisfied and a V to be σ -complete weakly σ -distributive l-group (lattice ordered group).

Theorem 2. To every sequence (f_n) of non-decreasing functions $f_n:[0,1] \to [a,b] \subset V$ there are a non-decreasing function f and a subsequence (f_{n_i}) of (f_n) such that $f_{n_i}(x) \to f(x)$, whenever f is "continuous" at x, i.e. $\sup\{f(y); y < x\} = \inf\{f(z); z > x\}$.

Proof. Let D be a dense subset of [0,1], $D = \{x_1, x_2, \ldots\}$, let (f_n) be a sequence of non-decreasing functions. The condition (ii) implies that there exists a subsequence (f_n^1) of (f_n) such that $(f_n^1(x_1))$ converges. Further, there exists a subsequence (f_n^2) of (f_n^1) such that $(f_n^2(x_2))$ converges, etc.

Consider (f_n^n) . It is a subsequence of (f_n) , and $(f_n^n(x_k))$ converges for every k.

Denote $f_i^i=f_{n_i},\,f_0(x_k)=o-\lim_{i\to\infty}f_{n_i}(x_k)$ and define $f:[0,1]\to[a,b]$ by

$$f(x) = \sup\{f_0(y); y \in D, y \le x\}$$

Evidently, f is non-decreasing and $f(x) = f_0(x)$ for $x \in D$.

Let f be continuous at x. Then there exists a sequence $(y_k) \subset D$ such that $y_k < x$, $f(y_k) \nearrow f(x)$ and a sequence $(z_k) \subset D$ such that $z_k > x$, $f(z_k) \searrow f(x)$. Since in weakly σ -distributive l-groups o-convergence is equivalent to the D-convergence, there exist $a_{ij} \downarrow 0$, $b_{ij} \downarrow 0$ $(j \to \infty)$ such that for every $\varphi \in N^N$ there exists k_0 such that for every $k \geq k_0$

$$f(x) - f(y_k) = |(f(x) - f(y_k))| < \bigvee_{i \in \varphi(i)} a_{i\varphi(i)}$$

$$f(z_k) - f(x) = |f(x) - f(z_k)| < \bigvee_i b_{i\varphi(i)}$$

There exist $c_{ij} \downarrow 0$ such that for every φ we have $\bigvee a_{i\varphi(i)} + \bigvee b_{i\varphi(i)} < \bigvee c_{i\varphi(i)}$. Hence we have

$$\limsup_i f_{n_i}(x) \leq \limsup_i f_{n_i}(z_k) = f(z_k) <$$

$$< f(x) + \bigvee_{i} b_{i\varphi(i)} < f(y_k) + \bigvee_{i} c_{i\varphi(i)} =$$

$$= \liminf_{i} f_{n_i}(y_k) + \bigvee_{i} c_{i\varphi(i)} \le \liminf_{i} f_{n_i}(x) + \bigvee_{i} c_{i\varphi(i)}$$

Hence for every $\varphi \in N^N$ we have

$$\lim\sup_{i} f_{n_{i}}(x) - \lim\inf_{i} f_{n_{i}}(x) < \bigvee c_{i\varphi(i)}$$

and the weak σ -distributivity implies

$$\limsup_{i} f_{n_i}(x) - \liminf_{i} f_{n_i}(x) \leq 0. \square$$

4. The first Helly Bray theorem

Theorem 3. Let (g_n) be a sequence of non-decreasing functions $g_n : [0,1] \to [a,b] \subset V$, $g_n(x) \to g(x)$ for every point of "continuity" of g, g being non-decreasing. Let $h : < 0, 1 > \to R$ be a continuous function. Then

$$\int_{[a,b]} h dg_n
ightarrow \int_{[a,b]} h dg$$

Proof. Since points of continuity of g form a dense subset in [0,1] for every integer k>1 there exist points $x_0^{(k)}, x_1^{(k)}, \ldots, x_k^{(k)}$ such that $0=x_0^{(k)} < x_1^{(k)} < \ldots < x_k^{(k)} = 1, x_i^{(k)} - x_{i-1}^{(k)} < \frac{1}{k-1}$.

Put $h_k(0) = h(0), h_k(1) = h(1), \text{ and } h_k(x) = h(x_{i-1}^{(k)}) \text{ if } x \in [x_{i-1}^{(k)}, x_i^{(k)}].$ Then h_k is a simple function, $h_k \to h$ uniformly and

$$\int h_k dg_n = \sum h_k(x_{i-1}^{(k)})(g_n(x_i^{(k)}) - g_n(x_{i-1}^{(k)})) \to$$

$$\sum h_k(x_{i-1}^{(k)})(g(x_i^{(k)}) - g(x_{i-1}^{(k)})) = \int h_k dg, n \to \infty$$

Uniform convergence of h_k to h implies that for every n there exists k_0 such that for all $k > k_0$ and for all $x \in [0,1]$ we have $|h_k(x) - h(x)| < 1/n$ and there exist $C \in V$ and $(a_n) \in V$, $a_n \downarrow 0$ such that

$$|\int hdg_n-\int hdg|\leq |\int hdg_n-\int h_kdg_n|+$$

$$egin{align*} +|\int h_k dg_n - \int h_k dg| + |\int h_k dg - \int h dg| < \ < rac{1}{n}(g_n(1) - g_n(0)) + |\int h_k dg_n - \int h_k dg| + rac{1}{n}(g(1) - g(0)) < \ < rac{1}{n}C + |\int h_k dg_n - \int h_k dg| < rac{1}{n}C + a_k \end{align*}$$

for fixed k. Therefore

$$\int hdg_n
ightarrow \int hdg. \ \Box$$

5. Moment theorem

Now we can prove our moment theorem.

Theorem 4. A sequence $(a_k) \subset V$ is the moment sequence of a non-decreasing function g on I into V if and only if (a_k) is completely monotone.

Proof. Let $(a_k, k \in N)$ be completely monotone. For each positive integer n define a step function g_n with jumps at $\frac{m}{n}$ for $m = 0, 1, \ldots, n-1$ by the following process. Let

$$a(j,n) := \binom{n}{j} (-1)^{n-j} \Delta^{n-j} a_j$$

for j = 0, 1, ..., n - 1. Set $g_n(0) = 0, g_n(1) = a_0$, and

$$g_n(x) := \sum_{j=0}^{m-1} a(j,n) \quad (\frac{m-1}{n} < x < \frac{m}{n}).$$

Extend g_n to [0,1] by averaging g_n at all jumps.

For each polynomial $P(x) = \sum_{j=0}^{n} c_j x^j$ put

$$\Lambda(P) = \sum_{j=0}^{n} c_j a_j.$$

Consider the Berstein polynomials

$$B(k,n)(x) := \sum_{j=0}^{n} \binom{n}{j} (\frac{j}{n})^k x^k (1-x)^{n-j},$$

and observe that

(1)
$$\Lambda(B(k,n)) = \int_0^1 t^k dg_n(t)$$

for $n, k \in N$.

Since $(a_k, k \in N)$ is completely monotone, it is clear that

$$\sum_{j=0}^n |a(j,n)| = a_0.$$

Hence the functions g_0, g_1, \ldots are uniformly of bounded variation on [0,1] with variation a_0 . Each function g_n is non-decreasing. Therefore, by the second Helly theorem (Theorem 2) there is a non-decreasing function g such that $g_{n_i}(x) \to g(x), i \to \infty$ for x belonging to a dense subset of [0,1]. Then by the first Helly theorem (Theorem 3)

$$\lim_{j\to\infty}\int_0^1 t^k dg_{n_j}(t) = \int_0^1 t^k dg(t)$$

Therefore, by the formula (1) it suffices to show that

$$\lim_{n\to\infty} \Lambda(B(k,n)) = a_k$$

for $k \in N$. For completeness we repeat the argument similar as in the numerical case.

Since $a_0 := \Lambda(B(0, n))$, we may suppose that k > 0. A direct calculation verifies that

$$a_k = \sum_{j=k}^n \frac{j(j-1)\dots(j-k+1)}{n(n-1)\dots(n-k+1)} a(j,n)$$

Indeed, $a_k = \Lambda(x^k)$ and by the binomial theorem we can write

$$x^{k} = x^{k}((1-x)+x)^{n-k} = \sum_{j=k}^{n} \frac{j(j-1)\dots(j-k+1)}{n(n-1)\dots(n-k+1)} \binom{n}{j} x^{j}(1-x)^{n-j}$$

Consequently, the definition of Λ implies

$$a_k - \Lambda(B(k,n)) = \sum_{j=k}^n \left(\frac{ny(ny-1)\dots(ny-k+1)}{n(n-1)\dots(n-k+1)} - y^k\right) a(j,n) - \sum_{j=0}^{k-1} y^k a(j,n)$$
(2)

for y = j/n. Since (nx - i)/(n - i) converges uniformly to x on [0, 1], as $n \to \infty$, it is clear that

$$\lim_{n\to\infty} \Pi_{i=0}^{k-1} \frac{nx-i}{n-i} = x^k$$

uniformly on [0,1]. Hence given $\epsilon > 0$, there is an $n_0 > 0$ such that

$$\left|\frac{ny(ny-1)\dots(ny-k+1)}{n(n-1)\dots(n-k+1)}-y^k\right|<\epsilon$$

for $n > n_0, y = j/n$, and $k \le j \le n$. Moreover, we can choose n_0 so large that

$$|\sum_{i=0}^{k-1} y^k a(j,n)| < (\frac{k}{n})^k a_0 < \epsilon a_0$$

for $n > n_0$. Therefore, it follows from (2) that

$$|a_k - \Lambda(B(k,n))| < \epsilon(a_0 + a_0)$$

for $n > n_0$. \square

6. Integral representation theorem

It is well known that every positive linear form on the space of $\mathcal{C}(I)$ is presentable in the form

$$f \to \int_0^1 f(t)dq(t)$$

where q is a non-decreasing function. From the preceding theorem we obtain the following result.

Theorem 5. Every positive linear operator L on C(I) into V is presentable in the form

(4)
$$L(f) = \int_0^1 f(t)dq(t)$$

where q is a non-decreasing function on I into V. Conversely, every mapping of the form (4) is positive.

Thus (4) represents positive linear operators on C(I) with values in V. **Proof.** Put

$$L(t^n) = a_n, \qquad n = 0, 1, \dots$$

Take

$$\Delta^n a_k := \sum_{j=0}^n (-1)^j \binom{n}{j} a_{k+j} = \sum_{j=0}^n (-1)^j \binom{n}{j} L(t^{k+j}) =$$

$$= L(\sum_{j=0}^n (-1)^j \binom{n}{j} t^{k+j}) = L(t^k (1-t)^n) \ge 0$$

since L is positive. Hence, by preceding theorem

$$L(t^n) = \int_0^1 t^n dq(t)$$

for some non-decreasing function q on I with values in V. By Weierstrass theorem we can extend the last equality for every continuous function on I. \Box

References

- [1] Cristescu, R., Ordered Vector Spaces and Linear Operators, Abacus Press, Kent, 1976.
- [2] Floyd, E. E., Boolean algebras with pathological order topologies, Pacific J. Math., 5 (1955), 687-689.
- [3] Hausdorff, F., Momentprobleme für ein endliches Interval, Math. Z., 16 (1923), 220-248.
- [4] Schaefer, H. H., A generalized moment problem, Math. Annalen, 146 (1962), 325-330.
- [5] Widder, D. V., The Laplace Transform, Princeton University Press, Princeton, 1946.
- [6] Wright, J. D. M., Measures with values in a partially ordered vector space, Proc. London Math. Soc. (3), 25 (1972), 675-688.

Received by the editors August 18, 1995.