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Abstract

We extend the class of measures defined on orthomodular lattices
or posets, orthoalgebras, and on effect algebras for which the Nikodym
boundedness theorem holds. We present variants for finitely additive
measures and completely additive measures. As a corollary, we obtain
Nikodym’s boundedness theorem for measures defined on the system
L(H) of all closed subspaces of a real or complex Hilbert space H. This
result will be proved without using the Bair category theorem.
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1. Introduction

The Nikodym boundedness theorem is one of the most important results of
measure theory, and it says [7] that if a system M of o-additive measures
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on a o-algebra § of subsets of a non-void set {2, is pointwisely bounded, i.e.,
for any £ € &, there is a positive constant K(F) such that

[u(E)l < K(E) forall pe M,

then M is uniformly bounded, i.e., there is a positive constant K such that

|(E) < K forallue€ M andall £ €8.

The original proof of Nikodym is based on the Bair category theorem [7],
Thm IV.9.8 and on the fact that any o-algebra § is distributive. It is known
that the Bair category theorem implies the principle of dependent choice [3]
in set theory, and it is related to a weaker form of axiom of choice. So, any
“elementary” proof (i.e. without using the Bair category theorem) is very
desirable. Such a successful approach is an application of the Mikusinski—
Antosik diagonal theorem [15], [18].

Any attempt to extend the Nikodym boundedness theorem for quantum
structures (structures like orthomodular posets, orthomodular lattices, or-
thoalgebras or effect algebras) strikes against the distributivity which fails,
as usually, in these structures. Therefore, we have finite o-additive measures
which are unbounded, so Nikodym’s boundedness theorem can fail even for
a system comnsisting of one o-additive measure. Such a situation is, for exam-
ple, in the most important case of quantum structures, the system L(H) of
all closed subspaces of a real or complex Hilbert space H. Gleason [11] (see
also [8], Prop. 3.2.4) showed that for any finite-dimensional Hilbert space
H, dim H > 2, there are plenty of unbounded o-additive measures on L(H).

Anyway, there are some generalizations of Nikodym’s boundedness the-
orem for different types of quantum structures: de Lucia and Pap {16] for
D-posets (effect algebras), de Maria and Morales [17], Hamhalter [13] for
the projection lattice of a von Neumann algebra, the author for L(H) [9].

In the present article we generalize the Nikodym boundedness theorem
for measures on orthomodular lattices having a Gleason property and for
regular measures. As corollaries we obtain new proofs for Gleason measures
on L(H) and on the projection lattice of a von Neumann algebra (see [13],

[9])-
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2. Measures on effect algebras

An effect algebra is a non-empty set L with two particular elements 0, 1, and
with a partial binary operation @ : L x L — L such that for all a,b,c € L
we have

(EAil) ifa® b€ L, then b a € L and a P b = b P a (commutativity);

(EAll)) fb@®ce Landa®(bdc)€ L,thenadbe L and (adb)Dce L,
and a @ (b ¢) = (a ® b) P ¢ (associativity);

(EAiii) for any a € L there is a unique b € L such that a @ b is defined, and
a® b =1 (orthocomplementation);

(EAiv) if 1 @ a is defined, then a = 0 (zero-one law).

Let a and b be two elements of an effect algebra L. We say that (i) a is
orthogonal to b and write a L b iff a® b is defined in L; (ii) a is less than or
equal to b and write a < b iff there exists an element ¢ € I such that a L ¢
and a®c = b (in this case we also write b > a); (iil) b is the orthocomplement
of a iff b is a (unique) element of L such that b L a and a@® b =1 and it is

written as al.

If @ < b, for the element ¢ in (ii) with a @ ¢ = b we write ¢ = b & a, and
c is called the difference of @ and b. It is evident that

bSa=(a®bh)t.

An atom of L is a non-zero element a € L such thatif b < aforbe L,
then either b = a or b = 0. An effect algebra L is said to be atomic if for
any a € L\ {0} there exists an atom b of L such that b < a.

Let L be an effect algebra. Let F = {a;,...,a,} be a finite sequence in
L. Recursively we define for n > 3

(21) a]@"'@an::(alaa"'@an—l)@an’

supposing that @y @ --- D a,—1 and (a1 @ - D an-1) ® an exist in L. From
the associativity of @ in effect algebras we conclude that (2.1) is correctly
defined. By definition we put a1 H-- -®Pa, =a;ifn=1,and a1 P---Pa, =0
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if n = 0. Then for any permutation (%1,...,%,) of (1,...,n) and any k& with
1 <k <n we have

(22) a1®"'®an=ai1®"'®ain7

(2.3) G ® - Dap=(a1D---Dak) D (ak+1 D D ay).

We say that a finite sequence F' = {ay,...,a,} in L is -orthogonal if
a1 @ - D ay, exists in L. In this case we say that F has a @-sum, @], ai,
defined via

n

(2.4) @a;:alea---@an.

i=1

It is clear that two elements @ and b of L are orthogonal, i.e. a L b, iff
{a,b} is @-orthogonal. .

An arbitrary system G = {a;}ier of not necessarily different elements
of L is @-orthogonal iff, for every finite subset F of I, the system {a;}icr
is @-orthogonal. If G = {ai}ier is @-orthogonal, so is any {a;}:cg for
any J C I. An @-orthogonal system G = {a;}ier of L has a @-sum in L,
written as €, ; a;, iff in L there exists the join

(2.5) Pa:=\VPa

14 F ieF
where F' runs over all finite subsets in I. In this case, we also write P G :=
@ie[ ai.

It is evident that if G = {ay, ..., a,} is @-orthogonal, then the @-sums
defined by (2.4) and (2.5) coincide.

If (EAiv) is changed to

(OA) if a @ a is defined, then a = 0 (consistency),
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we say that L is an orthoalgebra [10].

An orthomodular poset (OMP in abbreviation) is an orthoalgebra L such
that if, for a,b € L we have a L b, then a Vb € L. If it is the case, then
aVb=adb. In particular, if ¢ < d, ¢,d € L,then dOc=dAct = (dtve)l.

A so-called Wright triangle [10] is the most simple case of orthoalgebra
which is not an OMP.

An OMP L which is a lattice is said to be an orthomodular lattice (OML
in abbreviation). An OMP [ is said to be a o-OMP if, for any sequence
{a,} of mutually orthogonal elements of L, \/,, a, € L, in this case, \/, a, =

P, an.

Example 2.1. Let L(H) be the system of all closed subspaces of a real or
complex Hilbert space H. Then L(H) is a complete OML. It is used as the
most important example of quantum mechanics models.

Example 2.2. Let S be a real or complex inner product space and denote
by E(S) the set of all splitting subspaces of S, i.e. of all subspaces M C §
such that M + ML = S, where M1 := {z € §: (z,y) = 0 for any y € M}.
Then E(S) is an OMP which is a 0-OMP iff S is complete [8], Thm 4.1.6.

Example 2.3. Let A be a von Neumann algebra of operators acting on
a complex Hilbert space H. The system P(.A) of all orthogonal projections
from A is a complete QML called the projection lattice of A.

Example 2.4. The set £(H) of all Hermitian operators A on H such that
O < A < I, where I is the identity operator on H, is an effect algebra
(which is not an orthoalgebra); a partial ordering < is defined via A < B iff
(Az,z) < (Bz,z), z € H,and C = A®B iff (Az,z)+(Bz,z) = (Cz,2),z €
H.

Example 2.5. Let the closed interval [0, 1] be ordered by the natural
ordering. Let g be any continuous, increasing mapping from [0, 1] onto
[0, 1] such that g(0) = 0 and g(1) = 1 (called a generator). Define a partial
binary operation @, via

a®yb:=g7"'(g(a) — 9())

supposing g(a)+g(b) < 1. Then L with 0,1, and @, is an effect algebra which
is a distributive lattice and no orthoalgebra. In particular, if g = id[g 1}, then
a®iyb=a+b.
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A real valued mapping m on an orthoalgebra L is said to be a (finitely
additive) measure if

m(a ® b) = m(a) + m(b), a,b € L.

It is clear that m(0) = 0.
If for a mapping m : L — R we have
(2.6) m(@Pa) = m(a),
iel i€l

whenever D, a; exists in L, m is said to be a o-additive or completely addi-
tive measure if (2.6) holds for any countable or any index set I, respectively.
If a measure m is positive, then

m(a) < m(b) whenever a < b.

A positive measure m with m(1) = 1 is said to be a state, the system of
all states on L is denoted by ©(L). A measure m is said to be (i) Jordan if
there are two positive measures m; and mg on L such that m = my — my;
(i) bounded if sup{|m(a)| : a € L} < co. We denote by J(L) and W(L)
the sets of all Jordan measures of bounded measures on L, respectively. It
is evident that Q(L) C J(L) C W(L).

Let m be a bounded measure on L. We define real valued mappings
mt,m~,|m| on L as follows

m*(a) := supm(b), m(a):= —biI<1f m(b), and |m|:=m*4+m",
b<a Sa

for any @ € L. Then m™*, m™,|m| are said to be a positive, negative and total
variation, respectively, of m.

Notice that m~ is equal to (—m)*. We have the following simple prop-
erties of variations:

(i) m*(a) < m*(b) whenever a < b and a,b € L.

(ii) m* is superadditive, i.e., if €, a; is defined in L, then m* (P, a;) >
>2im*(a:).
(iil) (i) and (ii) holds also for m~ and |m]|.
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(iv) |m(a)| < |m|(a) for any a € L.

(v) If a € L is an atom, then
m*(a) = max{0,m(a)},m™(a) = — inf{0, m(a)}, and |m|(a) = |m(a)|.

(vi) m(a) = m*(a) —m~(a), a € L.
For any m € W(L), we denote by
lmlls := sup{|m(a)| : a € L} and [|m]], := [m|(1)

the variation norm and the sup-norm of m, respectively. According to [19],
we have, for any a € L,

|m|(a) = sup(m(b) — m(a © b))legno(2.7)
b<a

= 2sup |m(b)| — |m(a)| = 2 sup m(b) — m(a).
b<a b<a

3. Measures with Gleason property

Let L be a 0-OML, i.e. L is a 0-OMP which is also a lattice. Then L is also
a o-lattice. An observable of L is a mapping z : B(R) — L, where B(R) is
the Borel o-algebra of the real line R, such that (i) z(R) = 1; (ii) z(R\ F) =
z(E)! for any E € B(R); (iil) (U2, Ei) = V2, z(E:) for any sequence
{E;}2, in B(R). An observable z is bounded if there exits a compact set
C such that z(C) = 1. The spectrum of z is the set o(z) := (J{C : C is
compact, (C) = 1}. The norm of a bounded observable z is the expression

||z|| := sup{|A| : X € o(2)}.

Denote by O(L) the set of all bounded observables on L. In particular,
the question observable associated with any element a € L, i.e. an observable
q. such that ¢,({0}) = et, ¢.({1}) = a, is a bounded observable on L. Two
observables z and y are compatible, and we write z < y, if there is a Boolean
subalgebra of L containing both ranges R(z) and R(y) of z and y, where
R(z) = {z(F) : E € B(R)}. For observables and calculus of compatible
observables see [20].

If z is an observable and m is a measure on L, then m, : B(R) — R is
a usual signed measure on B(R). The expectation of z in a state m is the
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expression
(3.1) m() ::/ X dm.(3)
o(x)

if the integral on the right-hand side of (3.1) exists and is finite.

A non-void system M of states on L is said to be quite fullif, for a,b € L,
the inclusion {m € M : m(a) = 1} C {m € M : m(b) = 1} implies a < b.
A sum logic is a 0-OMP L with a quite full system S(L) of all o-additive
states on L such that, for any pair of bounded observables z and y on L
there is unique bounded observable z € O(L) such that

m(z) = m(z) + m(y), m € S(L),

and we write z = 2 + y. Then O(L) is a real normed space.

If m € §(L), then the mapping ¢, : O(L) — R such that ¢, (z) =
m(z), ¢ € O(L),is a bounded linear functional on O(L) such that ||¢n,|| = 1.
A measure m € W(L) is said to have a Gleason property if the functional
®m : ga — m(a), a € L, can be extended to a bounded linear functional on
O(L).

Now we formulate Nikodym’s boundedness theorem for measures with
the Gleason property.

Theorem 3.1. Let {m, : v € T'} be a family of bounded finitely additive
measures having the Gleason property on the sum logic L for which O(L)
is a real Banach space. Let, for any a € L, there exists a positive constant
K (a) such that the inequality

(3:2) Ima(a)] < K(a)

holds for any v € I. Then there is a positive constant K such that the
inequality

(3.3) Imy(a)| < K

holds for any v € T and any a € L.
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Proof. Let x be an arbitrary but fixed bounded observable on L. Then the
range R(z) = {z(F) : E € B(R)} is a Boolean o-subalgebra of L. The
restriction m.|R(z) of m., to R(z) is a bounded finitely additive measure
on R(z) for any y € I'. By [1], Thm 8, there exists a constant K, > 0 such
that

(3.4) sup{|my(a)|: a € R(z), v € T} < K.

Take a bounded function f, on O(L) defined via f,(q.) = m(a), g, €
O(L), and let

(35) y= Z’\iQa.‘
1=1

be a bounded observable on L such that A; > 0fori=1,...,n and a4,...a,
are mutually orthogonal elements from R(z). Assume that m.,(a1),...,m(ak)
> 0, and m,(ak41),...,m(a,) < 0, and define a = Vf:__l a;and b=V, .

An easy calculation gives us

n k n
@ = Y himy(a) < Yo hmy(a) = Y2 Aima(ai)
=1 i=1 i=k+1

max (| (a)] + lmy(3)) < 2 Ko lyl

IN

Any bounded observable y with o(y) C [0,00) and with the range in R(z) is
a uniform limit of a sequence {y;} of mutually compatible observables with
ranges in R(z) of the form (3.5). Therefore,

| £ ()l € 2K, (]y]|.

Since z = z+ — z~, where o(z*),0(z”) C [0,0), z* < z~, and R(z™),
R(z~) C R(z), we have |f,(z*¥)| < 2K, [|z*|| < 2 K, ||zl], and | f5(27)| £
2K,||z"||] € 2K, ||z||, consequently,

(3.6) [fv(z)] < 4 Kz||=]].

Applying the Banach-Steinhaus principle of uniform boundedness to the
Banach space O(L), ([7] or [1] for an “elementary” proof), there exists a
constant K > 0 such that

IHll < K forany yeT.
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Finally,

[m(a)l = [£4(ga)| <51l lgall < K -1 = K,

which concludes the proof. O

Remark 3.1. (i) If L = P(A), where A is a von Neumann algebra without
I, as direct summand, then any bounded finitely additive measure has the
Gleason property, [4], and, in addition, O(P(A)) is a real Banach space, be-
cause any bounded observable on P(.4) uniquely corresponds to a Hermitian
operator A from .A and vice versa. Hence, Nikodym’s boundedness theo-
rem holds for any system of bounded finitely additive measures on P(.A). In
particular, if A = B(H),dim H > 3, then L(.A) is isomorphic with L(H),
and Nikodym’s boundedness theorem holds for bounded finitely additive
measures on L(H).

(ii) Any completely additive measure on P(.A) of a von Neumann algebra
A without I,,n > 2 as direct summand is by Dorofeev [5] bounded. Hence
by [4], it has the Gleason property. Consequently, the result of Hamhalter
[13] follows from Theorem 3.1.

(ii) If L = L(H), where dim H = oo, then any completely additive
measure m on L(H) is bounded [6], [8], Thm 3.2.20. Then for m there is a
unique Hermitian trace operator T on H such that the Gleason formula

(3.7) m(M) = tr(T Pyy), M € L(H)

holds, where Pps denotes the orthogonal projection from H onto M. Conse-
quently, any completely additive measure m has the Gleason property, and
the result from [9] follows also from Theorem 3.1

(iv) If L is a o-algebra S of subsets of a set ! # §, then any bounded
measure on § has the Gleason property [7], Thm 2.18-2.22, and Theorem
3.1 holds also for this case.

(v) Nikodym’s boundedness theorem is valid also for a system of bounded
finitely additive measures on the set of all effects, £(H ), of a complex Hilbert
space H. This follows from a simple fact that L(H) can be naturally em-
bedded into £(H) and applying the part (i).

We now generalize Theorem 3.1 for vector-valued measures.
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Let X be a normed space and L an orthoalgebra. The mapping v: L —
X is said to be a finitely additive vector-valued measure if

v(a®b) =v(a)+v(b), a,bc L.

v is bounded if sup{{|v(a)||: a € L} < oo.

Theorem 3.2. Let {v, : v € '} be a system of bounded finitely additive
vector-valued measures with values in a Banach space X, defined on a sum
logic L such that O(L) is a real Banach space. Let any bounded measure on
L has the Gleason property. Let, for any a € L, there is a positive constant
K(a) such that the inequality

|ly(a)l] < K(a)

holds for any v € T. Then there is a positive constant K such that the
inequality
|l (a)ll < K

holds for any v € T and any a € L.

Proof. Let ¢ be a linear continuous functional on X. Then, for any v € T,
the function m%(a) := ¢(v4(a)), a € L, is a complex-valued finitely addi-
tive measure on L. Separating the real and imaginary parts of m%(a), we
see that they are real-valued finitely additive measures on L having the
Gleason property. Using Theorem 3.1, we can find a constant K4 > 0
such |¢(v4(a))] < K, for any vy € T and any a € L. Therefore, the set
{vy(a) : a € L,y € T} is bounded in the weak topology. So this set is
bounded in the norm topology of X, which concludes the proof. O

4. Regular measures

Let K be a non-empty set of an effect algebra L. A real-valued mapping m
of L is said to be K-regular if given @ € L and given € > 0 there exists an
element b € K with b < a such that

|m(b) — m(a)| < e.

For example, if K = L, any m € RL is K-regular.



36 Anatolij Dvurecenskij

It is evident that if m is a K-regular mapping, then (i) 0 € K; (ii) if a is
an atom in L and m(a) # 0 and m(0) = 0, then a € K. We say that K is (i)
directed upwards if, for any by,bs € K, there is b € K such that b;,by < b;
(ii) densely upwards directed in L if, for any b;,b2 € K and any a € L with
b1,bs < a, there exists an element b € K with b < a such that b;,b2 < b; (iii)
P-dense in L if, for any a € L, there exists a €p-orthogonal system {b,}; in
K such that a = €p; b;.

For example, if K = P(S) is the system of all finite-dimensional sub-
spaces of an inner product space S, then P(S) is a densely upwards directed
system dense in E(S).

Proposition 4.1. Let m be a bounded K-regular measure on L. Then m™*
and m~ are K-regular mappings. If, in addition, K is densely directed up-
wards in L, then |m| is K-regular.

Proof. From the definition of m* we have that given € > 0 and a € L we can
find b; € L with b; < a such that m*(a) < m(b1) 4 ¢/2. The K-regularity of
m entails the existence of b € K with b < by such that |m(b;) — m(b)| < €/2.
Hence

m*(a) < m(by) + €¢/2 < m(b) + e <m*(b) +e

Since m~ = (—m)*, m~ is K-regular, too.

To prove the K-regularity of |m|, we use the K-regularity of both m*
and m~ which has been just established. Given a € L and € > 0 there exist
b1,b2 € K with b1,b; < @ and m*(a) < m*(b1)+¢€/2,m (a) < m™(ba) +¢/2.
For by, by there is an element b € K with b < a such that by,b; < b. Then

Iml(a) = m*(a)+m™(a) <m¥(b1) + m7(bs) + e
mt(b) + m~(b) + € = |m|(b) + €.0

IN

Proposition 4.2. Let Rx(L) be the set of all bounded K-regular measures
on an effect algebra L. Then (i) the null measure belongs to Rx(L); (ii) if
m € Rx(L) and o € R, then am € Rx(L); (iil) if K is densely upwards
directed in L, then my,mg € Rx(L) imply my + mg € Rx(L).

Proof. (i) and (ii) are evident. To prove (iii), we have that given a € L and
given € > 0 there exist two elements by,b; € K with by,by < a such that
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{mil(a) < |m;|(b;) + €/2 for ¢ = 1,2. For any b € K with b;,b; < b < a, we
have

Imil(a) + [ma|(a) < [m1|(b1) + [m2|(b2) + € < [ma|(b) + |maf(b) + €.
Hence

Imi(a©b)+ ma(a©b)| < [mi|(a©b)+|msl(a6b) < fmi(a) — |mi|(b)
' +  [m2l(a) — |ma|(b) <,

when we have used the superadditivity of total variations. O

Remark 4.1. If K is €)-dense and m is a completely additive measure,
then m is K-regular. The converse is not true, in general. For example, if S
is an inner product space, K := P(S5) is the system of all finite-dimensional
subspaces of §, then P(S) is €-dense in E(S) (see Example 2.2). By [8],
Thm 4.3.4, for any Jordan P(S)-regular measure on E(S), there exists a
unique Hermitian trace operator T on the completion S of § such that

(4.1) m(M)=tr(TPy), M € E(S),

where P; denotes the orthogonal projection from S onto the completion M
of M. Conversely, the right-hand side of (4.1) determines a Jordan P(S)-
regular measure on E(S). But if S is incomplete, then E(S) has no non-zero
Jordan completely additive measure [8], Thm 4.2.3.

Denote by F(L) the system of all @ € L such that there is a finite -
orthogonal system F of atoms in L with a = @{b € F}; if F = @, we define
@ 0 := 0. The elements of F(L) are said to be finite.

For example, in the Wright triangle F(L) = L.

Let a € L\ {0},then L, = {b € L: b < a} can be organized in a natural
way into an effect algebra with the greatest element a.

Lemma 4.1. Let m be a K-regular bounded measure on an effect algebra L.
Then, for any a € L, there exists an element b € K with a < b such that

(4.2) ()] > 31mi(a).
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Proof. By (2.7) we have
|m{(a) = 2sup |m(b)| — |m(a)| = 2sup m(b) — m(a).
b<a b<a

The K-regularity of m implies
|m|(a) =2 sup m(b)—m(a) =2 sup |[m(b)| - [m(a)l.

<a,be b<a,beX

If /m|(a) = 0, the statement (4.2) is evident. If |m|(a) > 0, put € = |m](a)/2.
Then there exists an element b € K with b < a such that

[m|(a) < 2|m(b)| + € — |m(a)| < 2|m(b)| + |m|(a)/2
which gives (4.2). O
We now present some partial results concerning the Nikodym bounded-

ness theorem for regular measures on effect algebras. First of all we formu-
late simple assertions:

Lemma 4.2. Let 3 N |zn| < 00, where {z,},eN 5 @ sequence of real
numbers. Then, there is a subset N° of N such that

1
(4.3) > za| 2 5 > |znl-
neN? neN
In addition, there is a finite subset N’ of N such that

1
(4.4) D a2 7 ) laal.

neN’ neN

Proof. Denote by Nt ={ne N: z, >0}and N~ ={ne N: z, <0},
and put §* = |3 cn+ Tl < 00, §7 = |3, cn- Zn| < 00. Then either
St > § or St < 5. In the first case we define N° := N* and in the
second one N? := N—. Then

2 =

neN?

1 1
= max{5t,57} > 5(s+ +57) =3 > |eal.
neN

In addition, it is evident that there exists a finite subset N’ of N° such

that
> -

neN'’
Consequently, (4.4) holds. O

1
> -
-2
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Proposition 4.3. Let {m., : v € I'} be a family of bounded finitely additive
measures on an effect algebra L. Let, for any a € L, there ezists a positive
constant K (a) such that (3.2) holds for v € T'. Let K be a non-void system of
L and let {b;};cs be at most a countable D-orthogonal system of elements
from K such that, for any I C J, ®jel b; exists in L. Then there ezists a
positive constant K3y such

sup Y |mo(b5)] < K3
el 3

Proof. If J for {b;}jes is finite, the statement is evident. Suppose thus
J ={1,2,...}. Define a measurable space (J,27) and measures ., on 27 via

(B = o DY), Be
jEB

Any p., is a bounded finitely additive measure on 27. Using [1], Thm 8,
there is a positive constant Ky, such that the inequality

iy (B) < Kp,3/2

holds for any v € I and any B € 27. For.any disjoint sets B,...B, € 27,
by Lemma 4.5, for any 7 € T there is a finite subset S,y C{1,...,n} such

Zl"r

JESy

I&{b }/2>

2 2 Z |F"Y(B l

so that »77_; [u4(Bj)| < K33 Consequently, 3772, |puy(B;)| < K3,y holds
for any sequence of mutually disjoint subsets of J. In particular,

Z [m(b;)| = Z ({711 € Koy
7j=1 J=1
a

Proposition 4.4. Let {m, : v € T'} be a family of K-regular, bounded,
finitely additive measures on an effect algebra L. Let, for any a € L, there
ezists a positive constant K(a) such that (3.2) holds for v € T. Let any
sequence of €D-orthogonal elements from K has the sum in L. Let {a;};es
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be at most a countable @ -orthogonal system of elements from L. Then there
ezists a positive constant K,y such

sup |m,y(aj)| < \K{"'J'}'
~€erl’

Proof. If the sequence {a;} is finite, the statement of the Proposition trivially
holds. Let now {a;} be an infinite sequence and suppose that the statement
of the Proposition is false. Then for K = 4 there exist an integer k; and a
measure m., such that

k1
> Imay(aj)] > 4.
=1

Then
o0
sup 3 Jm(a;)| = o0
vel ok
in view of
k1
suIE Z |my(a;)| < by max{K(ay),...,K(ar,)} < co.
yel .
j=1

Continuing by induction, we find an increasing sequence of integers 0 =:
ko < k1 < k2 < --- and a sequence of measures {m.,} such that, for any 1,

ki

Z |may(aj)] > 4.

J=ki—1+1

Put J; := {ki-1 + 1,...,k;}. For any integer 7 and any j € J;, there
exists, by Lemma 4.1, an element b; € K with b; < a; such that

1
(45) mas(63)] 2 3lma(a5)]

It is simple to show by induction that {b,} is @-orthogonal. By Propo-
sition 4.3, sup.er 2724 |m,(b;)| < co which is a contradiction to (4.5), and
the Proposition is proved. O
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Proposition 4.5. Let {m., : v € I'} be a family of K-regular, bounded,
finitely additive measures on an effect algebra L. Let, for any a € L, there
ezists a positive constant K(a) such that (3.2) holds for v € I'. Let, for any
b € K, sup.er |m,|(b) < 0o, and let any sequence of (P-orthogonal elements
from K has the sum in L. Let {a;} be at most a countable P-orthogonal
system from K. Then there ezists a positive constant K,y such

sup |m~|(a;) < K¢,
’Yegl 'yl( i) < {a;}

Proof. When we change a; and b; from the proof of Proposition 4.4 to b;
and b} € K, and use the similar ideas, we obtain the assertion in question.
a

Remark 4.2 (i) If, in addition, any |m,| is additive in Proposition 4.5, the
Nikodym boundedness theorem is true.

(ii) If L is a o-algebra, then the total variation of a bounded measure is
additive.

Example 4.1 Let L = [0, 1] and & be the usual addition in [0, 1]. Let Q;
be the set of all rational numbers in [0, 1]. Then:

(i) If m is a measure on [0, 1], then m(q) = ¢ m(1) for any ¢ € Qq, and
m(qt) = gm(t) for any ¢ € Q; and any ¢ € [0, 1] with ¢t € [0, 1].

(ii) Any Jordan measure m is either positive or negative, and it has the
form

(4.6) m(t) = tm(l), te]o,1],

consequently, it is completely additive.

(iii) The following assertions are equivalent:

(a) m is Qq-regular.

(b) m is o-additive.

(c) m is completely additive.
(d) m is a Jordan measure.

(e) m is continuous in [0, 1].
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(f) m is bounded.
(g) m is of the form (4.6).

(iv) Let 4 be a discontinuous additive functional on R, [12], then m(t) :=
¥(t), t € [0, 1], is an unbounded measure on [0, 1].

(v) Let m be an X -valued measure, where X is a Banach space. Then the
following assertions are equivalent: (va) m is bounded; (vb) m is continuous;
(vc) m has the form (4.6).

Proof. We prove only some of above statements. If m is positive, the formula
(4.6) follows easily from the monotonicity of m.

(a) = (g): The Q-regularity of m implies that given t € (0, 1) there
is an increasing sequence of natural numbers, {g,}, with ¢, < t such that
m(t) = lim, m(g,) = lim, ¢,m(1) = tom(t), where tg = lim, g,. Then m(t)
and m(1) have the same sign, so that m is either positive or negative.

(f) = (e): Let m be a bounded measure on [0, 1]. Take a finite-dimensional
Hilbert space H,, dim H, > 2, and let S(H,) be a unite sphere in H,, that
is, S(H,) = {z € H, : ||z|]| = 1}. Fix a unit vector e € H,. Then the
mapping z — |(e,z)|?, z € S(H,), maps S(H,) onto the interval [0, 1].
Indeed, if e; is a unit vector in H,, which is orthogonal to e, then for unit
vectors z4 := cosde + singer, ¢ € [0, m/2], we have |(e,z4)[? = cos? ¢.

Define the mapping f : S(H,) — R via f(z) := m(|(e, 2)|?), = € S(H,).
Then f is a frame function in H,, i.e., if z(,...,z, and y1,..., ¥, are two
orthonormal bases in H,, then > 7, f(z;) = >, f(y:;)- The boundedness
of m entails the boundedness of f. Using the Gleason theorem for finite-
dimensional Hilbert spaces, [11], [8], Thm 3.2.15, f is continuous.

If now t, — t in [0, 1], then there exist ¢,,¢ in [0, 7/2] such that ¢, —
#, and t, = |(e,z4,)|> = t = |(e,z4)[%, so that m(t,) — m(t) because
T4, — Ty¢. Therefore, m is continuous.

(v) Let m be a bounded vector-valued measure. Take an arbitrary con-
tinuous linear functional ¥ on X. Then 9 o m is a bounded complex-valued
measure on [0, 1]. Assuming separately the real and imaginary part of ¥ om,
we see that 1 o m is continuous. Hence by (4.6), (¢ o m)(t) = t(om)(1) =
¥ (tm(t)) for any ¢ € [0, 1]. Because all bounded functionals from the dual
X* of X separate the points of X, m has the form (4.6).

All other implications are simple. O
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It is worth to notice that the total variation of any bounded measure
on [0, 1] is additive. In addition, the Nikodym boundedness theorem (as
well as the Nikodym convergence theorem) holds for any system of bounded
measures on [0, 1], and, in addition, all conditions in (i) of Remark 4.2 and
Proposition 4.5 are satisfied.

5. Regular measures on inner product spaces

In the present section we deal with measures on the set £(.5) of all splitting
subspaces of a real or complex inner product space S (see Example 2.2).
Before that we introduce some useful notions according to [19].

Let m = m; —mg3 be a Jordan measure on an effect algebra L, where m,
and mg are positive measures on L; we say that m, and mg have (i) the Hahn
property for m if there is an element b € L such that m;(bt) = 0 = my(b);
(ii) the approzimative Hahn property for m if given € > 0, there exists an
element b € L with mq(b1), ma(b) < ¢ (iii) the uniform approzimative Hahn
property for m in L if given a € L and given ¢ > 0 there is an element b € L
with b < a such that my(a 6 b), ma(b) < €.

For example, for any bounded measure m on L = [0, 1], there exists
two positive measures m;, mg with m = m; — mg which have the uniform
approximative Hahn property for m on L (see Example 4.1).

Let A be a non-void convex subset of Q(L), i.e., if m;,ms € A, then
Amq + (1 — A)mg € A for any A € [0, 1]. Let J(A) be the set of all Jordan
measures on L generated by A, i.e., of all m € J(L) such that m = sm; —
t mg, where s,t € Ry, mqy,my € A. Yor any m € J(A), we define the base
norm on J(A), || - [|a, via

(5.1) |lm|la =inf{s+t: m=smy —tmg, s,t € Ry, my,my € A}.

Then
lImlls < [|lmls < [lm]a-

Riittimann [19], Thm 4.3 proved that if m € J(A) has a Jordan decom-
position m = my — mgy, where mj, m; are positive measures from J(A) such
that m; and m, have the approximative Hahn property for m, then

(5.2) lmlla = [|m]l..
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Proposition 5.1. Let m; and m, be two positive measures and m be a
bounded measure with m = m; — my on an effect algebra L. The following
statements are equivalent:

(i) my and my have the approrimative Hahn property for m.
(i) [ml(1) = ma(1) + ma(1).
(iii) m*(1) = mqi(1), m=(1) = ma(1).

Moreover, my and m, have the uniform approzimative Hahn property for
m on L iff |m|(a) = mi(a) + ma(a), a € L < m*(a) = mi(a), m (a) =
ma(a), a € L.

Proof. It is clear that m*(a) < my(a), m~(a) < mgy(a) for any a € L,
so that |m|(1) < mi1(1) + mz(1). If m; and m; have the approximative
Hahn property for m, given ¢ > 0, there exists an element b € L with
m1(bt), my(b) < €/2. Then

ml(bl) + ma(b) < ¢,
m1(1) — mq(b) + ma(b) < ¢,
mt(1) < mi(1) < m(b) + e < m*(1) + ¢,

so that m*(1) = my(1). Since m=(1) = (-m)*(1), m~(1) = my(1), and
Im|(1) = mq(1) + ma(1).

Let now (ii) hold. From (2.7) we have that given € > 0 there exists an
element b € L such that |m|(1) < 2m(b)—m(1)+2e. Then my(1)+m2(1) <
2my(b) —2ma(b) — m1(1)+ ma(1) < 2e. So that, my(bL)+ my(b) < €, which
means that m;(bt), m2(b) < e.

Similarly, we prove the second part of the Proposition.O

Theorem 5.1. Any bounded P(S)-regular measure m on E(S), dim § > 3,
is a Jordan one with m = my — my such that my and mq are P(S)-regular
positive measures on E(S), and they have the approrimative Hahn property
for m.

Proof. Due to [8], Ex 4.4.5.24, any bounded P(S5)-regular measure m on
E(S) is a Jordan one, and by [8], Thm 4.2.3, any Jordan P(S)-regular
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measure on E(S) is in a one-to-one correspondence with the set of all Her-
mitian trace operators T on the completion S of S via (4.1). Denote by
my (M) := t1(T* Pyy) and my(M) := tx(T~ Pyz), M € E(S), where Tt and
T~ are the positive and negative part of T, T =T+ - T~.

Since both T% and T~ are Hermitian trace operators on S, then
T+ = Z’\i('axi)xi, T = Z,u](’yj)yj7
i J

where A; > 0,15 > 0,32; Ai < 00,37 p; < 0o and {z;}U{y;} is an orthonor-
mal system in S.

Given € > 0 there is an integer n such that ) .. A; < ¢, and without
loss of generality we can assume that n > ¢. Define

K._{l if ||| < 1, K._{l if ¥,p5 <1,
! T i IT] > 1, TN S i >

According to the proof of Theorem 4.1.2 from [8], we can find an or-
thonormal system {hy,...,h,} in S such that ||hy — zk|| < € K1K3/(4n) for
k=1,...,n. Then for any £ = 1,...,n,

I(T* hie, b)) = Mel = (T hie, he) = (T 2k, 24)| < W(TT (R — 24), 24)|

£ (T i bt — 2l < 20174 1k — 2]l < 211711k — 2

< €Ky/2n < €/2n.

Thus, for N = sp(hy,...,h,) € E(S), we have

n

mi(NY) = 3N mi(N) =Y A+ D (i — ma(sp(hi))

>n =1
= Z A+ Z(z\i ~(T*hi,h))) < €/2+mne/2n =e.
i>n 1=1
On the other hand,
n "
ma(N) = Y ma(sp(ha)) = D D wi l(ws, ki)
k=1

k=1 j
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= S wil@ ke - el < 35 i llgslP 1Ak — zell?

k=1 3 k=1 g
k13
< N> u KK /1607 = €Y p;K3/16n < €2/16n < €.0
k=1 j J

The following statement follows easily from (2.7) and Theorem 5.1.

Corollary 5.1. Let T be an arbitrary Hermitian trace operator on S and
let mr be a P(S)-regular measure on E(S) determined by (4.1). Then

max{t{(T"), t(T7)}

lImzlls < |Imr|ly = [Imrllacs)y = t(IT])
2||mr|ls — [tn(T)| = 2 t(|T|) — tr(T)-

where A(S) is the set of all P(S)-regular states on E(S).

If S = H is a Hilbert space, then any P(H )-regular measure m on
E(H)= L(H),dim H > 3, is completely additive and vice versa, and nat-
urally, m; := mp4 and mg := myp—, which are defined by (4.1) for 7% and
T-, have the approximative Hahn property as well as the Hahn property
for m; the subspace M generated by the proper vectors of T+ has he prop-
erty mi(M*1) = 0 = my(M). If § is an incomplete inner product space, it
can happen that m; and my have no Hahn property as we shall see in the
following example. We recall that by dimension of S we understand the
orthogonal dimension of 9, i.e., the cardinality of any maximal orthogonal
system is S.

Example 5.1. Let S be an incomplete inner product space of countable
dimension.? Since an inner product space is complete iff any maximal or-
thonormal system (MONS for short) in S is an orthonormal basis (ONB
for short), there is a MONS {e,}32; in § which is not ONB, consequently,
there exists a unit vector e € ?\ S which is orthogonal with any e,. Define
m1 = ||Pyell?, ma = Y02, n7%|| Pygenl|?, M € E(S). Then my and my
are P(S5)-regular measures on E(S) which have no Hahn property for the
P(S)-regular measure m = m; = ma.

2For example, any separable inner product space is of countable dimension.
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Indeed, let mq(M1) = 0 = my(M). Hence, any e, L M, so that M is
the null space while e € M which is a contradiction.

The Hahn property gives the following completeness criterion.

Theorem 5.2. An inner product space S is complete if and only if, for
any P(S)-regular measure m := mr on E(S), the P(S)-regular measures
my = mr+ and mg := mp- defined by (4.1) have the Hahn property.

Proof. If § is complete, the statement is evident.

For the converse statement, choose a non-zero vector z € S. We claim to
show that z € 5. Obviously, there exists z € S such that z f z. Then, for

y =z~ |lz]|’/(z,2) 2,

we have y L 2 and 0 # y € S. According to [2] or [8), Thm 4.1.2, there exist
two sequences of vectors in S, {z;} and {y;}, such that z; L y; for all < and
all 7, and z; — z, y; — y. Applying the Gram-Schmidt orthogonalization
process to {z;} and {y;}, we find two mutually orthogonal sequences {f;}

and {g;}.

Define two positive Hermitian trace operators, Ty = 3. ¢72(, fi) fi and
T =3 77%(-,9;)gj,and put T =Ty — T2. Then Tt =Ty and T~ = To.
Let m, m; and mq be P(S)-regular measures on E(S) determined by T',T}
and T3, respectively, via (4.1). By the assumptions of Theorem, m; and mg
have the Hahn property for m, so that, there exists an element M € E(S5)
such that my(M?1) = 0 = ma(M). Therefore, f; € M and g; L M for every
i, so that z; € M and y; L M for any ¢, and, consequently, z € M and
y€e ML,

Denote by Pi; the orthogonal projection from S onto M. Then 0 =
Piry = Pyrx — Pyr20, where 25 = [|z||2/(2,2) z € S, so that Pi7z = 21, when
20 =21+ 20, 21 € M, 2y € M+, and this gives z = 2, € 5. O

When we would like to prove the Nikodym boundedness theorem for a
family of bounded P(.5)-regular measures on E(S) applying some of propo-
sitions from Section 4, we have the following troubles:

(i) If K := P(S5), then a @-orthogonal system from K has the sum in
E(S)iff S is complete {8], Thm 4.1.6.
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(ii) We do not know whether sup,, |m,|(M) < oo for any M € P(S).

Anyway, we have a partial result concerning Nikodym’s boundedness
theorem for incomplete inner product spaces. To present it, we introduce
the following notion.

We say that an inner product space S has a K-property [1], [15] iff from
any sequence {z,}n from § with ||z,|| = 0 when n — oo we can choose a
subsequence {z,,}; of {z,}, such that 3 ]_, z,, converges to some element
z in S when j — oo. Any Hilbert space has the K-property, but not all inner
product spaces have the K-property as we see in the following example.

Example 5.2. Let H be a separable inner product-space with an ONB
{en}22,. Put f = 377, n~le, and define S := sp(f, ez, €e3,...). Then S is an
incomplete inner product space, and 1/n e, — 0 but there is no subsequence
of {1/ne,} whose series is convergent to some element in S.

Kli§ [14] has presented an example of incomplete inner product space
which has the K-property.

Proposition 5.2. Let S be an inner product space with the K-property. Let
{m, : v € T'} be a family of P(S)-regular measures on E(S) determined by
a family of Hermitian trace operators {T, : v € '} on S via (4.1). Let for
any unit vector x € S there is a constant K; > 0 such that

(5.3) sup [mr, (sp(2))| < Kz,
~erl

then, for any integer n, there is a constant K, > 0 such that, for any

M € E(S), dim M < n,

sup mr,|(M) < K.
~er

In particular,

sup |mz, |(M) < K,
~er

for any at most n-dimensional subspace M of S.

Proof. For any unit vector z € S, (5.3) entails |(Tyz,2)| < K for any v € T.
Using the polarization form, for any z,y € 5, there is a positive constant
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Ky such that |(Tyz,y)| < K, for any v € I'. Since § has the K-property,
the uniform boundedness principle holds for {7, : v € T} on S [1], Thm
4.2, [15], and therefore, there exists a positive constant K such that, for all
2,y € S, llell, Iyl = 1,

(5.4) sup [(Tyz,z)| < K.
ver

Then (5.4) holds for all unit vectors z,y € S, so that, supyer || 74]| < K.
Since [|T[1, 71| < |IT]], we have sup,ep|| T3/ || < 2 K.

If now M € E(S), dim M < n, then for any ONB {e;}i M we have
dim M

sup tr(|7’,| P37) = sup Z (|T4lei,e;) < 2nK.O
~erl

~el i=1

Finally, we present an open problem.

Problem 5.1 (i) Does the Nikodym boundedness theorem hold for a family
of bounded P(S)-regular measures on F(S) ?

(ii) Does the Nikodym convergence theorem hold for a family of bounded
P(S)-regular measures on FE(S) ? (See also [8], Pro 4.3.15.)
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